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Abstract

Real world systems typically feature a variety
of different dependency types and topologies
that complicate model selection for probabilistic
graphical models. We introduce the ensemble-of-
forests model, a generalization of the ensemble-
of-trees model of Meilă and Jaakkola (2006).
Our model enables structure learning of Markov
random fields (MRF) with multiple connected
components and arbitrary potentials. We present
two approximate inference techniques for this
model and demonstrate their performance on
synthetic data. Our results suggest that the
ensemble-of-forests approach can accurately re-
cover sparse, possibly disconnected MRF topolo-
gies, even in presence of non-Gaussian depen-
dencies and/or low sample size. We applied
the ensemble-of-forests model to learn the struc-
ture of perturbed signaling networks of immune
cells and found that these frequently exhibit
non-Gaussian dependencies with disconnected
MRF topologies. In summary, we expect that
the ensemble-of-forests model will enable MRF
structure learning in other high dimensional real
world settings that are governed by non-trivial
dependencies.

1 INTRODUCTION

This work presents the ensemble-of-forests model for ap-
proximate structure learning in Markov random fields
(MRF). As opposed to most existing MRF structure learn-
ers that either work with specific types of potentials (e.g.
discrete, Gaussian) or assume connected MRF topology
(Lin et al., 2009), our approach is applicable for MRFs with
arbitrary potentials and topology, including disconnected
topologies, and is therefore suited to accommodate a wide
range of real world settings.

Markov random fields (MRF) are undirected probabilis-
tic graphical models specifying conditional independence
relations among a set of random variables. Learning
MRFs involves parameter inference and model selection,
i.e. learning the underlying graph structure. For general
MRFs, exact parameter inference is difficult due to the ne-
cessity to evaluate the intractable partition sum and there-
fore is addressed by approximate inference approaches.
Structure learning is an even more difficult task. The
naive method of enumerating all possible topologies is pro-
hibitively expensive and, thus, alternative approaches have
been proposed based on independence tests or approximate
score-based methods Koller and Friedman (2009).

Currently, the prevalent approach to model continuous ran-
dom variables is to assume Gaussianity. Under this hypoth-
esis, the Gaussian Markov random field (GMRF) struc-
ture can be directly read from the inverse covariance ma-
trix (Koller and Friedman, 2009): zero entries exactly
correspond to conditional independence statements of the
Markov random field. Sparse inverse covariance selection
constitutes a convex relaxation of the structure learning
task for GMRFs that can be solved efficiently (Banerjee
et al., 2006; Friedman et al., 2008).

Random variables of real world systems typically exhibit
unusual dependency types (Trivedi and Zimmer, 2005;
Berkes et al., 2008) that are not appropriately captured
by the Gaussian potentials of GMRFs. Copula poten-
tials constitute a more general and expressive alternative
to deal with non-Gaussian dependency types. Copulas
are multivariate distributions that encode the dependencies
among random variables. Copula models are very flexi-
ble, as they enable researchers to independently specify the
marginal distributions of random variables and their de-
pendency structure. Liu et al. (2009) define MRFs with
semi-parametric Gaussian copula potentials. Approximate
structure learning in this model is tractable because the de-
pendency type is Gaussian and, thus, parameter inference
is easy and model selection can also be efficiently approxi-
mated by resorting to sparse inverse covariance estimation.
However, in MRFs with general copula potentials, even



parameter estimation is difficult because of the intractable
partition sum. This situation entails that structure learning
is also difficult.

The intractability of exact inference for MRFs with gen-
eral copula potentials has motivated alternative approaches
based on approximate inference. Meilă and Jaakkola
(2006) introduced the ensemble-of-trees (ET) model that
enables approximate inference for both parameter estima-
tion and structure learning of general MRFs. A Markov
network is represented as a mixture model whose compo-
nents are tree-structured distributions defined over all pos-
sible spanning trees of the underlying graph. Despite the
super-exponential number of such trees, the model remains
tractable by defining conveniently decomposable priors
over the structure and parameters of tree-distributions. Re-
cently, Kirshner (2008) presented a tree-averaged density
model based on tree structured MRFs with copula poten-
tials. The tasks of parameter estimation and structure learn-
ing are jointly expressed as a single (non-convex) objective,
which is optimized via Expectation-Maximization. Lin
et al. (2009) utilize the ET model for structure learning of
GMRFs and empirically demonstrate superior performance
compared to sparse inverse covariance selection for limited
sample size. Above considerations render copula MRFs as
attractive models because they are more general than GM-
RFs and efficient learning approaches exist for them.

Real world systems with many random variables are fre-
quently best represented by MRFs that decompose into
several connected components. In biology, for instance,
a specific stimulus might activate competing, independent
signaling pathways each including its own MRF compo-
nent (Johnstone et al., 2008). However, the ET struc-
ture learning approach is not able to recover disconnected
topologies since it is averaging over ensembles of spanning
trees. It is desirable to generalize the ET approach in order
to overcome this limitation and, thereby, still benefit from
the expressiveness of copula MRFs in these real world set-
tings.

The main contribution of this work is the generalization of
the ET model to the ensemble-of-forests (EF) model that
explicitly accounts for graph topologies with multiple con-
nected components. In the proposed model, a Markov net-
work is represented as a mixture of forests, i.e. collections
of tree-structured MRFs. An implementation of the ex-
act model is intractable, as the averaging over all possible
forests results in a hard combinatorial problem. Instead, we
present approximate formulations of the structure learning
task. The rest of this paper is organized as follows. In Sec-
tions 2 – 3 we formally introduce the methods that we build
upon. Then, in Sections 4 – 6 we describe the ensemble-of-
forests model and present benchmark results on synthetic
datasets. In Sections 7 – 8 we apply our method to plant mi-
croarray and immune cell perturbation data. Finally, Sec-
tion 9 concludes with a short discussion.

2 COPULA MODELS

This section reviews the application of copulas to de-
scribe general multivariate distributions and/or potentials
in MRFs. Copulas are multivariate continuous distri-
butions defined on the unit hypercube, C : [0, 1]d →
[0, 1], with uniform univariate marginals. Let X1, . . . , Xd

be real random variables with joint cumulative distribu-
tion function (cdf) F (x) and marginally distributed as
F1(x1), . . . , Fd(xd) respectively. Then, the random vari-
ables U1 = F1(x1), . . . , Ud = Fd(xd) are uniformly
distributed on [0, 1]. This property forms the basis for
Sklar’s theorem, according to which any joint distribution
F (x1, . . . , xd) with continuous marginals can be uniquely
expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

The converse is also true: arbitrary univariate marginals
{Fi} can be combined using a copula function C to
uniquely construct a valid joint distribution with marginals
{Fi}. The copula function C exclusively encodes the de-
pendencies among random variables.

Furthermore, copula density functions

c(u) =
∂dC(u)

∂u1 . . . ∂ud
can be expressed in terms of

probability density functions as

c(u1, . . . , ud) =
f(x1, . . . , xd)∏d

i=1 fi(xi)
. (2)

A large number of copula functions have been proposed
in the literature (Nelsen, 1999), especially for the bivariate
case. Commonly used examples are the Clayton, Gumbel,
Frank, Gaussian and Student’s t parametric copula families.
In Figure 1, we present contour plots of six distributions
with standard Gaussian marginals but different types of de-
pendencies between the marginals. In each case, the depen-
dency structure is specified via a different copula function.

Figure 1: Contour plots of six joint distributions defined using
standard Gaussian marginals and different dependency structures
specified by different copulas.



Bivariate copulas are typically used to model strong
extreme-value dependencies in financial data (Embrechts
et al., 2003; Trivedi and Zimmer, 2005). Recently, the
probabilistic graphical model framework has been success-
fully employed for the construction of copula-based high-
dimensional models. A review on this topic can be found
in (Elidan, 2013).

3 ENSEMBLE-OF-TREES MODELS

Here we introduce the ensemble-of-trees (ET) method for
approximate parameter inference and structure learning of
MRFs. This method forms the basis for the ensemble-of-
forests method, the main conceptual contribution of this
paper. From here on, we adopt the following notation:
we consider a Markov network encoded by a graph G =
(V, E), where V is the set of nodes corresponding to ran-
dom variablesX = {X1, . . . , Xd} and E is the set of edges.

The ensemble-of-trees model of Meilă and Jaakkola (2006)
is an approximate inference approach to carry out structure
learning for MRFs with “inconvenient” potentials. It con-
stitutes a mixture model over all possible spanning trees of
the complete graph over the nodeset V . A prior distribution
over spanning tree structures T is defined as

pβ(T ) =
1

Zβ

∏
euv∈T

βuv (3)

where each parameter βuv = βvu ≥ 0, for all u 6= v,
u, v ∈ V can be interpreted as a weight for edge euv , di-
rectly proportional to the probability of appearance of that
edge.

Zβ =
∑
T

∏
euv∈T βuv is a normalizing constant, ensuring

that the prior constitutes a valid probability distribution. It
turns out that Zβ can be efficiently computed. Defining the
matrix Q(β) as the first d − 1 rows and columns of the
Laplacian matrix

Luv =

{
−βuv if u 6= v,∑

k βuk if u = v
(4)

Meilă and Jaakkola (2006) generalize Kirchhoff’s Matrix-
Tree theorem for binary weights and show that

Zβ =
∑
T

∏
euv∈T

βuv = |Q(β)|. (5)

This result makes the averaging over all possible (dd−2)
spanning tree structures computationally tractable.

Assuming a prior tree structure T , the conditional distribu-
tion of a data sample x can be expressed as

p(x|T,θ) =
∏
v∈V

θv(xv)
∏

euv∈T

θuv(xu, xv)

θu(xu)θv(xv)
(6)

where the parameter vector θ consists of univariate θv(xv)
and bivariate θuv(xu, xv) marginal densities defined, re-
spectively, over the nodes and the edges of the tree (Meilă
and Jaakkola, 2006). These distributions are assumed in-
variant for all tree structures.

Finally, after introducing the notation

wuv(x) =
θuv(xu, xv)

θu(xu)θv(xv)
, w0(x) =

∏
v∈V θv(xv) and

applying twice the generalized Matrix-Tree theorem we
have

pβ(x) =
∑
T

pβ(T )p(x|T,θ)

=
w0(x)

Zβ

∑
T

∏
euv∈T

βuvwuv(x)

= w0(x)
|Q(β ⊗w(x))|
|Q(β)|

(7)

where the symbol ⊗ denotes element-wise multiplication.

The structure learning task in the ET model can be approx-
imated by an empirical estimation of β, as in (Lin et al.,
2009), where β is used to approximate the MRF adjacency
matrix: non-zero entries βuv correspond to edges in the
graph. In our model, we adopt this interpretation of β.

3.1 ET MODELS WITH DISCONNECTED
SUPPORT GRAPH

A mixture model over spanning trees is based on the im-
plicit assumption that the support graph of the model is
connected. The support graph is a graph that contains ex-
actly the edges corresponding to positive entries in β. The
case of disconnected support graphs is considered by Meilă
and Jaakkola (2006) only for a priori defined connected
components. That is, certain patterns of zero entries in
the parameter set β predefine a partitioning of nodes into
different connected components and these assignments to
components cannot be changed e.g. during the course of a
structure learning procedure. In this case, each connected
component can be treated independently from all others.
Assuming k connected components that partition V into
{V 1, . . . , V k} and introducing the notation

βV i = {βuv, u 6= v, u, v ∈ V i}

equation (7) is generalized as

pβ(x) = w0(x)

∏k
i=1 |Q(βV i ⊗wV i(x))|∏k

i=1 |Q(βV i)|
(8)

4 ENSEMBLE-OF-FORESTS MODELS

Here we introduce the main contribution of our work, that
is the ensemble-of-forests (EF) model. This model con-
stitutes an approximate inference approach for structure



learning of MRFs with multiple connected components that
are not known a priori. We assume a nodeset V of size d
and a partition thereof V = {V 1, . . . , V k}. Then, a maxi-
mal forest or forest of size k is a collection of spanning trees
{T i}i=1,...,k, one for each V i. Extending the ensemble-of-
trees model, we introduce a mixture model over all possible
forests up to a certain size, i.e. allowing for disconnected
structures with a maximal number of k connected compo-
nents. The limiting cases are k = 1, corresponding to the
ET model, and k = d, corresponding to a model that allows
for any possible arrangement of connected components.

The prior probability of a collection of spanning treesF :=
{T 1, . . . , T k} is defined as

pβ(F) =
1

Zβ

∏
T i∈F

∏
euv∈T i

βuv (9)

where βuv = βvu ≥ 0, for all u 6= v, u, v ∈ V . Now, in
order to normalize over all possible forests that consist of
at most k connected components, the partition function is
computed via

Zβ =
∑

V∈part(V)

∑
F∈f(V)

∏
T i∈F

∏
euv∈T i

βuv

=
∑

V∈part(V)

∏
V i∈V

|Q(βV i)| (10)

where the outer summation
∑

V∈part(V) is performed over
all possible partitions of V into k subsets and the inner sum-
mation

∑
F∈f(V) is performed over all maximal forests de-

fined on a specific node partition V. Partitions where some
of the subsets V i are empty are allowed and correspond to
graphs with less than k connected components. For exam-
ple, the partition {V, ∅, . . . , ∅} represents a fully connected
graph. In order to treat such partitions without changing
our notation, we define Q(β∅) = 1.

Ignoring the constant term w0(x), the nega-
tive log-likelihood of the model given a dataset
D = {x(1), . . . , x(N)} is written as

L(D ;β) = N log
∑

V∈part(V)

∏
V i∈V

|Q(βV i)|

−
N∑
j=1

log
∑

V∈part(V)

∏
V i∈V

|Q(βw
(j)
V i )| (11)

where βw
(j)
V i is a shorthand for βV i ⊗wV i(x(j)).

5 LEARNING IN THE EF MODEL

In this section, we describe two approaches for struc-
ture learning of Markov networks based on the EF model,

namely the EF-cuts and EF-λ methods. Additionally, we
describe common features of the two methods, such as the
choice of MRF potentials and the optimization algorithm
used for minimizing the learning objective.

5.1 SELECTION OF EDGE POTENTIALS

The first step in learning the EF model is concerned with
the choice of the edge potentials wuv(x). Here, we con-
sider continuous distributions as edge potentials. Although
we do not explicitly consider discrete distributions in the
following, we want to emphasize that learning in the EF
model easily extends to this class of potentials. In order to
keep our model as generic as possible, we have chosen to
use copula-based potentials. Note from Equation (2) that
the potentials wuv(x) exactly correspond to bivariate cop-
ula densities. In our analysis, we have used the bivariate
Clayton, Frank, Gumbel, Gaussian and Student’s t copula
as candidate parametric families. These copulas have one
single parameter to be estimated.

In order to fit a single-parameter copula family to data,
we follow a two-step procedure. As a first step, the
marginal cdf for each random variable is estimated in a
non-parametric approach (Kojadinovic and Yan, 2010) and
the obtained estimators, known as pseudo-observations, are
plugged into the copula function. Subsequently, the depen-
dence parameter is computed by maximizing the pseudo-
likelihood

logL(θ) =

n∑
i=1

log c(ûi ;θ) (12)

where Ûi is the vector of estimators for the marginals and
n is the sample size. The best-fitting copula for each vari-
able pair is selected via cross-validation, where the cross-
validation score is based on the pseudo-likelihood of the
left-out samples.

5.2 THE EF-cuts HEURISTIC

Graphs with two connected components constitute an im-
portant subclass of disconnected networks. Even when re-
stricting ourselves to a maximum of two connected com-
ponents, it is computationally prohibitive to use the ex-
act ensemble-of-forests model of Equation (11) for sets
of random variables of non-trivial size due to the super-
exponential number of possible node partitions part(V).
Therefore, we resort to heuristic approaches for choosing
partitions that are most likely to allow us to recover the
true graph structure. For a given parameter configuration
β, we aim to identify a number of high scoring partitions
of the nodeset and then average over these partitions only.

Our heuristic is based on the intuition that edges euv with
small βuv are assigned a low prior probability and, there-
fore, are expected to be most likely not present in the true



MRF. Therefore, we would like to prioritize partitions gen-
erated by dropping these low-weight edges. Following that
intuition, we derive a scoring system based on systematic
enumeration of minimum cuts.

A cut of a graph G = (V, E) is a partition of V into sub-
sets A, B = V − A. The weight of a cut is the sum of
the weights of all edges crossing the cut. Starting with
the minimum-weight cut, we want to enumerate a ranked
set of graph cuts of increasing weight. An efficient algo-
rithm (Vazirani and Yannakakis, 1992) exists for this task.
In our case, edge weights correspond to the structural pa-
rameters β. Let (A,B) denote a cut and let C denote the
set of M minimum-weight cuts in the graph. Since we are
only considering graphs with at most two connected com-
ponents, a forest F consists of two spanning trees TA, TB .
To simplify our notation, we include the case of connected
graphs as a special case where A = V and B = ∅. This
is a special cut of zero weight and is always included in
C. We perform structure learning by minimizing the neg-
ative log-likelihood of the model with respect to β. The
respective objective is derived from Equation (11) by set-
ting k = 2 and only considering partitions that belong to
the set C. The optimization problem can be formulated as

min
β
N log

∑
(A,B)∈C

|Q(βA)||Q(βB)|

−
N∑
j=1

log
∑

(A,B)∈C

|Q(βw
(j)
A )||Q(βw

(j)
B )|

s.t. βuv ≥ 0 u, v ∈ V, u 6= v. (13)

Let us denote C′ the set of partitions where nodes u, v be-
long to the same connected component. The set of par-
titions where u, v belong to different components has no
contribution to the gradient (∇βf)uv . Without loss of gen-
erality, we will assume that if nodes u, v belong to the
same partition set, then this is set A and the other set is
B = V − A. Then the gradient of the objective (13) fol-
lows as

(∇βf)uv = N

∑
(A,B)∈C′

Muv(βA)|Q(βA)||Q(βB)|∑
(A,B)∈C′

|Q(βA)||Q(βB)|

−
N∑
j=1

w(j)
uv

∑
(A,B)∈C′

Muv(βA)|Q(βw
(j)
A )||Q(βw

(j)
B )|∑

(A,B)∈C′
|Q(βw

(j)
A )||Q(βw

(j)
B )|

(14)

where M is defined as in (Meilă and Jaakkola, 2006)

Muv =


Q−1uu +Q−1vv − 2Q−1uv if u 6= v, u 6= w, v 6= w,

Q−1uu if u 6= v, v = w,

Q−1vv if u 6= v, u = w,

0 if u = v.
(15)

With w we denote the index of the row and column that
are removed from the Laplacian matrix of Equation (4) in
order to obtain Q.

The min-cut heuristic is a feasible approximation to struc-
ture learning of MRFs with disconnected topologies. How-
ever, it is practically restricted to graph structures with at
most two connected components. Furthermore, the ap-
proach does not scale with increasing node or sample size
due to the complicated objective and gradient functions.
These considerations limit its applicability to real world
scenarios.

5.3 THE EF-λ HEURISTIC

In the following, we introduce the EF-λ heuristic that
scales well with dimensionality and number of connected
components of the underlying MRF. The starting point
is again equation (11), but now we drop the summation∑

V∈part(V) over possible node partitions. Instead, we
only consider a single partition V. Additionally, we im-
pose an L1 penalty term on the structural parameters β to
encourage sparse solutions. The new optimization task is
expressed as

min
β
N

∑
V i∈V

log |Q(βV i)|−
N∑
j=1

∑
V i∈V

log |Q(βw
(j)
V i )|+λ‖β‖1

s.t. βuv ≥ 0 u, v ∈ V, u 6= v. (16)

An iterative optimization procedure is employed to mini-
mize the objective (16). At each iteration step, summation
is performed over maximal forests defined for the single
node partition V that is induced by the current iterate β.
The number of connected components does not need to be
fixed. The penalty term has the critical role of controlling
sparsity and, thus, allowing structures with multiple con-
nected components to be considered.

A similar L1-regularized approach cannot be employed for
the ET model, because the ET objective is not defined for
all sparsity patterns in β. Therefore, there is effectively no
sparsity induction by an L1 penalty in ET. Furthermore, for
some iterative optimization procedures, numerical instabil-
ities might occur if β is temporarily set to an invalid value.

The gradient of the objective for the EF-λ takes a simple
form. Considering the non-negativity of β, the L1-norm
‖β‖1 is equal to

∑
u,v∈V, u 6=v βuv . Thus, the objective is

differentiable at all points. Assuming that β induces a par-



titioning of V into {V 1, . . . , V k}, the gradient of the objec-
tive can be expressed as

(∇βf)uv = NMuv(βV i)−
N∑
j=1

w(j)
uvMuv(βw

(j)
V i ) + λ

(17)
for u, v ∈ V i and is equal to 0 otherwise.

The choice of the regularization parameter λ is an impor-
tant aspect of the EF-λ approach. We optimize the EF-λ
objective using different penalty parameters λ = exp(−ρ),
where ρ takes values in the interval [3, 6] with a step of 0.1.
The optimal λ is selected so as to minimize the extended
Bayesian Information Criterion (eBIC) (Foygel and Drton,
2010) defined as

eBIC = 2L+ |E| log n+ 4|E|γ log d (18)

where L is the negative log-likelihood of the model, |E| is
the number of non-zero predicted β entries, n is the sample
size, d is the number of nodes and γ is an additional penalty
term imposed on more complex structures. The classical
Bayesian Information Criterion is obtained as a subcase for
γ = 0. We performed simulations with different values of
γ in the interval [0, 1] and resulted in using γ = 0.5.

5.4 OPTIMIZATION OF THE LEARNING
OBJECTIVE

The objectives (13) and (16) to fit the EF model are non-
convex functions. Therefore, there is no guarantee of con-
vergence to a global optimum and the initial point for op-
timization has to be carefully chosen. Lin et al. (2009)
initialize β with an upper-bound obtained by optimizing
a convex sub-expression of the full objective. Our prelim-
inary experiments confirmed that this method yielded sig-
nificantly better optima than random initializations. There-
fore, we adopted this choice for initialization. As for the
main optimization task, we have used the Spectral Pro-
jected Gradient (SPG) algorithm (Varadhan and Gilbert,
2009), a gradient-based method that allows for simple box
constraints.

6 BENCHMARK ON SIMULATED DATA

In this section, we evaluate the empirical performance of
our proposed EF approximations via comparison to the
ET (Lin et al., 2009) and glasso (Friedman et al., 2008)
algorithms on synthetic Gaussian and non-Gaussian data.
We use the glasso implementation from the R-package
huge (Zhao et al., 2012). The glasso regularization term
is obtained via Stability Approach to Regularization Se-
lection (StARS) (Liu et al., 2010), a criterion based on
variability of the graphs estimated by overlapping subsam-
plings. We employ this criterion, since it achieves the best

performance in our simulations. For the ET and EF ap-
proaches we use Gaussian copula or Student’s t-copula po-
tentials and optimize the corresponding objective via SPG.
For the EF-cuts method, we consider the first 50 minimum-
weight cuts.

6.1 RESULTS ON GAUSSIAN MRF DATA

We first aim at confirming that the EF model achieves com-
parable performance to state-of-the-art methods for MRF
structure learning. To this end, we generated Gaussian
MRF data following the procedure described in (Lin et al.,
2009). The off-diagonal entries of the precision matrix
Ω = Σ−1 are sampled from ±(0.1 + 0.2|n|), where n is
drawn from N ∼ (0, 1). The diagonal entries are selected
via Gershgorin’s circle theorem to ensure that the matrix is
positive definite. Given Ω = Σ−1, data can be easily sam-
pled from a multivariate Gaussian distributionN ∼ (0,Σ).

We first generate random connected graphs of d = 25
nodes with an average of 2 neighbours/node. For a
given graph, we draw 500 samples from the correspond-
ing GMRF distribution and then compare the ability of dif-
ferent methods to retrieve the graph structure when a dif-
ferent sample size is available. Performance metrics for
this setting, obtained from 100 repetitions, are reported in
Figure 2A, while the average runtime for each method is
given in Table 1. We can see that the EF-λ and EF-cuts
approaches have similar accuracy as the ET, as the corre-
sponding Hamming distances to the ground truth (i.e. num-
ber of misclassified edges) are on the same level. Notably,
the number of false positive edges predicted by the EF-λ
method is zero in most cases. Thus, precision is always
very close to one. As a trade-off, recall is limited, espe-
cially for lower sample sizes. When 500 samples are avail-
able, recall reaches levels comparable to the baseline meth-
ods. The EF-cuts method performs very similar to the ET,
while exhibiting a much higher runtime. The reported run-
times for EF-λ and glasso correspond to a complete run
with 32 λ-values. The runtime for glasso is not dependent
on the sample size and is mostly consumed for choosing
the optimal λ. On the other hand, the runtime for EF-λ in-
creases with sample size. However, we argue that the added
runtime constitutes a reasonable trade-off for achieving su-
perior structure learning performance.

Table 1: Average runtime (in seconds) for the experiments pre-
sented in Figure 2. For EF-λ and glasso the reported runtime
corresponds to a complete run with 32 λ-values and choice of the
optimal λ.

Sample Size: 25 50 100 250 500

ET 6 9 13 28 57
EF-λ 32 39 56 110 188
EF-cuts 1166 2088 3512 8151 14435
glasso 31 31 31 31 31



(A) (B)

Figure 2: Comparison of the EF-λ, EF-cuts, ET and glasso algorithms on recovering the structure of (A) connected (B) disconnected
sparse GMRFs from different sample sizes. Simulated graphs comprise 25 nodes with 2 neighbours/node on average. The boxplots
contain results from 100 repetitions.

In a next step, we evaluated the performance of the EF
model in a situation where the data is drawn from a Gaus-
sian MRF with multiple connected components. Therefore,
we generated data from GMRFs with no restriction on the
number of connected components. Again, each graph com-
prises d = 25 nodes with an average of 2 neighbours/node.
Performance metrics for this setting, obtained from 100
repetitions, are reported in Figure 2B. We can observe that
the EF-λ approach outperforms the other three in terms of
accuracy, as it achieves the lowest Hamming distance. As
in the one-component setting, the number of false positive
edges predicted by this method is zero in most cases. Thus,
there are no inter-cluster false positive edges (i.e. edges that
are falsely predicted to connect nodes belonging to differ-
ent clusters) and precision is always very close to one. The
recall achieved is inferior to the other methods. However,
as the sample size grows, recall also reaches competitive
levels. Again in this setting, the EF-cuts approach performs
very similar to the original ET method.

We have seen that the EF-cuts method performs very sim-
ilar to the original ET method, but exhibits much higher
runtimes. On the other hand, the EF-λ heuristic performs
very well for both connected and disconnected MRFs and
is additionally faster and more generic than the the EF-cuts.
Thus, we only include EF-λ in the next simulations and re-
fer to it as simply EF.

6.2 RESULTS ON NON-GAUSSIAN MRF DATA

Here we explore the ability to learn the structure of MRFs
with non-Gaussian potentials. The EF, as well as the ET
approach, are applicable for arbitrary potentials and are,
therefore, expected to well adapt to this situation.

We now perform simulations for a Markov network whose
data dependencies are no longer Gaussian. More specifi-

cally, we generate random graphs consisting of 25 nodes
that are organized in small cliques of size 3 or 4. For each
clique we draw data samples of pseudo-observations (Ko-
jadinovic and Yan, 2010) from a Student’s t-copula with
1 degree of freedom. The dependencies among random
variables in each clique are clearly non-Gaussian. Sub-
sequently, we apply the Gaussian quantile function to the
pseudo-observations of each random variable and, thereby,
we obtain data that is marginally normally distributed. In
this setting, we compare the EF approach to the ET, glasso
and, additionally, to the non-paranormal model (npn) of Liu
et al. (2009). The latter utilizes Gaussian copulas for struc-
ture learning. Its implementation is also available via the
R-package huge.

The results of 100 simulations are summarized in the box-
plots of Figure 3.The Hamming distances produced by
the EF approach are considerably smaller than those pro-
duced by competing approaches. Moreover, no false posi-
tive edges are predicted by the EF method. Precision and
also recall are very high. In contrast, the glasso and non-
paranormal methods, that assume Gaussian dependency
structures, achieve limited recall. The ET method produces
higher Hamming distances and also low precision, since
it introduces false positive edges that connect the cliques.
Note that the Hamming distance for this method is almost
equal to the number of inter-cluster false positive edges. In
such a setting, the EF approach performs significantly bet-
ter than all alternative methods since it naturally deals with
t-copula dependencies and disconnected MRF topologies.

6.3 A HIGH-DIMENSIONAL SETTING WITH
VERY LOW SAMPLE SIZE

Here, we explore structure learning on the basis of an ex-
tremely low number of samples from a comparably high
dimensional MRF. This situation commonly arises in many



Figure 3: Comparison of the EF, ET, glasso and non-paranormal
algorithms on recovering the structure of sparse MRFs with Stu-
dent’s t-copula (df = 1) potentials. Simulated graphs comprise
25 nodes organized in small cliques of size 3 or 4. The boxplots
contain results from 100 repetitions.

real world applications, as for instance in biology where
typically only few observations are available. In this situa-
tion, we do not expect to comprehensively recover the un-
derlying MRF structure. Instead, we aim to maximize the
number of recovered true MRF edges at high precision, i.e.
without accumulating false positive relationships. There-
fore, we generate 50 data samples from an 80-dimensional
GMRF, where each node has on average 3 neighbours. The
ROC curves in Figure 4 compare the performance of the
EF and glasso approaches. We can see that, for very low
sample sizes, the EF method recovers almost a double num-
ber of edges at a tolerance level of 1% FDR. In Table 2 we
present the average runtime for EF and glasso when run
with a single λ value.

Figure 4: Comparison of the EF and glasso algorithms in a high-
dimensional setting (80-node graph) with very low sample size.
ROC curves for different numbers of available data replicates are
presented, averaged over 100 repetitions. The curves are trun-
cated at a tolerance level of 1% FDR.

Table 2: Average runtime (in seconds) for the simulations pre-
sented in Figure 4. Runtime is averaged over repetitions and λ
values.

Sample Size: 10 15 20 25 30 50

EF-λ 107 153 163 182 185 248
glasso < 1 < 1 < 1 < 1 < 1 < 1

7 RESULTS ON MICROARRAY DATA

Here we demonstrate the performance of the EF approach
on a microarray dataset (Wille et al., 2004) from the iso-
prenoid biosynthesis pathways in Arabidopsis thaliana.
Expression levels of 39 genes (variables) are quantified un-
der n = 118 conditions (observations). EF is evaluated
via comparison to glasso (Friedman et al., 2008), the state-
of-the-art algorithm for learning the structure of continuous
MRFs. For the EF analysis, we used the Gaussian, Gumbel,
Clayton, Frank and Student’s t copula as candidate para-
metric families. A summary of the copula selection results
is presented in Table 4, where we can observe that a variety
of different dependency types is present.

For both methods, a decreasing sequence of 40 λ-values
was used. The optimal regularization parameter λ for EF
was obtained via eBIC (Foygel and Drton, 2010), result-
ing in a sparse MRF whose graph structure is depicted in
Figure 5A. On the contrary, the use of information criteria
(eBIC, StARS (Liu et al., 2010)) for glasso yielded very
dense networks, as depicted in Figure 5B. In order to addi-
tionally compare both approaches with respect to results at
similar sparsity levels, we also selected the glasso graph
with the smallest Hamming distance with respect to the
graph learned via EF. To evaluate the performance of the
algorithms, we used a 5-fold cross validation setting and
evaluated the best-fitting model on the basis of the aver-
age per-sample held-out log-likelihood. Results are shown
in Table 3 and demonstrate that the MRF learned via EF
has better cross validation performance. Besides the per-
formance advantage, we note that the sparse structure of
EF model selection enables straightforward interpretation
and further hypothesis generation by domain experts.

(A) (B)

Figure 5: Optimal MRF graph structure recovered via (A) EF, (B)
glasso for the microarray data. The numbering scheme legend is
provided as Supplementary Material.



Table 3: Average per-sample held-out log-likelihood for the mi-
croarray data.

Log-likelihood Std. error

EF-λ 9.694 0.526
glasso (StARS) 8.522 0.418
glasso (sparse) 8.995 0.455

8 RESULTS ON IMMUNE CELL
PERTURBATION DATA

Finally we apply the EF model to study the occurrence
of MRFs with multiple connected components in a pro-
teomics setting. Specifically, we analyze mass cytome-
try data from human peripheral blood mononuclear cells
(PBMC), essentially representing all immune cells resid-
ing in the blood stream (Bodenmiller et al., 2012). Mass
cytometry allows for proteomic profiling of molecular sig-
naling events at single-cell resolution. The considered pub-
licly available dataset recapitulates the response of PBMC
populations to various molecular stimuli under several dif-
ferent pharmacological interventions. Signaling response
has been measured by quantifying 14 phosphorylation sites
(variables). For each intervention and cell type, 96 condi-
tions were considered, where a condition consisted of an
intervention strength setting and a specific stimulus.

Here we present results for interventions with the drug
dasatinib. Again we observe the occurrence of a variety
of non-Gaussian dependencies in this real world dataset
(Table 4). We evaluate the performance of EF by com-
paring it to glasso, as we did for the microarray data. The
average held-out log-likelihood per dataset is reported in
the boxplots of Figure 6A. Different PBMC datasets are
grouped together according to the stimulus used in each
experiment. We can see that EF achieves constantly supe-
rior performance. Furthermore, in Figure 6B, separate his-
tograms of the number of connected components for each
stimulus are presented. For specific stimuli, MRF topolo-
gies with multiple components are common, reflecting the
molecular impact of the intervention on the respective cel-
lular signaling event. The EF approach is able to adapt
to and recover underlying disconnected topologies even in
the presence of unusual dependencies and, thus, we expect
this approach to enable the probabilistic characterization of
cellular signaling events and, thus, to enable molecular in-
sights of possibly pathologically altered responses and to
generate hypotheses for clinical interventions.

9 DISCUSSION

We have introduced the ensemble-of-forests model to ap-
proximate structure learning for MRFs with arbitrary po-
tentials and connected components. Additionally, we have

Table 4: Frequencies of selected copula families during the anal-
ysis of plant microarray and PBMC mass cytometry data.

Gumbel Frank Clayton Gaussian t (df=1)

Micro. 0.28 0.06 0.13 0.51 0.02
PBMC 0.20 0.06 0.35 0.23 0.16

(A) (B)

Figure 6: (A) Comparison of the EF and glasso algorithms. Box-
plots of average held-out log-likelihood for different cell-type /
stimulus combinations. (B) Histograms of the number of MRF
connected components predicted by EF when applied to PBMC
mass cytometry data. Separate histograms are given for each stim-
ulus, indicated on the x-axis. Frequencies on the y-axis are nor-
malized to sum up to 1 for each stimulus.

presented two approximate inference techniques for this
model and compared their structure learning performance
with state-of-the-art methods on a comprehensive set of
synthetic data.

ET and EF models are appealing structure learning ap-
proaches when unusual MRF potentials are to be expected.
Indeed, our simulation results confirm that the EF method
can accurately reconstruct non-Gaussian dependencies that
are a priori accounted for.

Disconnected dependency structures frequently arise in
real world applications. However, the ET model is con-
ceptually not able to handle such cases. We have extended
the ET to the EF model to the end of accommodating
multiple-component situations. Our simulation results con-
firm that we are able to faithfully recover MRF topologies
with one as well as with multiple connected components.
The study of the plant microarray and PBMC mass cytom-
etry data furthermore confirms the ubiquitous occurrence
of the multiple-component situation in cell biology and fur-
ther emphasizes the need for structure learning approaches
that are able to deal with this situation.

We also assessed how the EF model performs for limited
sample size, again a typical case for real world applications.
Our approach seems ideal for low-sample situations, where
we aim to maximize the number of recovered true MRF
edges at high precision.

In summary, we expect the EF model to enable MRF struc-
ture learning for many real world applications since this
approach naturally deals with low sample size, unusual de-
pendency types and disconnected dependency topologies.
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