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Abstract

ListMLE is a state-of-the-art listwise learning-to-
rank algorithm, which has been shown to work
very well in application. It defines the probabil-
ity distribution based on Plackett-Luce Model in
a top-down style to take into account the position
information. However, both empirical contradic-
tion and theoretical results indicate that ListM-
LE cannot well capture the position importance,
which is a key factor in ranking. To amend the
problem, this paper proposes a new listwise rank-
ing method, called position-aware ListMLE (p-
ListMLE for short). It views the ranking prob-
lem as a sequential learning process, with each
step learning a subset of parameters which maxi-
mize the corresponding stepwise probability dis-
tribution. To solve this sequential multi-objective
optimization problem, we propose to use lin-
ear scalarization strategy to transform it into
a single-objective optimization problem, which
is efficient for computation. Our theoretical s-
tudy shows that p-ListMLE is better than ListM-
LE in statistical consistency with respect to typi-
cal ranking evaluation measure NDCG. Further-
more, our experiments on benchmark datasets
demonstrate that the proposed method can sig-
nificantly improve the performance of ListMLE
and outperform state-of-the-art listwise learning-
to-rank algorithms as well.

1 INTRODUCTION

Ranking is an important problem in various applications,
such as information retrieval, meta search and collaborative
filtering. In recent years, machine learning technologies
have been widely applied for ranking, and a new research
branch named learning to rank has emerged. A learning-
to-rank process can be described as follows. In training,

a number of sets (queries) of objects (documents) are giv-
en and within each set the objects are labeled by assessors,
mainly based on multi-level ratings. The target of learning
is to create a model that provides a ranking over the objects
that best respects the observed labels. In testing, given a
new set of objects, the trained model is applied to generate
a ranking list of the objects. To evaluate the performance
of a ranking system, many position-aware evaluation mea-
sures such as NDCG [9], MAP [2], ERR [5] are used to
reflect users’ bias on different positions. That is, users of-
ten care more about the results on top positions in a ranking
[3, 16, 21].

In literature, pointwise algorithms such as McRank [14]
were first proposed to solve the ranking problem, which
transformed ranking into (ordinal) regression or classifi-
cation on individual documents. The idea is natural but
it is comprehensively criticized for using different objec-
tives from ranking. Therefore, pairwise algorithms such
as RankSVM [10], RankBoost [7] and RankNet [1] were
then proposed to view a pair of items as the object, and
transform ranking into the pairwise classification problem.
However, the pairwise approach highly ignores the position
information over different pairs, which is quite important
for ranking as mentioned above. To overcome the weak-
ness of pairwise ranking algorithms, listwise ranking algo-
rithms such as ListMLE [21], ListNet [4], RankCosine [17]
and AdaRank [22] were proposed, which view the whole
ranking list as the object. For example, ListMLE utilized
the likelihood loss of the probability distribution based on
Plackett-Luce model for optimization. According to previ-
ous studies [4, 15, 17, 21], the listwise approach can out-
perform the other two approaches on benchmark datasets.

Seemingly listwise approaches can well solve the ranking
problem by directly modeling the ranking lists and thus tak-
ing into account the position information. However, both
empirical contradiction and theoretical results indicate that
listwise approaches cannot well capture the position im-
portance, which is a key factor in ranking [13, 6]. In this
paper, we take the typical listwise method ListMLE as an
example to illustrate this problem. Empirically, given two



ranking functions f1 and f2, the error of f1 occurs in the
top positions and that of f2 occurs in the bottom positions.
We find that ListMLE will prefer f1 to f2, leading to lower
performance under the IR evaluation measure such as ND-
CG. Theoretically, it has been proven in [21] that ListMLE
is consistent1 with permutation level 0-1 loss, a loss with-
out considering the importance of different positions.

We analyze the underlying reason behind these above re-
sults. We find that the probability in ListMLE is defined in
a top-down style which seems to reflect the position im-
portance in ranking. However, due to the chain rule of
probability, the decomposition of probability in ListMLE
is not unique, indicating that different positions are actually
equally important in such definition. To amend this prob-
lem, we propose a new listwise ranking approach, name-
ly position-aware ListMLE (p-ListMLE for short), which
views ranking as a sequential learning process. Specifi-
cally, at step 1, it aims to maximize the top 1 probabili-
ty distribution of Plackett-Luce model. At step i, it aims
to maximize the i-th conditional probability distribution of
Plackett-Luce model given the top i−1 items. To solve the
sequential learning problem, we propose to transform it in-
to a single-objective optimization problem, which is equiv-
alent to minimizing a new surrogate loss.

Theoretically, we study the statistical consistency issue of
p-ListMLE. Following the technique used in [11], we can
prove that with RDPS as the assumption, p-ListMLE will
be consistent with Weighted Pairwise Disagreement Loss
(WPDL for short), which is equivalent to a certain ND-
CG. Further considering the previous result that ListMLE is
consistent with permutation level 0-1 loss, we can see that
p-ListMLE is better than ListMLE theoretically. We fur-
ther conduct extensive experiments on benchmark datasets
LETOR4.0, and the empirical results demonstrate that the
proposed p-ListMLE can significantly outperform the o-
riginal ListMLE as well as other state-of-the-art listwise
learning-to-rank algorithms.

The contribution of this paper lies in the following aspects:

(1) We provide a novel view of ranking as a sequential
learning process, with each step to learn a subset of param-
eters which maximize the corresponding stepwise proba-
bility distribution;

(2) We propose a new ranking algorithm to incorporate po-
sitions into the learning process;

(3) We provide theoretical analysis on the consistency of
the proposed ranking algorithm.

The remainder of the paper are organized as follows. In
section 2, we provide some backgrounds on ListMLE, in-

1Please note that Xia et al. [19] prove that a modification to
ListMLE is consistent with top-k 0-1 loss, however, top-k 0-1 loss
take the top k positions as equal, therefore cannot well capture the
position importance.

cluding the framework of listwise learning to rank, the al-
gorithm of ListMLE, and the theoretical results on ListM-
LE. Section 3 describes the motivation of this paper and
section 4 presents our main results, including the novel se-
quential view of ranking and the loss function of the new
algorithm. Section 5 and 6 presents our theoretical and ex-
perimental results, respectively. Section 7 concludes the
paper.

2 BACKGROUNDS

In this section, we give some backgrounds on ListMLE,
which is a famous listwise ranking algorithm. Listwise
learning to rank addresses the ranking problem in the fol-
lowing way. In learning, it takes ranking lists of object-
s as instances and trains a ranking function through the
minimization of a listwise loss function defined on predict-
ed list and the ground-truth list. Following [21], we give
the mathematical description of listwise learning-to-rank
framework as follows.

2.1 Listwise Learning to Rank

Let x = {x1, · · · , xn} ∈ X be a set of objects to be ranked,
and y = {y1, · · · , yn} ∈ Y be the ground-truth permuta-
tion of these objects, where yi stands for the position of xi

and y−1(i) stands for the index of items in the i-th position
of y. We assume that (x,y) are sampled according to a
fixed but unknown joint probability distribution PXY . Let
f : X → Rn be a ranking function, where Rn denotes a
n-dimensional real-valued vector space. The task of list-
wise learning to rank is to learn a ranking function that can
minimize the expected risk R0(h), defined as:

R0(h) =

∫
X×Y

L0(f ;x,y) dPXY (x,y),

where L0 is a true loss of listwise learning to rank. For
example, Xia et al. [21] utilized permutation level 0-1 loss
as the true loss, which takes the following form.

L0−1(f ;x,y) = I{πf (x) ̸=y}, (1)

where I{·} is an indicator function, with IA = 1, if A is
true, and IA = 0, otherwise. πf stands for the output per-
mutation induced by sorting the objects in descending order
of scores produced by f , that is,

πf (x) = sort(f(x1), · · · , f(xn)).

Since PXY is unknown, the optimal ranking function
which minimizes the expected loss cannot be easily ob-
tained. In practice, we are usually given independently and
identically distributed samples S = {xi,yi}Ni=1 ∼ PXY ,
where xi = (x

(i)
1 , · · · , x(i)

ni ) and yi = (y
(i)
1 , · · · , y(i)ni ).



Therefore, we instead try to obtain a ranking function that
minimize the empirical risk.

R̂(h) =
1

N

N∑
i=1

L0(h;xi,yi).

However, the true loss is usually nonconvex, which poses
a challenge to the optimization of the empirical risk. As is
done in the literature of machine learning, people usually
use surrogate losses as an approximation of the true loss,
and turn to minimize the corresponding surrogate empiri-
cal risk instead.

Rϕ(f,x,y) =
1

N

N∑
i=1

Lϕ(f ;xi,yi).

2.2 ListMLE

ListMLE is such a listwise ranking algorithms which utilize
a likelihood loss as the surrogate loss, defined as follows.

L(f ;x,y) = − logP (y|x; f), (2)

where,

P (y|x; f) =
n∏

i=1

exp (f(xy−1(i)))∑n
k=i exp(f(xy−1(k)))

. (3)

The above probability is defined according to Plackett-
Luce model. That is to say, the probability of a permutation
is first decomposed to the product of a stepwise conditional
probability, with the i-th conditional probability standing
for the probability that the document is ranked at the i-th
position given the top i − 1 objects are ranked correctly.
The precise form are given in the following equations.

P (y|x; f) (4)

= P (y−1(1),y−1(2), · · · ,y−1(n)|x; f)

=P (y−1(1)|x; f)
n∏

i=2

P (y−1(i)|x,y−1(1), · · · ,y−1(i−1); f)

where,

P (y−1(1)|x; f) =
exp (f(xy−1(1)))∑n
k=1 exp(f(xy−1(k)))

, (5)

P (y−1(i)|x,y−1(1),y−1(2), · · · ,y−1(i− 1); f)

=
exp (f(xy−1(i)))∑n
k=j exp(f(xy−1(k)))

, ∀i = 2, · · · , n (6)

2.3 Consistency

Previous theoretical analyses on ListMLE were mainly fo-
cused on generalization and consistency. For generaliza-
tion analysis, Lan et al. [12] has derived the generaliza-
tion bounds of listwise ranking methods, including ListM-
LE [21], ListNet [4] and RankCosine [17]. As to the sta-
tistical consistency analysis, the loss function in ListMLE
has been proven to be consistent with permutation level 0-1
loss [20], where consistency is defined as follows.

Definition 1. We say a surrogate loss Lϕ is statistical-
ly consistent with respect to the true loss L0, if ∀ϵ1 >
0, ∃ϵ2 > 0, such that for any ranking function f ∈
F , Rϕ(f) ≤ infh∈F Rϕ(h) + ϵ2 implies R0(f) ≤
infh∈F R0(h) + ϵ1.

Statistical consistency is a desired property for a good sur-
rogate loss, which measures whether the expected true risk
of the ranking function obtained by minimizing a surrogate
loss converges to the expected true risk of the optimal rank-
ing in the large sample limit. Therefore, the consistency of
ListMLE with respect to permutation level 0-1 loss means
that the the surrogate loss of ListMLE is a good surrogate
of permutation level 0-1 loss theoretically. However, 0-1
loss is not a ‘good’ loss for the ranking problem, since it
largely ignores the impact of positions, which is crucial in
ranking. Therefore, in this paper, we propose to study how
to improve ListMLE to make it consistent with a better loss
for ranking.

3 MOTIVATIONS

The motivation of this work comes from both empirical
contradiction and theoretical results in ListMLE, indicating
that position importance, which is a key factor in ranking,
is actually ignored in this listwise approach.

3.1 Empirical Contradiction

Firstly, we take a case study on some toy data to show that
position importance is actually not considered in ListMLE.

We are given a set of documents x = {x1, · · · , x5}
and their ground-truth labels z = (z1, · · · , z5) in terms
of 5-level ratings, where zi = i. That is to say, the
best ranking list is y = (1, 2, 3, 4, 5). Suppose we are
given two ranking functions f1 and f2 with correspond-
ing scores y1 = (ln 4, ln 5, ln 3, ln 2, ln 1) and y2 =
(ln 5, ln 4, ln 1, ln 2, ln 3), where yi(j) = fi(xj). As we
can see, the first two documents are mistakenly ranked by
f1, while the last three documents are mistakenly ranked by
f2. The corresponding likelihood losses of these two rank-



ing functions in ListMLE are listed as follows.

L(f1,x,y)

=−log

(
4

4+5+3+2+1
· 5

5+3+2 +1
· 3

3+2+1
· 2

2+1
· 1
1

)
,

L(f2,x,y)

=−log

(
5

5+4+3+2+1
· 4

4+3+2+1
· 1

1+2+3
· 2

2+3
· 3
3

)
.

Through comparison, we can see that f1 is better than f2
in terms of likelihood loss of ListMLE, as indicated by the
fact that L(f1,x,y) < L(f2,x,y).

However, from the view of IR evaluation measure NDCG,
we can see that NDCG(f1,x,y) < NDCG(f2,x,y),
showing that f2 should be preferred to f1.

NDCG@5(f1,x,y)

=
1

N5

(
(25−1)log

1

3
+(24−1)log

1

2
+(23−1)log

1

4

)
+

1

N5

(
(22−1)log

1

5
+(21−1)log

1

6

)
,

NDCG@5(f2,x,y)

=
1

N5

(
(25−1)log

1

2
+(24−1)log

1

3
+(23−1)log

1

6

)
+

1

N5

(
(22−1)log

1

5
+(21−1)log

1

4

)
,

As we know, IR evaluation measures such as NDCG reflect
the fact that users are more concerned on results in top posi-
tions in a ranking. Therefore, the mistakes in top positions
will be more severe than that in low positions. The em-
pirical contradiction between ListMLE and IR evaluation
measures thus indicates that the loss of ListMLE cannot
well capture the position importance.

3.2 Theoretical Result

In [21], it was proven that the loss functions of ListMLE
[21] are consistent with permutation level 0-1 loss. How-
ever, permutation level 0-1 loss actually does not take po-
sition importance into account. Therefore, theoretical con-
sistency between ListMLE and permutation level 0-1 loss
also demonstrates that the position importance cannot be
well captured by the loss of ListMLE.

4 POSITION-AWARE LISTMLE

The above results indicates that ListMLE ingnores the posi-
tion importance, which is a key factor for ranking. Howev-
er, the probability in ListMLE is defined in a top-down style

which seems to reflect the position importance in rank-
ing. This contradiction makes us revisit the algorithm of
ListMLE. As we can see, the probability on permutation in
ListMLE can be decomposed as follows.

P (y|x; f) (7)

= P (y−1(1),y−1(2), · · ·,y−1(n)|x; f)

= P (y−1(1)|x; f)
n∏

i=2

P (y−1(i)|x,y−1(1), · · ·,y−1(i−1); f)

However, the chain rule of probability described as follows
tells us that this is not the unique decomposition.

P (A1, · · · , An)

= P (Ai1)P (Ai2 |Ai1) · · ·P (Ain |Ai1 , · · · , Ain−1),

where (i1, · · · , in) is any permutation of (1, · · · , n).

As a consequence, the probability is equal to any decom-
position described as follows.

P (y|x; f) (8)

= P (y−1(1),y−1(2), · · ·,y−1(n)|x; f)

=P (y−1(i1)|x;f)
n∏

j=2

P (y−1(ij)|x,y−1(i1),· · ·,y−1(ij−1);f)

where (i1, · · · , in) is any permutation of (1, · · · , n). In this
way, different positions are actually equally important un-
der the probability definition of ListMLE. In other words,
the loss of ListMLE cannot reflect the position importance
in a top-down style. Therefore, we propose a new listwise
ranking approach, namely p-ListMLE, to capture the posi-
tion importance in a ‘true’ top-down style.

4.1 Ranking As a Sequential Process

To reflect the position importance in a top-down style,
i.e. higher position is more important, we propose a new
sequential learning process for ranking as follows.

Step 1: Maximizing the probability that the top 1 object is
selected with mathematical description as follows.

max
f∈F

P (y−1(1)|x; f);

Step i: For i = 2, · · · , n, we denote the subset of rank-
ing functions that reach the maximum in Step i− 1 as
Si−1. The task of step i is to maximize the probability
that the object with position i in ground-truth permu-
tation is selected given the top i − 1 objects ranked
correctly. The mathematical formulation is described
as follows.

max
f∈Si−1

P (y−1(i)|x,y−1(1), · · ·,y−1(i− 1); f);



Step n+1: The learning process ends, and the ranking
function f is randomly selected from Sn−1 as the out-
put ranking function.

4.2 Loss Function

In order to solve the above sequential multi-objective op-
timization problem, we propose to use linear scalarization
strategy [8] to transform it into a single-objective optimiza-
tion problem, and emphasize the early steps to reflect the
position importance.

min
f∈F

Φ(f),

Φ(f)=−
n∑

i=2

α(i) logP (y−1(i)|x,y−1(1), · · ·,y−1(i−1);f)

− α(1)logP (y−1(1)|x;f),

where α(·) is a decreasing function, i.e. α(i) > α(i+ 1).

Incorporating the probability based on Plackett-Luce mod-
el as described in Eq. (5) and Eq. (6) into the above
optimization problem, we obtain a new algorithm which
minimizes the following likelihood loss function for p-
ListMLE.

Lp(f ;x,y) (9)

=
n∑

i=1

α(i)(−f(xy−1(i)) + log(
n∑

j=i

exp(f(xy−1(j))))).

4.3 Case Revisit

Here, we revisit the case used in section 3.1 to show that
after introducing position factor α into ListMLE, the em-
pirical contradiction will disappear. We first compute the
likelihood losses of p-ListMLE with respect to f1 and f2,
which are listed as follows.

Lp(f1,x,y)

=−α(1) log((
4

4 + 5 + 3 + 2 + 1
)−α(2) log(

5

5 + 3 + 2 + 1
)

−α(3) log(
3

3 + 2 + 1
)−α(4) log(

2

2 + 1
),

Lp(f2,x,y)

=−α(1) log(
5

5 + 4 + 3 + 2 + 1
)−α(2) log(

4

4 + 3 + 2 + 1
)

−α(3) log(
1

1 + 2 + 3
)−α(4) log(

2

2 + 3
).

In this way, the following equality holds:

Lp(f1,x,y)− Lp(f2,x,y)

= (α(1)− α(2)− α(4)) ln 5− (α(1)− α(2)) ln 4

− (α(3)− α(4)) ln 3 + α(2)(ln 11− ln 10)

> (α(1)− α(2)− α(4)) ln 5− (α(1)− α(2)

+ α(3)− α(4)) ln 4,

Therefore, as long as α satisfies the following condition in
Eq. (10), we will have Lp(f1,x,y) > Lp(f2,x,y).

α(1)− α(2)− α(4)

α(1)− α(2) + α(3)− α(4)
>

ln 4

ln 5
. (10)

That is, f2 is preferred to f1 in terms of p-ListMLE, which
is consistent with NDCG as shown in Section 3.1. This
condition is easy to be satisfied as long as α(1) is far lager
than the other α(i), i = 2, · · · , 5.

5 STATISTICAL CONSISTENCY OF P-
LISTMLE

In this section, we study the statistical consistency of p-
ListMLE. In [21], it is proved that ListMLE is consistent
with permutation level 0-1 loss. Since position factor α(·)
is introduced in p-ListMLE, we consider weighted pairwise
loss (WPDL) defined in [11] as the true loss.

LWPDL(f ;x,y) =
∑

i,j:ri>rj

D(ri, rj)I{f(xi)−f(xj)≤0},

(11)
where ri = n− yi, D(ri, rj) = α(rj)− α(ri) > 0.

Firstly, we introduce the definition of a rank-differentiable
probability space (RDPS for short), with which we can
prove that p-ListMLE is consistent with WPDL.Hereafter,
we will also refer to data from RDPS as having a rank-
differentiable property.

5.1 A Rank-Differentiable Probability Space

Before introducing the definition of RDPS, we give two
definitions, an equivalence class of ratings and dual rat-
ings. Intuitively, we say two ratings are equivalent if they
induce the same ranking or preference relationships. Mean-
while, we say two ratings are the dual ratings with respect
to a pair of objects, if the two ratings only exchange the
ratings of the two objects while keeping the ratings of oth-
er objects unchanged. The formal definitions are given as
follows.

Definition 2. A ratings r is called equivalent to r̃, denot-
ed as r ∼ r̃, if P(r) = P(r̃). Where P(r) = {(i, j) :
ri > rj .} and P(r̃) = {(i, j) : r̃i > r̃j .} stand for the
preference relationships induced by r and r̃, respectively.



Therefore, an equivalence class of the ratings r, denoted as
[r], is defined as the set of ratings which are equivalent to
r. That is, [r] = {r̃ ∈ R : r̃ ∼ r.}.

Definition 3. Let R(i, j) = {r ∈ R : ri > rj .}, r′ is
called the dual ratings of r ∈ R(i, j) with respect to (i, j)
if r′j = ri, r

′
i = rj , r

′
k = rk,∀k ̸= i, j.

Now we give the definition of RDPS. An intuitive explana-
tion on this definition is that there exists a unique equiva-
lence class of ratings that for each induced pairwise pref-
erence relationship, the probability will be able to separate
the two dual ratings with respect to that pair.

Definition 4. Let R(i, j) = {r ∈ R : ri > rj .}, a
probability space is called rank-differentiable with (i, j),
if for any r ∈ R(i, j), P (r|x) ≥ P (r′|x), and there exist-
s at least one ratings r ∈ R(i, j), s.t. P (r|x) > P (r′|x),
where r′ is the dual ratings of r.

Definition 5. A probability space is called
rank-differentiable, if there exists an equiv-
alence class [r∗], s.t. P(r∗) = {(i, j) :
the probability space is rank-differentiable with(i, j).},
where P(r∗) = {(i, j) : r∗i > r∗j .}. We will also call this
probability space a RDPS or rank-differentiable with [r∗].

5.2 Consistency with WPDL

Following the proof technique in [11], we prove that p-
ListMLE is consistent with WPDL, as shown in the fol-
lowing theorem.

Theorem 1. We assume that the probability space is
rank-differentiable, then the surrogate loss function in p-
ListMLE is consistent with WPDL.

The proof of the theorem is similar to Theorem 5 in [11],
and is based on the following theorem.

Theorem 2. We assume that the probability space is rank-
differentiable with an equivalence class [r∗]. let f be a
function such that Rp(f |x) = infh∈F Rp(h|x), then for
any object pair (xi, xj), r

∗
i > r∗j , we have f(xi) > f(xj).

Proof. (1) We assume that f(xi) < f(xj), and define
f ′ as the function such that f ′(xi) = f(xj), f

′(xj) =
f(xi), f

′(xk) = f(xk), ∀k ̸= i, j. We can then get the

following equation,

Rp(f
′|x)−Rp(f |x)

=
∑
r,r′,

r∈R(i,j)

∑
k:rj<rk<ri

α(rk)[P (r|x)−P (r′|x)]

× log

(∑n
l=yk,l ̸=yj

exp(f(xy−1(l)))+exp(f(xi))∑n
l=yk,l ̸=yj

exp(f(xy−1(l)))+exp(f(xj))

)
+
∑
r,r′,

r∈R(i,j)

[α(ri)−α(rj)][log(f(xi))−log(f(xj))]

× [P (r|x)−P (r′|x)]

+
∑
r,r′,

r∈R(i,j)

α(rj)[P (r|x)−P (r′|x)]

× log

(∑n
l=yj+1 exp(f(xy−1(l))) + exp(f(xi))∑n
l=yj+1 exp(f(xy−1(l))) + exp(f(xj))

)
,

According to the conditions of RDPS and the requirements
of α(·), we can obtain

Rp(f
′|x) < Rp(f |x).

This is a contradiction with Rp(f |x) = infh∈F Rp(h|x).
Therefore, we have proven that f(xi) ≤ f(xj).

(2) Now we assume that f(xi) = f(xj) = f0. From the
assumption Rp(f |x) = infh∈F Rp(h|x), we can get

∂RΦ(f |x)
∂f(xi)

∣∣∣∣
f0

= 0,
∂RΦ(f |x)
∂f(xj)

∣∣∣∣
f0

= 0.

Accordingly, we can obtain two equations as follows:

∑
r,r′,

r∈R(i,j)

A1P (r|x) +A2P (r′|x) = 0, (12)

∑
r,r′,

r∈R(i,j)

B1P (r|x) +B2P (r′|x) = 0, (13)

where,

A1 = B2

=
∑

k:rj<ri<rk

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+ α(ri)(−1 +
exp(f0)∑n

l=yi
exp(f(xy−1(k)))

),



A2 = B1

=
∑

k:rj<ri<rk

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+
∑

k:ri<rk<rj

α(rk)
exp(f0)∑n

l=yk
exp(f(xy−1(k)))

+ α(ri)
exp(f0)∑n

l=yi
exp(f(xy−1(l)))

+ α(rj)(−1 +
exp(f0)∑n

l=yj
exp(f(xy−1(k)))

)

Based on the requirements of RDPS and α(·), we can ob-
tain that, ∑

r,r′,
r∈R(i,j)

(A1 −B1)P (r|x) + (A2 −B2)P (r′|x)

=
∑
r,r′,

r∈R(i,j)

(A1 −A2)[P (r|x)− P (r′|x)]

≤
∑
r,r′,

r∈R(i,j)

(α(rj)− α(ri))[P (r|x)− P (r′|x)] < 0.

This is a contradiction with Eq. (12). Therefore, we actual-
ly have proven that f(xi) > f(xj).

5.3 Discussion

In [21], ListMLE is proved to be consistent with permuta-
tion level 0-1 loss. However, consistency with permutation
level 0-1 loss does not mean consistency with NDCG. For
example, it has been proven in [18] that losses in RankCo-
sine [17] and ListNet [4] are not consistent with NDCG. S-
ince that we have proven that p-ListMLE is consistent with
WPDL, it is natural to study the relationship between W-
PDL and NDCG. Here we show that WPDL with a certain
weight, referred to as difference-weight pairwise disagree-
ment loss (DWPDL for short), is equivalent to NDCG with
a certain discount function, referred to as sharp-NDCG. In
this way, p-ListMLE is better than ListMLE theoretically.

The formal definition of NDCG is as follows.

NDCG@n(f ;x,y) =
1

Nn

n∑
i=1

Gain(r(yi))Disc(πf (i)),

where Gain is the gain function which gives larger scores
to objects with larger labels and Disc is the discount func-
tion which gives larger scores to objects ranked higher in
πf . r(yi) is a function to mapping position yi into rele-
vance score. For consistency with above formulation, we
use ri to denote r(yi), and define ri = n − yi, πf (i) is
the position of document xi in permutation πf and Nn is a
normalization factor.

We define WDPDL, and sharp-NDCG as follows, respec-
tively.

lw(f ;x,y)

=
∑

i,j,ri>rj

(Gain(ri)−Gain(rj))1{f(xi)≤f(xj)},

sharp−NDCG@n(f ;x,y) =

∑n
i=1(n− π(i))Gain(ri)

N ′
n

,

where N ′
n is a normalization factor.

The following theorem shows the relationship between D-
WPDL and sharp-NDCG.
Theorem 3. We denote F0 = {f ∈ F : ∀x, f(xi) ̸=
f(xj), ∀i, j.}, then ∀(x,y), f, g ∈ F0, we have

lw(f ;x,y) < lw(g;x,y)

⇔ sharp−NDCG@n(πf ,x,y)>sharp−NDCG@n(πg,x,y).

Proof. According to the definition of sharp-NDCG, it has
the following form:

sharp−NDCG@n(π,y) =

n∑
i=1

Gain(ri)(n− π(i)).

Rewrite n − π(i) and n − πy(i) as
∑m

j=1 1{π(i)−π(j)<0}
and

∑m
j=1 1{πy(i)−πy(j)<0}, respectively, then the follow-

ing equation holds,
n∑

i=1

(n− πy)Gain(ri)− sharp−NDCG@n(π;x,y)

=

n∑
i=1

∑
j ̸=i

Gain(r(yi))(1{πy(i)−πy(j)<0}−1{π(i)−π(j)<0}),

Thus, for each pair (i, j), ri > rj , the term becomes:

Gain(ri)1{π(i)−π(j)>0}−Gain(r(yj))1{π(j)−π(i)<0}

= Gain(ri)1{π(i)−π(j)>0} −Gain(j)1{π(i)−π(j)>0}

= (Gain(ri)−Gain(r(yj)))1{π(i)−π(j)>0},

Further considering the relationship between π and f , the
following equation holds:
m∑
i=1

(n− πy)Gain(ri)− sharp−NDCG@m(π;x,y)

= lw(f ;x,y).

Since
∑m

i=1(n − πy)Gain(ri) is just dependent on y, the
result in the theorem has been proved.

Note that in applications such as information retrieval, peo-
ple usually use the following specific discount and gain
functions.

Gain(i) = 2r(yi) − 1, Disc(π(i)) =
1

log2(1 + π(i))
.



According to the original paper of NDCG [9], however,
this is not the only choice. Actually, the only difference
between sharp-NDCG and the above NDCG is that the dis-
count function in sharp-NDCG is sharper.

In summary, we have obtain that:

(1) p-ListMLE is statistically consistent with WPDL,
where D(ri, rj) = α(rj)− α(ri);

(2) WPDL with D(ri, rj) = Gain(ri) − Gain(rj) is e-
quivalent to sharp-NDCG;

(3) sharp-NDCG is intrinsic similar with NDCG.

Therefore, we can expect to obtain better performance w.r.t
NDCG if we define α(ri) = Gain(ri) = 2n−yi − 1.

6 EXPERIMENTS

In this section, we conduct experiments on benchmark da-
ta sets LETOR 4.02 to show that p-ListMLE can achieve
better performances compared to ListMLE as well as other
state-of-the-art listwise learning-to-rank algorithms.

As the setting in this paper is listwise ranking, we choose t-
wo datasets in LETOR, i.e. MQ2007-list and MQ2008-list,
in which the ground-truth is a full order ranking list. In
MQ2007-list, there are about 1700 queries and 700 doc-
uments per query on average. In MQ2008-list, there are
about 800 queries and 1000 documents per query on aver-
age. Both query sets are from Million Query track of TREC
2007 and TREC 2008.

We implement both ListMLE and p-ListMLE by Stochas-
tic Gradient Descent (SGD). In p-ListMLE, we set α(i) as
2n−i − 1, as guided in the above section. The stopping
criteria is chosen from {0.1i}6i=1 to control when to stop,
and the learning rates are selected from {0.1i}5i=1 with the
maximal number of iterations 500. Evaluation measure
NDCG is adopted to evaluate the test performances of both
algorithms, where the multi-level ground-truth label is tak-
en as l(xi) = n − yi, where yi is the rank of item i in the
listwise ground-truth. For empirical comparison, we also
include two other state-of-the-art listwise learning-to-rank
algorithms such as ListNet and RankCosine, and the imple-
mentation is conducted strictly under the standard setting as
shown in [4] and [17]. The experimental results are shown
in Figure 1.

From the results, we can see that p-ListMLE significant-
ly outperform ListMLE with NDCG as evaluation measure
on both datasets. Taking NDCG@10 as an example, the
improvement of p-ListMLE over ListMLE is 0.95% and
0.54% on MQ2007-list and MQ2008-list, respectively.

2http://research.microsoft.com/en-
us/um/beijing/projects/letor/.

Moreover, when comparing p-ListMLE with the other two
baseline methods, we can see that it can also outperform
traditional listwise ranking methods significantly. We al-
so take NDCG@10 as an example, the improvement of p-
ListMLE over ListNet is 0.85% and 0.22% on MQ2007-list
and MQ2008-list, respectively. While, the improvement of
p-ListMLE over RankCosine is 1.48% and 0.32% on on
MQ2007-list and MQ2008-list, respectively.

7 CONCLUSION

In this paper, we address the problem of ListMLE that
the position importance is highly ignored, which is how-
ever very important for ranking. We propose a new list-
wise ranking algorithm, namely position-aware ListMLE
(p-ListMLE) to amend the problem. In p-ListMLE, rank-
ing is viewed as a sequential learning process, with each
step learning a subset of parameters which minimize the
corresponding stepwise probability distribution. We prove
that p-ListMLE is consistent with WPDL, which is equiv-
alent to a certain form of NDCG. In addition, our experi-
mental results on benchmark datasets show that p-ListMLE
can significantly outperform ListMLE. Therefore, we have
demonstrated both theoretically and empirically that p-
ListMLE is better than ListMLE.

For the future work, we plan to further investigate the prob-
lem of how to set the position factor α(·) in practice, or how
to guide the settings from other theoretical aspects.
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