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Abstract

We develop a framework for convexifying a
general class of optimization problems. We
analyze the suboptimality of the solution
to the convexified problem relative to the
original nonconvex problem, and prove ad-
ditive approximation guarantees under some
assumptions. In simple settings, the convexi-
fication procedure can be applied directly and
standard optimization methods can be used.
In the general case we rely on stochastic gra-
dient algorithms, whose convergence rate can
be bounded using the convexity of the under-
lying optimization problem. We then extend
the framework to a general class of discrete-
time dynamical systems where our convex-
ification approach falls under the paradigm
of risk-sensitive Markov Decision Processes.
We derive the first model-based and model-
free policy gradient optimization algorithms
with guaranteed convergence to the optimal
solution. We also present numerical results
in different machine learning applications.

1 INTRODUCTION

It has been said that the watershed in optimization is
not between linearity and nonlinearity, but between
convexity and nonconvexity. In this paper we de-
velop a framework for convexifying a general class of
optimization problems (section 3), turning them into
problems that can be solved with efficient convergence
guarantees. The convexification approach may change
the problem drastically in some cases, which is not sur-
prising since most nonconvex optimization problems
are NP-hard and cannot be reduced to solving convex
optimization problems. However, under additional as-
sumptions, we obtain guarantees that bound the sub-
optimality of the solution relative to the original non-

convex problem (section 3.2). We adapt stochastic gra-
dient methods to solve the resulting problems (section
4) and prove convergence guarantees that bound the
distance to optimality as a function of the number of
iterations. In section 5, we extend the framework to
arbitrary dynamical systems and derive the first policy
optimization approach with guaranteed convergence to
the global optimum. The control problems we study
fall under the framework of risk-sensitive control. The
condition required for convexity is a natural one, relat-
ing the control cost, risk factor and noise covariance. It
is very similar to the condition that reduces stochastic
optimal control to a linear problem [Fleming and Mit-
ter, 1982, Kappen, 2005, Todorov, 2009], which in turn
has given rise to path-integral and other specialized
methods for control [Theodorou et al., 2010a, Broek
et al., 2010, Dvijotham and Todorov, 2011, Toussaint,
2009].

Smoothing with noise is a relatively common approach
to simplify difficult optimization problems. It has been
used in computer vision [Rangarajan, 1990] heuristi-
cally and formalized in recent work [Mobahi, 2012]
where it is shown that under certain assumptions,
adding sufficient noise eventually leads to a convex op-
timization problem. In contrast, we show that for any
noise level one can choose the degree of risk-aversion
so as to obtain a convex problem. This procedure may
destroy minima that are not robust to perturbations –
which is not necessarily undesirable, because in many
applications it makes sense to seek a robust solution
rather than the best one.

2 NOTATION

Gaussian random variables are denoted by ω ∼
N (µ,Σ), where µ is the mean and Σ the covariance
matrix. Given a random variable ω ∈ Ω with distribu-
tion P and a function h : Ω 7→ R, the expected value
of the random variable h (ω) is written as E

ω∼P
[h (ω)].

Whenever it is clear from the context, we will drop



the subscript on the expected value and simply write
E [h (ω)]. We differ from convention here slightly by
denoting random variables with lowercase letters and
reserve uppercase letters for matrices. We will fre-
quently work with Gaussian perturbations of a func-
tion, so we denote:

h̄ (θ) = E
ω∼N (0,Σ)

[h (θ + ω)] , h̃ω (θ) = h (θ + ω)−h̄ (θ) .

In denotes the n × n identity matrix. Unless stated
otherwise, ‖·‖ refers to the Euclidean `2 norm. Given
a convex set C, we denote the projection onto C of
x by ProjC (x): ProjC (x) = argminy∈C ‖y − x‖. The
maximum eigenvalue of a symmetric matrix M is de-
noted by λmax (M). Given symmetric matrices A,B,
the notation A � B means that A − B is a posi-
tive semidefinite matrix. Given a positive definite ma-
trix M � 0, we denote the metric induced by M as
‖x‖M =

√
xTMx.

3 GENERAL OPTIMIZATION
PROBLEMS

We study optimization problems of the form:

min
θ∈C

g (θ) (1)

where g is an arbitrary function and C ⊂ Rk is a
convex set. We do not assume that g is convex so
the above problem could be a nonconvex optimization
problem. In this work, we convexify this problem by
decomposing g (θ) as follows: g(θ) = f(θ) + 1

2θ
TRθ

and perturbing f with Gaussian noise. Optimization
problems of this form are very common in machine
learning (where R corresponds to a regularizer) and
control (where R corresponds to a control cost). The
convexified optimization problem is:

min
θ∈C

fα (θ) +
1

2
θTRθ (2)

where R � 0 and

fα (θ) =
1

α
log

(
E

ω∼N (0,Σ)
[exp (αf (θ + ω))]

)
.

This kind of objective is common in risk-averse op-
timization. To a first order Taylor expansion in
α, the above objective is equal to E [f (θ + ω)] +
αVar (f (θ + ω)), indicating that increasing α will
make the solution more robust to Gaussian perturba-
tions. α is called the risk-factor and is a measure of the
risk-aversion of the decision maker. Larger values of
α will reject solutions that are not robust to Gaussian
perturbations.

In order that the expectation exists, we require that f
is bounded above:

For all θ ∈ Rk, f (θ) ≤M <∞. (3)

We implicitly make this assumption throughout this
paper in all the stated results. Note that this is not a
very restrictive assumption, since, given any function
g with a finite minimum, one can define a new objec-
tive g′ = min (g, m̄), where m̄ is an upper bound on the
minimum (say the value of the function at some point),
without changing the minimum. Since the convex
quadratic is non-negative, f is also bounded above by
m̄ and hence 0 < exp (αf (θ + ω)) ≤ exp (αm). This
ensures that fα (θ) is finite. Some results will require
differentiability, and we can preserve this by defining g′

using a soft-min: For example, g′ (x) = m̄ tanh
(
g(x)
m̄

)
.

Theorem 3.1 (Universal Convexification). The opti-
mization problem (2) is a convex optimization problem
whenever C is a convex set and αR � Σ−1.

Proof. Writing out the objective function in (2) and
scaling by α, we get:

log

(
E

ω∼N (0,Σ)
[exp (αf(θ + ω))]

)
+
α

2
θTRθ (4)

Writing out the expectation, we have:

E
ω∼N (0,Σ)

[exp (αf(θ + ω))] = E
y∼N (θ,Σ)

[exp (αf(y))]

∝
∫

exp

(
−1

2
(y − θ)TΣ−1 (y − θ)

)
exp (αf(y)) d y

where we omitted the normalizing constant(√
(2π)

n
det (Σ)

)−1

in the last step. Thus, ex-

ponentiating (4), we get (omitting the normalizing
constant):∫

exp

(
α

2
θTRθ − 1

2
(y − θ)TΣ−1 (y − θ) + αf(y)

)
d y

The term inside the exponent can be rewritten as

1

2
θT
(
αR− Σ−1

)
θ + θTΣ−1y + αf (y)− 1

2
yTΣ−1y

Since αR � Σ−1, this is a convex quadratic function of
θ for each y. Thus, the overall objective is the compo-
sition of a convex and increasing function log E [exp (·)]
and a convex quadratic and is hence convex [Boyd and
Vandenberghe, 2004]. Since C is convex, the overall
problem is a convex optimization problem.

3.1 INTERPRETATION

Theorem 3.1 is a surprising result, since the condi-
tion for convexity does not depend in any way on the



properties of f (except for the boundedness assump-
tion (3)), but only on the relationship between the
quadratic objective R, the risk factor α and the noise
level Σ. In this section, we give some intuition behind
the result and describe why it is plausible that this is
true.

In general, arbitrary nonconvex optimization problems
can be very challenging to solve. As a worst case ex-
ample, consider a convex quadratic function g(x) = x2

that is perturbed slightly: At some point where the
function value is very large (say x = 100), we modify
the function so that it suddenly drops to a large neg-
ative value (lower than the global minimum 0 of the
convex quadratic). By doing this perturbation over a
small finite interval , one can preserve differentiabil-
ity while introducing a new global minimum far away
from the original global minimum. In this way, one
can create difficult optimization problems that cannot
be solved using gradient descent methods, unless ini-
tialized very carefully.

The work we present here does not solve this problem:
In fact, it will not find a global minimum of the form
created above. The risk-aversion introduced destroys
this minimum, since small perturbations cause the
function to increase rapidly, ie, g (θ∗ + ω)� g (θ∗), so
that the objective (2) becomes large. Instead, it will
find a “robust” minimum, in the sense that Gaussian
perturbations around the minimum do not increase
the value of the objective by much. This intuition
is formalized by theorem 3.2, which bounds the sub-
optimality of the convexified solution relative to the
optimal solution of the original problem in terms of
the sensitivity of f to Gaussian perturbations around
the optimum.

In figure 1, we illustrate the effect of the convexifica-
tion for a 1-dimensional optimization problem. The
blue curve represents the original function g (θ). It
has 4-local minima in the interval (−3, 3). Two of
the shallow minima are eliminated by smoothing with
Gaussian noise to get ḡ (θ). However, there is a deep
but narrow local minimum that remains even after
smoothing. Making the problem convex using risk-
aversion and theorem 3.1 leads to the green curve
that only preserves the robust minimum as the unique
global optimum.

3.2 ANALYSIS OF SUB-OPTIMALITY

We have derived a convex surrogate for a very general
class of optimization problems. However, it is possible
that the solution to the convexified problem is drasti-
cally different from that of the original problem and
the convex surrogate we propose is a poor approxima-
tion. Given the hardness of general non-convex opti-
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Figure 1: Illustration of Convexification for a 1-
dimensional optimization problem

mization, we do not expect the two problems to have
close solutions without additional assumptions. In this
section, we analyze the gap between the original and
convexified problem. In order to answer this, we first
define the sensitivity function, which quantifies the gap
between (1) and (2).

Definition 1 (Sensitivity Function). The sensitivity
function of f at noise level Σ, risk α is defined as:

Sα,f (θ) =
1

α
log
(

E
[
exp

(
α
(
f (θ + ω)− f̄ (θ)

))])
=

1

α
log
(

E
[
exp

(
αf̃ω (θ)

)])
.

This is a measure of how sensitive f is to Gaussian
perturbations at θ.

Theorem 3.2 (Suboptimality Analysis). Let g(θ) =
f(θ) + 1

2θ
TRθ and define:

θ∗α = argmin
θ∈C

fα (θ) +
1

2
θTRθ, θ∗ = argmin

θ∈C
ḡ (θ) .

Then,

ḡ (θ∗α)− ḡ (θ∗) ≤ Sα,f (θ)

Proof. We have that ∀θ, ḡ (θ) = f̄ (θ) + 1
2θ
TRθ +

1
2 tr (ΣR). From the convexity of the function y →
exp (αy) and Jensen’s inequality, we have

ḡ (θ∗α) = f̄ (θ∗α) +
1

2
θ∗α
TRθ∗α +

1

2
tr (ΣR)

≤ fα (θ∗α) +
1

2
θ∗α
TRθ∗α +

1

2
tr (ΣR)

Since θ∗α = argminθ∈C fα (θ) + 1
2θ
TRθ, for any θ ∈ C,

we have

ḡ (θ∗α) ≤ fα (θ) +
1

2
θTRθ +

1

2
tr (ΣR)

= Sα,f (θ) + ḡ (θ) .

The result follows by plugging in θ = θ∗ and subtract-
ing ḡ (θ∗) from both sides.



Remark 1. Although we only prove suboptimality rel-
ative to the optimal solution of a smoothed version of
g, we can extend the analysis to the optimal solution
of g itself. Define θ∗ = argminθ∈C g (θ). We can prove
that

g (θ∗α)− g (θ∗) ≤ (ḡ (θ∗)− g (θ∗)) + (g (θ∗α)− ḡ (θ∗α))

+ Sα,f (θ)

Assuming that g changes slowly around θ∗ and θ∗α (in-
dicative of the fact that θ∗ is a “robust” minimum and
θ∗α is the minimum of a robustified problem), we can
bound the first term. We leave a precise analysis for
future work.

3.2.1 BOUNDING THE SENSITIVITY
FUNCTION

The sensitivity function is exactly the moment gener-
ating function of the 0-mean random variable f̃ω (θ).
Several techniques have been developed for bounding
moment generation functions in the field of concentra-
tion inequalities [Boucheron et al., 2013]. Using these
techniques, we can bound the moment generating func-
tion (i.e. the sensitivity function) under the assump-
tion that f is Lipschitz-continuous. Before stating the
lemma, we state a classical result:

Theorem 3.3 (Log-Sobolev Inequality, [Boucheron
et al., 2013], theorem 5.4). Let ω ∼ N

(
0, σ2I

)
and f

be any continuously differentiable function of ω. Then,

E

f (ω)
2

log

 f (ω)
2

E
[
f (ω)

2
]
 ≤ 2σ2 E

[
‖∇f (ω)‖2

]
.

Further, if f is Lipschitz with Lipschitz constant L,
then

E
[
exp

(
α
(
f (ω)− E [f (ω)]

))]
≤ exp

(
α2L2σ2/2

)
.

Finally, we can also prove that if f is differentiable and

E
[
expλ ‖∇f (ω)‖2

]
< ∞ for all λ < λ0, then, given

η such that λσ2 < ηλ0 and λη < 2, we have

log
(

E
[
exp

(
λ
(
f (ω)− E [f (ω)]

))])
≤

λη

2− λη
log

(
E

[
exp

(
λσ2

η
‖∇f (ω)‖2

)])
Theorem 3.4 (Lipschitz Continuous Functions). As-
sume the same setup as theorem 3.2. Suppose further
that f is Lipschitz continuous with Lipschitz constant
L, that is,

∀θ, θ′, |f(θ)− f(θ′)| ≤ L ‖θ − θ′‖ .

Then, Sα,f (θ) ≤ 1
2αL

2λmax (Σ). Further,

ḡ (θ)−min
θ∈C

ḡ (θ) ≤ αL2λmax (Σ)

2
.

Proof. We can write

f̃ (ω′) = f
(
θ + Σ1/2ω′

)
− f̄ (θ)

where ω′ ∼ N (0, Ik).

|f̃ (ω′1)− f̃ (ω′2) | = |f
(
θ + Σ1/2ω′1

)
− f

(
θ + Σ1/2ω′2

)
|

≤ L
∥∥∥Σ1/2 (ω′1 − ω′2)

∥∥∥ ≤ Lλmax

(
Σ1/2

)
‖ω′1 − ω′2‖

Since λmax

(
Σ1/2

)
=
√
λmax (Σ), this shows that f̃ is

Lipschitz with Lipschitz constant
√
λmax (Σ)L. The

result now follows from theorem 3.3. From theorem
3.2, this implies that

ḡ (θ)−min
θ∈C

ḡ (θ) ≤ αL2λmax (Σ)

2
.

4 ALGORITHMS AND
CONVERGENCE GUARANTEES

In general, the expectations involved in (2) cannot be
computed analytically. Thus, we need to resort to sam-
pling based approaches in order to solve these prob-
lems. This has been studied extensively in recent years
in the context of machine learning, where stochastic
gradient methods and variants have been shown to be
efficient, particularly in the context training machine
learning algorithms with huge amounts of data. We
now describe stochastic gradient methods for solving
(2) and adapt the convergence guarantees of stochastic
gradient methods to our setting.

4.1 Stochastic Gradient Methods with
Convergence Guarantees

In this section, we will derive gradients of the con-
vex objective function (2). We will assume that the
function f is differentiable at all θ ∈ Rk. In order to
get unbiased gradient estimates, we exponentiate the
objective (2) to get:

G (θ) = E
ω∼N (0,Σ)

[
exp

(
αf (θ + ω) +

α

2
θTRθ

)]
.

Since f (θ) is differentiable for all θ, so is
exp

(
αf (θ + ω) + 1

2θ
T (αR) θ

)
. Further, suppose that

E
[
exp (2αf (θ + ω)) ‖∇f (θ + ω) +Rθ‖2

]
exists and is finite for each θ. Then, if we differen-
tiate G (θ) with respect to θ, we can interchange the
expectation and differentiation to get

E
[
exp

(
αf (θ + ω) +

α

2
θTRθ

)
(α∇f (θ + ω) + αRθ)

]



Thus, we can sample ω ∼ N (0,Σ) and get an unbiased
estimate of the gradient

α exp
(
αf (θ + ω) +

α

2
θTRθ

)
(∇f (θ + ω) +Rθ) (5)

which we denote by ∇̂G (θ, ω). As in standard stochas-
tic gradient methods, one saves on the complexity of
a single iteration by using a single (or a small number
of) samples to get a gradient estimate while still con-
verging to the global optimum with high probability
and in expectation, because over multiple iterations
one moves along the negative gradient “on average”.

Algorithm 1 Stochastic Gradient Method for (2)

θ ← 0
for i = 1, . . . , T do

ω ∼ N (0,Σ) , θ ← ProjC

(
θ − ηi∇̂G (θ, ω)

)
end for

From standard convergence theory for stochastic gra-
dient methods [Bubeck, 2013], we have:

Corollary 1. Suppose that E

[∥∥∥∇̂G (θ, ω)
∥∥∥2
]
≤ ζ2,

C is contained in a ball of radius R (C) and
αR � Σ−1. Run algorithm 1 for T iterations with

ηi = R(C)
ζ

√
1
2i and define θ̂ = 1

T

∑T
i=1 θi, G∗ =

argminθ∈CG (θ). Then, we have

E
[
G
(
θ̂
)]
−G∗ ≤ R (C) ζ

√
1

2T

In the following theorem, we prove a convergence rate
for algorithm 1.

Theorem 4.1. Suppose that R = κI,Σ = σ2I, ακ �
1
σ2 , C is contained in a sphere of radius R (C) and that
for all θ ∈ C ḡ (θ) ≤ m. Also, suppose that for some

β < (α)
−1

:

1

2α
log

(
E

ω∼N (0,Σ)

[
exp

(
2
ασ2

β
‖∇f (θ + ω)‖2

)])
≤ γ2

Define δ =
√

βγ2

σ2(1−αβ) + κR (C). Then, we can choose

ζ ≤ α2δ2 exp
(

2α(m+ γ2) + αβ
1−αβ − σ

2κ
)

.

Remark 2. The convergence guarantees are in terms
of the exponentiated objective G (θ). We can convert
these into bounds on log (G (θ)) as follows:

E
[
log
(
G(θ̂)

)]
≤ log

(
E
[
G(θ̂)

])
≤

log

(
G∗ +

ζR (C)√
2T

)

where the first inequality follows from concavity of the
log function. Subtracting log (G∗), we get

E
[
log
(
G
(
θ̂
))]
− log (G∗) ≤ log

(
1 +

ζR (C)√
2TG∗

)
.

5 CONTROL PROBLEMS

In this section, we extend the above approach to the
control of discrete-time dynamical systems. Stochas-
tic optimal control of nonlinear systems in general is
a hard problem and the only known general approach
is based on dynamic programming, which scales expo-
nentially with the dimension of the state space. Al-
gorithms that approximate the solution of the dy-
namic program directly (approximate dynamic pro-
gramming) have been successful in various domains,
but scaling these approaches to high dimensional con-
tinuous state control problems has been challenging.
In this section, we pursue the alternate approach of
policy search or policy gradient methods [Baxter and
Bartlett, 2001]. These algorithms have the advantage
that they are directly optimizing the performance of
a control policy as opposed to a surrogate measure
like the error in the solution to the Bellman equation.
They have been used successfully for various applica-
tions and are closely related to path integral control
[Kappen, 2005, Theodorou et al., 2010b]. However,
in all of these approaches, there were no guarantees
made regarding the optimality of the policy that the
algorithm converges to (even in the limit of infinite
sampling) or the rate of convergence.

In this work, we develop the first policy gradient algo-
rithms that achieve the globally optimal solutions to a
class of risk-averse policy optimization problems.

5.1 Problem Setup

We deal with arbitrary discrete-time dynamical sys-
tems of the form

εεε =
(
ε1 . . . εN−1

)T ∼ Pε
x1 = 0, xt+1 = F (xt, yt, εt, t) t = 1, . . . , N − 1

(6)

yt = ut + ωt, ωt ∼ N (0,Σt) t = 1, . . . , N − 1 (7)

where xt ∈ Rns denotes the state, yt ∈ Rnu the ef-
fective control input, εt ∈ Rp external disturbances,
ut ∈ Rnu the actual control input, ωt ∈ Rnu the con-
trol noise, F : Rns×Rnu×Rp×{1, . . . , N−1} 7→ Rns

the discrete-time dynamics. In this section, we will use
boldface to denote quantities stacked over time (like
εεε). Equation (6) can model any noisy discrete-time
dynamical system, since F can be any function of the
current state, control input and external disturbance



(noise). However, we require that all the control di-
mensions are affected by Gaussian noise as in (7). This
can be thought of either as real actuator noise or arti-
ficial exploration noise. The choice of zero initial state
x1 = 0 is arbitrary - our results even extend to an
arbitrary distribution over the initial state.

We will work with costs that are a combination of ar-
bitrary state costs and quadratic control costs:

N∑
t=1

`t(xt) +

N−1∑
t=0

ut
TRtut

2
(8)

where `t (xt) is the stage-wise state cost at time t. `t
can be any bounded function of the state-vector xt.
Further, we will assume that the control-noise is non-
degenerate, that is Σt is full rank for all 0 ≤ t ≤ N−1.
We denote St = Σt

−1. We seek to design feedback
policies

ut = Ktφ (xt, t) , φ : Rns × {1, 2, . . . , N − 1} 7→ Rr

Kt ∈ Rnu×r (9)

to minimize the accumulated cost (8). We will assume
that the features φ are fixed and we seek to optimize
the policy parameters K = {Kt : t = 1, 2, . . . , N − 1}.
The stochastic optimal control problem we consider is
defined as follows:

Minimize
K

E
εεε,ωt

[exp (αL (K))]

Subject to x1 = 0, xt+1 = F (xt, yt, εt, t)

yt = ut + ωt, ut = Kt φ (xt, t)

εεε ∼ Pε, ωt ∼ N (0,Σt)

L (K) =

N∑
t=0

`t (xt) +

N−1∑
t=0

ut
TRtut

2
(10)

This is exactly the same as the formulation in Risk
Sensitive Markov Decision Processes [Marcus et al.,
1997], the only change being that we have explicitly
separated the noise appearing in the controls from the
noise in the dynamical system overall. In this formu-
lation, the objective depends not only on the aver-
age behavior of the control policy but also on variance
and higher moments (the tails of the distribution of
costs). This has been studied for linear systems under
the name of LEQG control [Speyer et al., 1974]. α
is called the risk factor: Large positive values of α re-
sult in strongly risk-averse policies while large negative
values result in risk-seeking policies. In our formula-
tion, we will need a certain minimum degree of risk-
aversion for the resulting policy optimization problem
to be convex.

5.2 Convex Controller Synthesis

Theorem 5.1. If αRt � (Σt)
−1

= St for t =
1, . . . , N − 1, then the optimization problem (10) is

convex.

Proof. We first show that for a fixed εεε, the quantity
Eωt∼N (0,Σt) [exp (αL (K))] is a convex function of K.
Then, by the linearity of expectation, so is the original
objective. We can write down the above expectation
(omitting the normalizing constant of the Gaussian)
as:∫

exp

(
−
N−1∑
t=1

1

2
‖yt −Ktφ (xt, t)‖2St + αL (K)

)
dy

If we fix y, εεε, using (6), we can construct xt for every
t = 1, . . . , N . Thus, x is a deterministic function of
y, εεε and does not depend on K. The term inside the
exponential can be written as

− 1

2

(
N−1∑
t=1

‖yt‖2St

)
+ α

(
N∑
t=1

`t(xt)

)

+

N−1∑
t=1

1

2
tr
((
Kt

T (αRt − St)Kt

)
φ (xt, t)φ (xt, t)

T
)

−
N−1∑
t=1

yt
TStφ (xt, t)Kt

The terms on the first line don’t depend on K. The
function

(
Kt

T (αRt − St)Kt

)
is convex in K with re-

spect to the semidefinite cone [Boyd and Vanden-

berghe, 2004] when αRt−St � 0 and φ (xt, t)φ (xt, t)
T

is a positive semidefinite matrix. Hence the term on
the second line is convex in K. The term on the third
line is linear in K and hence convex. Since exp is a
convex and increasing function, the composed function
(which is the integrand) is convex as well in K. Thus,
the integral is convex in K.

We can add arbitrary convex constraints and penalties
on K without affecting convexity.

Corollary 2. The problem

min
K

E
εεε∼Pε,ωt∼N (0,Σt)

[exp (αL (K))]

Subject to (6), (7),K ∈ C (11)

is a convex optimization problem for any arbitrary con-
vex set C ⊂ Rnu×r×(N−1) if αRt � Σt ∀t.

6 NUMERICAL RESULTS

In this section, we present preliminary numerical re-
sults illustrating applications of the framework to var-
ious problems with comparisons to a simple baseline
approach. These are not meant to be thorough numer-
ical comparisons but simple illustrations of the power
and applications of our framework.



6.1 BINARY CLASSIFICATION

We look at a problem of binary classification. Let y
denote the actual label and ŷ denote the predicted
label. We use the loss function

` (y, ŷ) =

{
−∞ if yŷ > 0

0 otherwise
.

This is a non-convex loss function (the logarithm of the
standard 0-1 loss). We convexify this in the prediction
ŷ using our approach:

1

α
log
(

E [exp (α` (y, ŷ))]
)

+
(ŷ)

2

2σ2
.

Plugging in ŷ = θTx where x is the feature vector, we
get

1

α
log

(
E

ω∼N (0,σ2)

[
exp

(
α`
(
y, θTx+ ω

))])
+

(
θTx

)2
2ασ2

.

Plugging in the expression for ` gives

1

α
log

(
1

2
erfc

(
yθTx√

2σ

))
+

(
θTx

)2
2ασ2

.

where erfc is the Gaussian error function. Given a
dataset {(xi, yu)}, we can form the empirical risk-
minimization problem with this convexified objective:

M∑
i=1

1

α
log

(
1

2
erfc

(
yiθTxi√

2σ

))
+

(
θTxi

)2
2ασ2

We can drop the α since it only scales the objective
(this is a consequence of the fact that exp (`) is 0-1
valued and does not change on raising it to a positive
power). Thus, we finally end up with

1

M

M∑
i=1

(
log

(
1

2
erfc

(
yiθTxi√

2σ

))
+

(
θTxi

)2
2σ2

)
.

The first term is a data-fit term (a smoothed version
of the 0-1 loss) and the second term is a regularizer.
although we penalize the prediction θTx rather than
θ itself. If x are normalized and span all directions,
by summing over the entire dataset we get something
close to the standard Tikhonov regularization.

We compare the performance of our convexification-
based approach with a standard implementation of
a Support Vector Machine (SVM) [Chang and Lin,
2011]. We use the breast cancer dataset from [Bache
and Lichman, 2013]. We compare the two algorithms
on various train-test splits of the dataset (without us-
ing cross-validation or parameter tuning). For each
split, we create a noisy version of the dataset by

adding Gaussian noise to the labels and truncating
to +1/− 1:ŷi = sign

(
yi + ω

)
, ω ∼ N

(
0, σ2

)
. The ac-

curacy of the learned classifiers on withheld test-data,
averaged over 50 random train-test splits with label
corruption as described above, are plotted as function
of the noise level σ in figure 1. This is not a completely
fair comparison since our approach explicitly optimizes
for the worst case under Gaussian perturbations to the
prediction (which can also be seen as a Gaussian per-
turbation to the label). However, as mentioned earlier,
the purpose of these numerical experiments is to illus-
trate the applicability of our convexification approach
to various problems so we do not do a careful compari-
son to robust variants of SVMs, which would be better
suited to the setting described here.
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Figure 2: Binary Classification

6.2 CLASSIFICATION WITH NEURAL
NETWORKS

We present an algorithm that does neural network
training using the results of section 5. Each layer
of the neural network is a time-step in a dynamical
system, and the neural network weights correspond
to the time-varying policy parameters. Let h denote
a component-wise nonlinearity applied to its vector-
input (a transfer function). The deterministic dynam-
ics is

xt+1 = h (Ktxt) , x0 = x

where xt is the vector of activations at the t-th layer,
Kt is the weight matrix and x is the input to the neural
network. The output is xN , where N is the number of
layers in the network. The cost function is simply the
loss function between the output of the neural network
xN and a desired output y: ` (y, xN ). To put this
into our framework, we add noise to the input of the
transfer function at each layer:

xt+1 = h (Ktxt + ωt) , x1 = x, ωt ∼ N (0,Σt)



Additionally, we define the objective to be

E

[
exp

(
α` (y, xN ) +

N−1∑
t=1

‖Ktxt‖2Σt−1

2

)]
where the expectation is with respect to the Gaus-
sian noise added at each layer in the network. Note
that the above objective is a function of K, x, y. The
quadratic penalty on Ktxt can again be thought of as
a particular type of regularization which encourages
learning networks with small internal activations. We
add this objective over the entire dataset {xi, yi} to
get our overall training objective.

We evaluate this approach on a small randomly
selected subset of the MNIST dataset [LeCun
et al., 1998]. We use the version available
at http://nicolas.le-roux.name/ along with the
MATLAB code provided for training neural networks.
We use a 2-layer neural network with 20 units in the
hidden layer and tanh-transfer functions in both lay-
ers. We use a randomly chosen collection of 900 data
points for training and another 100 data points for
validation. We compare training using our approach
with simple backprop based training. Both of the ap-
proaches use a stochastic gradient - in our approach
the stochasticity is both in selection of the data point
i and the realization of the Gaussian noise ω while
in standard backprop the stochasticity is only in the
selection of i. We plot learning curves (in terms of
generalization or test error) for both approaches, as a
function of the number of neural network evaluations
(forward+back prop) performed by the algorithm in
figure 3a. The nonconvex approach based on standard
backprop-gradient descent gets stuck in a local mini-
mum and does not improve test accuracy much. On
the other hand, the convexified approach is able to
learn a classifier that generalizes better. We also com-
pared backprop with training a neural network on a
1-dimensional regression problem where the red curve
represents the original function with data-points in-
dicated by squares, the blue curve the reconstruction
learned by our convexified training approach and the
black curve the reconstruction obtained by using back-
prop (figure 3b). Again, backprop gets stuck in a bad
local minimum while our approach is able to find a
fairly accurate reconstruction.

7 CONCLUSION AND FUTURE
WORK

We have developed a general framework for convexi-
fying a broad class of optimization problems, analysis
that relates the solution of the convexified problem to
the original one and given algorithms with convergence
rate guarantees to solve the convexified problems. Ex-
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Figure 3: Training Neural Networks

tending the framework to dynamical systems, we de-
rive the first approach to policy optimization with op-
timality and convergence rate guarantees. We vali-
dated our approach numerically on problems of binary
classification and training neural networks. In future
work, we will refine the suboptimality analysis for our
convexification approach. Algorithmically, stochastic
gradient methods could be slow if the variance in the
gradient estimates is high, which is the case when using
the exponentiated objective (as in section 4). We will
study the applicability of recent work on using better
sampling algorithms with stochastic gradient [Atchade
et al., 2014] to our convexified problems.

APPENDIX

Corollary 3. [Boucheron et al., 2013], corollary 4.15
Let P,Q are arbitrary distributions on some space Ω
and f : Ω → R is such that Eω∼P [exp (f (ω))] < ∞.
Then, the Kullback-Leibler divergence satisfies:

KL (Q ‖ P ) = sup
f

[
E

ω∼Q
[f (ω)]− log

(
E

ω∼P
[exp (f (ω))]

)]
7.1 PROOF OF THEOREM 4.1

Throughout this section, Let α̃ = 2α and P denote
the Gaussian density N (0,Σ). Define a new distri-

bution Q with density Q (ω) ∝ P (ω) exp
(
α̃f̃ω (θ)

)
.

We denote ∇̂G (θ, ω) by ∇̂G, ∇f (θ + ω) by ∇̂f and



∇f (θ + ω) + κθ by ∇̃f for brevity. Expectations are
always with respect to ω ∼ P , unless denoted other-
wise.

Proof. (α)
−2

E

[∥∥∥∇̂G
∥∥∥2
]

evaluates to

exp
(
ακθT θ

)
E

[
exp (α̃f (ω + θ))

∥∥∥∇̃f∥∥∥2
]

=

exp
(
α̃
(κ

2
θT θ + f̄ (θ)

))
E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f∥∥∥2
]

=

exp

(
α̃

(
ḡ (θ)− 1

2
σ2κ

))
E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f∥∥∥2
]

(12)

By the theorem hypotheses, the term outside the ex-
pectation is bounded above by α2 exp

(
2αm− σ2κ

)
.

We are left with

E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f∥∥∥2
]
.

Dividing this by E
[
exp

(
α̃f̃ω (θ)

)]
, we get

E

[
exp

(
α̃f̃ω (θ)

)∥∥∥∇̃f∥∥∥2
]

E
[
exp

(
α̃f̃ω (θ)

)] = E
ω∼Q

[∥∥∥∇̃f∥∥∥2
]
. (13)

Expanding
∥∥∥∇̃f∥∥∥2

, we get

∥∥∥∇̂f∥∥∥2

+ κ2 ‖θ‖2 + 2∇̂f
T
θ

≤
∥∥∥∇̂f∥∥∥2

+ κ2R (C)2
+ 2κ

∥∥∥∇̂f∥∥∥R (C)

Finally from lemma 1, we have

E
ω∼Q

[∥∥∥∇̂f∥∥∥2
]
≤ βγ2

σ2 (1− αβ)

and by concavity of the square-root function,

E
ω∼Q

[∥∥∥∇̂f∥∥∥] ≤√ βγ2

σ2 (1− αβ)
.

Plugging this bounds into the square expansion and

letting δ =
√

βγ2

σ2(1−αβ) + κR (C), we get

E
ω∼Q

[
‖∇f (θ + ω) + κθ‖2

]
≤ δ2 (14)

From (12),(13) and (14), E

[∥∥∥∇̂G
∥∥∥2
]

is smaller than

α2 exp
(
2αm− σ2κ

)
δ2 E

[
exp

(
α̃f̃ω (θ)

)]

Finally, by the last part of theorem 3.3,

E
[
exp

(
α̃f̃ω (θ)

)]
≤ exp

(
αβ

1− αβ
+ 2αγ2

)
.

Combining the two above results gives the theorem.

lemma 1. Under the assumptions of theorem 4.1,

E
ω∼Q

[
σ2 ‖∇f (θ + ω)‖2

]
≤ βγ2

1− αβ
(15)

Proof. The KL-divergence between Q and P is given
by

∫ P (ω) exp
(
α̃f̃ω (θ)

)
E
[
exp

(
α̃f̃ω (θ)

)] log

 exp
(
α̃f̃ω (θ)

)
E
[
exp

(
α̃f̃ω (θ)

)]
 dω.

By theorem 3.3 applied to exp
(
α̃
2 f (θ + ω)

)
),

the above quantity is bounded above by

1
2 (α̃σ)

2
Eω∼Q

[∥∥∥∇̂f∥∥∥2
]
. Then, by corollary 3,

KL (Q ‖ P ) ≥ E
ω∼Q

[
α̃σ2

β

∥∥∥∇̂f∥∥∥2
]

− log

(
E

[
exp

(
α̃σ2

β

∥∥∥∇̂f∥∥∥2
)])

.

Denote the second term in the RHS by Γ. Plugging in
the upper bound on KL (Q ‖ P ), we get

Γ ≥ σ2

(
α̃

β
− α̃2

2

)
E

ω∼Q

[
‖∇f (θ + ω)‖2

]
.

Since the LHS is upper bounded by α̃γ2 (hypothesis
of theorem) which gives us the bound

E
ω∼Q

[
σ2 ‖∇f (θ + ω)‖2

]
≤ 2βγ2

2− α̃β
=

βγ2

1− αβ
.
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