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Abstract

We propose a new two stage algorithm LING
for large scale regression problems. LING has
the same risk as the well known Ridge Regres-
sion under the fixed design setting and can be
computed much faster. Our experiments have
shown that LING performs well in terms of both
prediction accuracy and computational efficiency
compared with other large scale regression al-
gorithms like Gradient Descent, Stochastic Gra-
dient Descent and Principal Component Regres-
sion on both simulated and real datasets.

1 INTRODUCTION

Ridge Regression (RR) is one of the most widely applied
penalized regression algorithms in machine learning prob-
lems. Suppose X is the n × p design matrix and Y is the
n × 1 response vector, ridge regression tries to solve the
problem

β̂ = arg min
β∈Rp

‖Xβ −Y‖2 + nλ‖β‖2 (1)

which has an explicit solution

β̂ = (X>X+ nλ)−1X>Y (2)

However, for modern problems with huge design matrix X,
computing (2) costsO(np2) FLOPS. When p > n� 1 one
can consider the dual formulation of (1) which also has an
explicit solution as mentioned in (Lu et al., 2013; Saunders
et al., 1998) and the cost is O(n2p) FLOPS. In summary,
trying to solve (1) exactly costs O(npmin {n, p}) FLOPS
which can be very slow.
There are faster ways to approximate (2) when computa-
tional cost is the concern. One can view RR as an opti-
mization problem and use Gradient Descent (GD) which
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takes O(np) FLOPS in every iteration. However, the con-
vergence speed for GD depends on the spectrum of X and
the magnitude of λ. When X is ill conditioned and λ is
small, GD requires a huge number of iterations to con-
verge which makes it very slow. For huge datasets, one
can also apply stochastic gradient descent (SGD) (Zhang,
2004; Johnson and Zhang, 2013; Bottou, 2010), a powerful
tool for solving large scale optimization problems.
Another alternative for regression on huge datasets is
Principal Component Regression (PCR) as mentioned in
(Artemiou and Li, 2009; Jolliffe, 2005), which runs regres-
sion only on the top k1 principal components (PCs) of the
X matrix. PCA for huge X can be computed efficiently
by randomized algorithms like (Halko et al., 2011a,b). The
cost for computing top k1 PCs of X is O(npk1) FLOPS.
The connection between RR and PCR is well studied by
(Dhillon et al., 2013). The problem of PCR is that when a
large proportion of signal sits on the bottom PCs, it has to
regress on a lot of PCs which makes it both slow and inac-
curate (see later sections for detailed explanations).
In this paper, we propose a two stage algorithm LING1

which is a faster way of computing the RR solution (2).
A detailed description of the algorithm is given in section
2. In section 3, we prove that LING has the same risk as
RR under the fixed design setting. In section 4, we compare
the performance of PCR, GD, SGD and LING in terms of
prediction accuracy and computational efficiency on both
simulated and real data sets.

2 THE ALGORITHM

2.1 DESCRIPTION OF THE ALGORITHM

LING is a two stage algorithm. The intuition of LING is
quite straight forward. We start with the observation that
regressing Y on X (OLS) is essentially projecting Y onto
the span of X. Let U1 denote the top k2 PCs (left sin-
gular vectors) of X and let U2 denote the remaining PCs.
The projection of Y onto the span of X can be decom-

1LING is the Chinese of ridge



Algorithm 1 LING
Input : Data matrix X ,Y. U1, an orthonormal matrix
consists of top k2 PCs of X. d1, d2, ...dk2 , top k2 singu-
lar values of X. Regularization parameter λ, an initial
vector γ̂2,0 and number of iterations n2 for GD .
Output : γ̂1,s, γ̂2, the regression coefficients.
1.Regress Y on U1, let γ̂1 = U>1 Y.
2.Compute the residual of previous regression problem.
Let Yr = Y −U1γ̂1.
3.Compute the residual of X regressing on U1. Use
Xr = X−U1U

>
1 X to denote the residual of X.

4.Use gradient descent with optimal step size with ini-
tial value γ̂2,0 (see algorithm 3) to solve the RR problem
minγ̂2∈Rp ‖Xrγ̂2 −Yr‖2 + nλ‖γ̂2‖2.
5. Compute a shrinkage version of γ̂1 by (γ̂1,s)i =
d2i

d2i+nλ
(γ̂1)i

6.The final estimator is Ŷ = U1γ̂1,s +Xrγ̂2.

posed into two orthogonal parts, the projection onto U1

and the projection onto U2. In the first stage, we pick a
k2 � p and the projection onto U1 can be computed di-
rectly by Ŷ1 = U1U

>
1 Y which is exactly the same as

running a PCR on top k2 PCs. For huge X, computing the
top k2 PCs exactly is very slow, so we use a faster ran-
domized SVD algorithm for computing U1 which is pro-
posed by (Halko et al., 2011a) and described below. In
the second stage, we first compute Yr = Y − Ŷ1 and
Xr = X − U1U

>
1 X which are the residual of Y and X

after projecting onto U1. Then we compute the projec-
tion of Y onto the span of U2 by solving the optimization
problem minγ̂2∈Rp ‖Xrγ̂2−Yr‖2 with GD (Algorithm 3).
Finally, since RR shrinks the projection of Y onto X (the
OLS solution) via regularization, we also shrink the pro-
jections in both stages accordingly. Shrinkage in the first
stage is performed directly on the estimated regression co-
efficients and shrinkage in the second stage is performed by
adding a regularization term to the optimization problem
mentioned above. Detailed description of LING is shown
in Algorithm 1.

Remark 1. LING can be regarded as a combination of
PCR and GD. The first stage of LING is a very crude es-
timation of Y and the second stage adds a correction to
the first stage estimator. Since we do not need a very ac-
curate estimator in the first stage it suffices to pick a very
small k2 in contrast with the k1 PCs needed for PCR. In the
second stage, the design matrix Xr is a much better condi-
tioned matrix than the original X since the directions with
largest singular values are removed. As introduced in sec-
tion 2.2, Algorithm 3 converges much faster with a better
conditioned matrix. Hence GD in the second stage of LING
converges faster than directly applying GD for solving (1).
The above property guarantees that LING is both fast and
accurate compared with PCR and GD. More details about

Algorithm 2 Random SVD
Input : design matrix X, target dimension k2, number
of power iterations i.
Output : U1 ∈ n×k2, the matrix of top k2 left singular
vectors of X, d1, d2, ...dk2 , the top k2 singular values of
X.
1.Generate random matrix R1 ∈ p × k2 with i.i.d stan-
dard Gaussian entries.
2.Estimate the span of top k2 left singular vectors of X
by A1 = (XX>)iXR1.
3.Use QR decomposition to compute Q1 which is an or-
thonormal basis of the column space of A1.
4.Compute SVD of the reduced matrix Q>1 X =
U0D0V

>
0 .

5.U1 = Q1U0 gives the top k2 singular vectors of X and
the diagonal elements of D0 gives the singular values.

Algorithm 3 Gradient Descent with Optimal Step Size
(GD)

Goal : Solve the ridge problem minγ̂∈Rp ‖Xγ̂−Y‖2+
nλ‖γ̂‖2.
Input : Data matrix X, Y, regularization parameter λ,
number of iterations n2, an initial vector γ̂0
Output : γ̂
for t = 0 to n2 − 1 do
Q = 2X>X+ 2nλI
wt = 2X>Y −Qγ̂t
st =

w>
t wt

w>
t Qwt

. st is the step size which makes the
target function decrease the most in direction wt.
γ̂t+1 = γ̂t + st · wt.

end for

on the computational cost will be discussed in section 2.2.

Remark 2. Algorithm 2 is essentially approximating the
subspace of top left singular vectors by random projection.
It provides a fast approximation of the top singular values
and vectors for large X when computing the exact SVD is
very slow. Theoretical guarantees and more detailed ex-
planations can be found in (Halko et al., 2011a). Empir-
ically we find in the experiments, Algorithm 2 may occa-
sionally generate a bad subspace estimator due to random-
ness which makes PCR perform badly. On the other hand,
LING is much more robust since in the second stage it com-
pensate for the signal missing in the first stage. In all the
experiments, we set i = 1.

The shrinkage step (step 5) in Algorithm 1 is only
necessary for theoretical purposes since the goal is to
approximate Ridge Regression which shrinks the Least
Square estimator over all directions. In practice shrinkage
over the top k2 PCs is not necessary. Usually the number
of PCs selected (k2) is very small. From the bias variance
trade off perspective, the variance reduction gained from
the shrinkage over top k2 PCs is at most O(k2n ) under



the fixed design setting (Dhillon et al., 2013) which is a
tiny number. Moreover, since the top singular values of
X>X are usually very large compared with nλ in most
real problems, the shrinkage factor d2i

d2i+nλ
will be pretty

close to 1 for top singular values. We use shrinkage in
Algorithm 1 because the risk of the shrinkage version of
LING is exactly the same as RR as proved in section 3.
Algorithm 2 can be further simplified if we skip the
shrinkage step mentioned in previous paragraph. Instead
of computing the top k2 PCs, the only thing we need to
know is the subspace spanned by these PCs since the first
stage is essentially projecting Y onto this subspace. In
other words, we can replace U1 in step 1, 2, 3 of Algorithm
1 with Q1 obtained in step 3 of Algorithm 2 and directly
let Ŷ = Q1γ̂1 +Xrγ̂2. In the experiments of section 4 we
use this simplified version.

2.2 COMPUTATIONAL COST

We claim that the cost of LING is O
(
np(k2 + n2)

)
where

k2 is the number of PCs used in the first stage and n2 is
the number of iterations of GD in the second stage. Ac-
cording to (Halko et al., 2011a), the dominating step in
Algorithm 2 is computing (XX>)iXR1 and Q>1 X which
costs O(npk2) FLOPS. Computing γ̂1 and Yr cost less
thanO(npk2). Computing Xr costsO(npk2). So the com-
putational cost before the GD step is O(npk2). For the
GD stage, note that in every iteration Q never needs to be
constructed explicitly. While computing wt and st, always
multiplying matrix and vector first gives a cost of O(np)
for every iteration. So the cost for GD stage is O(n2np).
Add all pieces together the cost of LING isO

(
np(k2+n2)

)
FLOPS.
Let n1 be the number of iterations required for solving (1)
directly by GD and k1 be the number of PCs used for PCR.
It’s easy to check that the cost for GD is O(n1np) FLOPS
and the cost for PCR is O(npk1). As mentioned in remark
1, the advantage of LING over GD and PCR is that k1 and
n1 might have to be really large to achieve high accuracy
but much smaller values of the pair (k2, n2) will work for
LING.
In the remaining part of the paper we use "signal on certain
PCs" to refer to the projection of Y onto certain principal
components of X. Consider the case when the signal is
widely spread among all PCs (i.e. the projection of Y onto
the bottom PCs of X is not very small) instead of concen-
trating on the top ones, k1 needs to be large to make PCR
perform well since the signal on bottom PCs are discarded
by PCR. But LING does not need to include all the signal
in the first stage regression since the signal left over will be
estimated in the second GD stage. Therefore LING is able
to recover most of the signal even with a small k2.
In order to understand the connection between accuracy
and number of iterations in Algorithm 3 , we state the fol-

lowing theorem in A.Epelman (2007):

Theorem 1. Let g(z) = 1
2z
>Mz + q>z be a quadratic

function where M is a PSD matrix. Suppose g(z) achieves
minimum at z∗. Apply Algorithm 3 to solve the minimiza-
tion problem. Let zt be the z value after t iterations, then
the gap between g(zt) and g(z∗), the minimum of the ob-
jective function satisfies

g(zt+1)− g(z∗)
g(zt)− g(z∗)

≤ C =

(
A− a
A+ a

)2

(3)

where A, a are the largest and smallest eigenvalue of the
M matrix.

Theorem 1 shows that the sub optimality of the target func-
tion decays exponentially as the number of iterations in-
creases and the speed of decay depends on the largest and
smallest singular value of the PSD matrix that defines the
quadratic objective function. If we directly apply GD to
solve (1), Let f1(β) = ‖Xβ − Y‖2 + nλ‖β‖2. Assume
f1 reaches its minimum at β̂. Let β̂t be the coefficient after
t iterations and let di denote the ith singular value of X.
Applying theorem 1, we have

f1(β̂t+1)− f1(β̂)
f1(β̂t)− f1(β̂)

≤ C =

(
d21 − d2p

d21 + d2p + 2nλ

)2

(4)

Similarly for the second stage of LING, Let f2(γ2) =
‖Xrγ2 − Yr‖2 + nλ‖γ2‖2. Assume f2 reaches its min-
imal at γ̂2. We have

f2(γ̂2,t+1)− f2(γ̂2)
f2(γ̂2,t)− f2(γ̂2)

≤ C =

(
d2k2+1

d2k2+1 + 2nλ

)2

(5)

In most real problems, the top few singular values of X>X
are much larger than the other singular values and nλ.
Therefore the constant C obtained in (4) can be very close
to 1 which makes GD algorithm converges very slowly. On
the other hand, removing the top few PCs will make C in
(5) significantly smaller than 1. In other words, GD may
take a lot of iterations to converge when solving (1) directly
while the second stage of LING takes much less iterations
to converge. This can also be seen in the experiments of
section 4.

3 THEOREMS

In this section we compute the risk of LING estimator
(explained below) under the fixed design setting. For
simplicity, assume U1,D0 generated by Algorithm 2
give exactly the top k2 left singular vectors and singular
values of X and GD in step 4 of Algorithm 1 converges
to the optimal solution. Let X = UDV> be the SVD
of X where U = (U1,U2) and V = (V1,V2). Here
U1,V1 are top k2 singular vectors and U2,V2 are bottom



p − k2 singular vectors. Let D = diag(D1,D2) where
D1 ∈ k2 × k2 contains top k2 singular values denoted by
d1 ≥ d2 ≥ ... ≥ dk2 and D2 ∈ p − k2 × p − k2 contains
bottom p − k2 singular values. Let D3 = diag(0,D2)
(replace D1 in D by a zero matrix of the same size).

3.1 THE FIXED DESIGN MODEL

Assume X, Y comes from the fixed design model Y =
Xβ + ε where ε ∈ n × 1 are i.i.d noise with mean 0 and
variance σ2. Here X is fixed and the randomness of Y only
comes from ε. Note that X = U1D1V

>
1 + Xr, the fixed

design model can also be written as

Y = (U1D1V
>
1 +Xr)β + ε = U1γ1 +Xrγ2 + ε

where γ1 = D1V
>
1 β and γ2 = β. We use the l2 distance

between E(Y|X) (the best possible prediction given X un-
der l2 loss) and Ŷ = U1γ̂1,s + Xrγ̂2 (the prediction by
LING) as the loss function, which is called risk in the fol-
lowing discussions. Actually E(Y|X) = Xβ is linear in X
under fixed design model. The risk of LING can be written
as

1

n
E‖E(Y|X)−U1γ̂1,s −Xrγ̂2‖2

=
1

n
E‖U1γ1 +Xrγ2 −U1γ̂1,s −Xrγ̂2‖2

We can further decompose the risk into two terms:

1

n
E‖U1γ1 +Xrγ2 −U1γ̂1,s −Xrγ̂2‖2 =

1

n
E‖U1γ1 −U1γ̂1,s‖2 +

1

n
E‖Xrγ2 −Xrγ̂2‖2

(6)

because U>1 Xr = 0. Note that here the expectation is
taken with respect to ε.
Let’s calculate the two terms in (6) separately. For the first
term we have:

Lemma 1.

1

n
E‖U1γ1 −U1γ̂1,s‖2 =

1

n

k2∑
j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2
(7)

Here γ1,j is the jth element of γ1.

Proof. Let S ∈ k2 × k2 be the diagonal matrix with

Sj,j =
d2j

d2j+nλ
. So we have γ̂1,s = SU>1 Y = Sγ1+SU

>
1 ε,

E(γ̂1,s) = Sγ1.

1

n
E‖U1γ1 −U1γ̂1,s‖2

=
1

n
E‖U1E(γ̂1,s)−U1γ̂1,s‖2

+
1

n
‖U1γ1 −U1E(γ̂1,s)‖2

=
1

n
E‖U1SU

>
1 ε‖2 +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(U1S

2U>1 εε
>) +

1

n
‖γ1 − Sγ1‖2

=
1

n
ETr(S2)σ2 +

1

n
‖γ1 − Sγ1‖2

=
1

n

k2∑
j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2

Now consider the second term in (6).
Note that

Xr = UD3V
>

The residual Yr after the first stage can be represented by

Yr = Y−U1γ̂1 = (I−U1U
>
1 )Y = Xrγ2+(I−U1U

>
1 )ε

and the optimal coefficient obtained in the second GD stage
is

γ̂2 = (X>r Xr + nλI)−1X>r Yr

For simplicity, let ε2 = (I −U1U
>
1 )ε.

Lemma 2.

E‖Xrγ2−Xrγ̂2‖2 =

p∑
i=k2+1

1

(d2i + nλ)2
(d4iσ

2+nλ2d2iα
2
i )

(8)
where αi is the ith element of α = V>γ2

Proof. First define

Xλ = X>r Xr + nλI

Dλ = D2
3 + nλI

E‖Xrγ2 −Xrγ̂2‖2 = ‖Xrγ2 −XrE(γ̂2)‖2 (9)
+ E‖XrE(γ̂2)−Xrγ̂2‖2 (10)

Consider (9) and (10) separately.

(9) = ‖XrX
−1
λ X>r Xrγ2 −Xrγ2‖2

= ‖UD3D
−1
λ D2

3V
>γ2 −UD3V

>γ2‖2

= ‖D3D
−1
λ D2

3α−D3α‖2

=

p∑
i=k2+1

α2
i d

2
i (

nλ

d2i + nλ
)2



(10) = Eε2‖XrX
−1
λ X>r ε2‖2

= Eε2Tr
(
XrX

−1
λ X>r XrX

−1
λ X>r ε2ε

>
2

)
= Eε2Tr

(
D3D

−1
λ D2

3D
−1
λ D3U

>ε2ε
>
2 U
)

= Tr
(
D3D

−1
λ D2

3D
−1
λ D3Eε2 [U>ε2ε>2 U]

)
Note that

Eε2 [U>ε2ε>2 U] = diag(0, Ip−k2)σ
2

(diag(0, Ip−k2)replace the top k2×k2 block of the identity
matrix with 0),

(10) =

p∑
i=k2+1

d4i
(d2i + nλ)2

σ2 (11)

Add the two terms together finishes the proof.

Plug (7) (8) into (6) we have
Theorem 2. The risk of LING algorithm under fixed design
setting is

1

n

k2∑
j=1

d4jσ
2 + γ21,jn

2λ2

(d2j + nλ)2
+

1

n

p∑
i=k2+1

d4iσ
2 + n2λ2d2iα

2
i

(d2i + nλ)2

(12)
Remark 3. This risk is the same as the risk of ridge regres-
sion provided by Lemma 1 in (Dhillon et al., 2013). Actu-
ally, LING gets exactly the same prediction as RR on the
training dataset. This is very intuitive since on the training
set LING is essentially decomposing the RR solution into
the first stage shrinkage PCR predictor on top k2 PCs and
the second stage GD predictor over the residual spaces as
explained in section 2.

4 EXPERIMENTS

In this section we compare the accuracy and computa-
tional cost (evaluated in terms of FLOPS) of 3 different
algorithms for solving Ridge Regression: Gradient De-
scent with Optimal step size (GD), Stochastic Variance Re-
duction Gradient (SVRG) (Johnson and Zhang, 2013) and
LING. Here SVRG is an improved version of stochastic
gradient descent which achieves exponential convergence
with constant step size. We also consider Principal Com-
ponent Regression (PCR) (Artemiou and Li, 2009; Jolliffe,
2005) which is another common way for running large
scale regression. Experiments are performed on 3 simu-
lated models and 2 real datasets. In general, LING per-
forms well on all 3 simulated datasets while GD, SVRG
and PCR fails in some cases. For two real datasets, all
algorithms give reasonable performance while SVRG and
LING are the best. Moreover, both stages of LING require
only a moderate amount of matrix multiplications each cost
O(np), much faster to run on matlab compared with SVRG
which contains a lot of loops.

Table 1: parameter setup for simulated data

MODEL 1 MODEL 2 MODEL 3

k1
21,22,23,26
30,50,100

20,30,50
100,150,400

20,30,50,100
150,400

n1

10,20,30
50,80,100
150,200

2,4,6,8,10
15,20,30

6,10,15,20
30,50,80

120,180,250
k2 20 20 20

n2
1,2,3,5
8,13,20

2,4,6,8,10
15,20,30

2,4,6,8,10
15,30

nSVRG
30,50,80
120,150

5,10,20
30,50

5,10,15,25
40,60,90

4.1 SIMULATED DATA

Three different datasets are constructed based on the fixed
design model Y = Xβ+εwhere X is of size 2000×1500.
In the three experiments X and β are generated randomly in
different ways (more details in following sections) and i.i.d
Gaussian noise is added to Xβ to get Y. Then GD, SVRG,
PCR and LING are performed on the dataset. For GD,
we try different number of iterations n1. For SVRG, we
vary the number of passes through data denoted by nSVRG.
The number of iterations SVRG takes equals the number
of passes through data times sample size and each iteration
takes O(p) FLOPS. The step size of SVRG is chosen by
cross validation but this cost is not considered when evalu-
ating the total computational cost. Note that one advantage
of GD and LING is that due to the simple quadratic form
of the target function, their step size can be computed di-
rectly from the data without cross validation which intro-
duces extra cost. For PCR we pick different number of PCs
(k1). For LING we pick top k2 PCs in the first stage and try
different number of iterations n2 in the second stage. The
computational cost and the risk of the four algorithms are
computed. The above procedure is repeated over 20 ran-
dom generation of X, β and Y. The risk and computational
cost of the traditional RR solution (2) for every dataset is
also computed as a benchmark.
The parameter set up for the three datasets are listed in table
1.

4.1.1 MODEL 1

In this model the design matrix X has a steep spectrum.
The top 30 singular values of X decay exponentially as
1.3i where i = 40, 39, 38..., 11. The spectrum of X is
shown in figure 4. To generate X, we fix the diagonal ma-
trix De with the designed spectrum and construct X by
X = UeDeV

>
e where Ue, Ve are two random orthonor-

mal matrices. The elements of β are sampled uniformly
from interval [−2.5, 2.5]. Under this set up, most of the
energy of the X matrix lies in top PCs since the top singu-
lar values are much larger than the remaining ones so PCR
works well. But as indicated by (4), the convergence of GD



is very slow.
The computational cost and average risk of the four algo-
rithms and also the RR solution (2) over 20 repeats are
shown in figure 1. As shown in figure 1 both PCR and
LING work well by achieving risk close to RR at less com-
putational cost. SVRG is worse than PCR and LING but
much better than GD.
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Figure 1: Model 1, Risk VS. Computational Cost plot.
PCR and LING approaches the RR risk very fast. SVRG
also approaches RR risk but cost more than the previous
two. GD is very slow and inaccurate.

4.1.2 MODEL 2

In this model the design matrix X has a flat spectrum.
The singular values of X are sampled uniformly from
[
√
2000
2 ,
√
2000]. The spectrum of X is shown in figure 5.

To generate X, we fix the diagonal matrix De with the de-
signed spectrum and construct X by X = UeDeV

>
e where

Ue, Ve are two random orthonormal matrices. The ele-
ments of β are sampled uniformly from interval [−2.5, 2.5].
Under this set up, the signal are widely spread among all
PCs since the spectrum of X is relatively flat. PCR breaks
down because it fails to catch the signal on bottom PCs. As
indicated by (4), GD converges relatively fast due to the flat
spectrum of X.
The computational cost and average risk of the four algo-
rithms and also the RR solution (2) over 20 repeats are
shown in figure 2. As shown by the figure GD works best
since it approaches the risk of RR at the the lowest com-
putational cost. LING and SVRG also works by achiev-
ing reasonably low risk with less computational cost. PCR
works poorly as explained before.

4.1.3 MODEL 3

This model presented a special case where both PCR
and GD will break down. The singular values of X ∈
2000×1500 are constructed by first uniformly sample from
[
√
2000
2 ,
√
2000]. The top 15 sampled values are then multi-

plied by 10. The top 100 singular values of X are shown in
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Figure 2: Model 2, Risk VS. Computational Cost plot.
GD approaches the RR risk very fast. SVRG and LING are
slower than GD but still achieves risk close to RR at less
cost. PCR is slow and has huge risk.

figure 6. To generate X, we fix the diagonal matrix De with
the designed spectrum and construct X by X = UeDe

where Ue is a random orthonormal matrix. The first 15 and
last 1000 elements of the coefficient vector β ∈ 1500 × 1
are sampled uniformly from interval [−2.5, 2.5] and other
elements of β remains 0. In this set up, X has orthogonal
columns which are the PCs, and the signal lies only on the
top 15 and bottom 1000 PCs. PCR won’t work since a large
proportion of signal lies on the bottom PCs. On the other
hand, GD won’t work as well since the top few singular
values are too large compared with other singular values,
which makes GD converges very slowly.
The computational cost and risk of the four algorithms and
also the RR solution (2) over 20 repeats are shown in figure
3. As shown by the figure LING works best in this set up.
SVRG is slightly worse than LING but still approaching
RR with less cost. In this case, GD converges slowly and
PCR is completely off target as explained before.

4.2 REAL DATA

In this section we compare PCR, GD, SVRG and LING
with the RR solution (2) on two real datasets.

4.2.1 GISETTE DATASET

The first is the gisette data set (Guyon et al., 2004) from
the UCI repository which is a bi-class classification task.
Every row of the design matrix X ∈ 6000 × 5000 con-
sists of pixel features of a single digit "4" or "9" and Y
gives the class label. Among the 6000 samples, we use
5000 for training and 1000 for testing. The classification
error rate for RR solution (2) is 0.019. Since the goal is to
compare different algorithms for regression, we don’t care
about achieving the state of the art accuracy for this dataset
as long as regression works reasonably well. When running



5e+08 1e+09 2e+09 5e+09 1e+10
0

20

40

60

80

100

120

FLOPS in log10 scale

R
is

k

Extreme Case

 

 
LING
PCR
GD
RR
SVRG

Figure 3: Model 3, Risk VS. Computational Cost plot.
LING approaches RR risk the fastest. SVRG is slightly
slower than LING. GD also approaches RR risk but cost
more than LING. PCR has a huge risk no matter how many
PCs are selected.
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Figure 4: Top 100 singular values of X in Model 1

PCR, we pick top k1 = 10, 20, 40, 80, 150, 300, 400 PCs
and in GD we iterate n1 = 2, 5, 10, 15, 20, 30, 50, 100, 150
times. For SVRG we try nSVRG = 1, 2, 3, 5, 10, 20, 40, 80
passes through the data. For LING we pick k2 = 5, 15 PCs
in the first stage and try n2 = 1, 2, 4, 8, 10, 15, 20, 30, 50
iterations in the second stage. The computational cost and
average classification error of the four algorithms and also
the RR solution (2) on test set over 6 different train test
splits are shown in figure 7. The top 150 singular values
of X are shown in figure 9. As shown in the figure, SVRG
gets close to the RR error very fast. The two curves of
LING with k2 = 5, 15 are slower than SVRG since some
initial FLOPS are spent on computing top PCs but after that
they approach RR error very fast. GD also converges to RR
but cost more than the previous two algorithms. PCR per-
forms worst in terms of error and computational cost.

4.2.2 BUZZ IN SOCIAL MEDIA

The second dataset is the UCI buzz in social media dataset
which is a regression task. The goal is to predict popular-
ity (evaluated by the mean number of active discussion) of
a certain topic on Twitter over a period. The original fea-
ture matrix contains some statistics about this topic over
that period like number of discussions created and new au-
thors interacting at the topic. The original feature dimen-
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Figure 5: Singular values
of X in Model 2
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Figure 6: Top 100 singular
values of X in Model 3
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Figure 7: Gisette, Error Rate VS. Computational Cost plot.
SVRG achieves small error rate fastest. Two LING lines
with different n2 spent some FLOPS on computing top PCs
first, but then converges very fast to a lower error rate. GD
and PCR also provide reasonably small error rate and are
faster than RR, but suboptimal compared with SVRG and
LING.

sion is 77. We add quadratic interactions to make it 3080.
To save time, we only used a subset of 8000 samples. The
samples are split into 6000 train and 2000 test. We use
MSE on the test data set as the error measure. For PCR we
pick k1 = 10, 20, 30, 50, 100, 150 PCs and in GD we iter-
ate n1 = 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 100 times. For
SVRG we try nSVRG = 1, 2, 3, 5, 10, 15, 20, 40, 80 passes
through the dataset and for LING we pick k2 = 5, 15 in the
first stage and n2 = 0, 1, 2, 4, 6, 8, 10, 15, 20, 25 iterations
in the second stage. The computational cost and average
MSE on test set over 5 different train test splits are shown
in figure 8. The top 150 singular values of X are shown in
figure 10. As shown in the figure, SVRG approaches MSE
of RR very fast. LING spent some initial FLOPS for com-
puting top PCs but after that converges fast. GD and PCR
also achieves reasonable performance but suboptimal com-
pared with SVRG and LING. The MSE of PCR first decays
when we add more PCs into regression but finally goes up
due to overfit.
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Figure 8: Buzz, MSE VS. Computational Cost plot. SVRG
and two LING lines with different n2 achieves small MSE
fast. GD is slower than LING and SVRG. PCR reaches its
smallest MSE at k1 = 50 then overfits.
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Figure 9: Top 150 singu-
lar values of X in Gisette
Dataset

0 50 100 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Spectrum of X

si
ng

ul
ar

 v
al

ue
s

index

Figure 10: Top 150 singu-
lar values of X in Social
Media Buzz Dataset

5 SUMMARY

In this paper we present a two stage algorithm LING for
computing large scale Ridge Regression which is both fast
and robust in contrast to the well known approaches GD
and PCR. We show that under the fixed design setting
LING actually has the same risk as Ridge Regression as-
suming convergence. In the experiments, LING achieves
good performances on all datasets when compare with
three other large scale regression algorithms.
We conjecture that same strategy can be also used to accel-
erate the convergence of stochastic gradient descent when
solving Ridge Regression since the first stage in LING es-
sentially removes the high variance directions of X, which
will lead to variance reduction for the random gradient di-
rection generated by SGD.
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