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Abstract

The main shortcoming of sparse recovery with
a convex regularizer is that it is a biased esti-
mator and therefore will result in a suboptimal
performance in many cases. Recent studies have
shown, both theoretically and empirically, that
non-convex regularizer is able to overcome the
biased estimation problem. Although multiple
algorithms have been developed for sparse recov-
ery with non-convex regularization, they are ei-
ther computationally demanding or not equipped
with the desired properties (i.e. optimal recovery
error, selection consistency and oracle property).
In this work, we develop an algorithm for effi-
cient sparse recovery based on proximal gradient
descent. The key feature of the proposed algo-
rithm is introducing adaptive non-convex regu-
larizers whose shrinking threshold vary over it-
erations. The algorithm is compatible with most
popular non-convex regularizers, achieves a ge-
ometric convergence rate for the recovery er-
ror, is selection consistent, and most importantly
has the oracle property. Based on the proposed
framework, we suggest to use a so–called ACCQ
regularizer, which is equivalent to zero proximal
projection gap adaptive hard-thresholding. Ex-
periments with both synthetic data sets and real
images verify both the efficiency and effective-
ness of the proposed method compared to the
state-of-the-art methods for sparse recovery.

1 INTRODUCTION

Inspired by the seminal work of compressive sens-
ing (Candès et al., 2006), numerous algorithms have been
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developed to recover a sparse vector from its linear low
dimensional measurement. Most of these algorithms can
be classified into two categories: greedy methods and
optimization–based methods. Greedy methods aggres-
sively select the support set as they recover the target sparse
vector ((Tropp and Wright, 2010) and references therein).
Although they are computationally efficient, the greedy
methods are usually sensitive to noise especially when the
target signal is not exactly sparse. Optimization–based
methods, on the other hand, are known to be more robust
to noise but at the price of a higher computational cost
(Zou and Hastie, 2005; Rosenbaum and Tsybakov, 2010;
Xu et al., 2010).

Most optimization–based methods cast sparse recovery
into convex optimization problems. The most well known
algorithms in this category are LASSO (Tibshirani, 1996;
Efron et al., 2004) and Dantzig selector (Candes and Tao,
2007). A main drawback of convex optimization based
methods for sparse recovery is that they are biased esti-
mators, i.e. the solutions found by the convex optimization
based methods do not have the oracle property (Fan and
Li, 2001; Zhang and Zhang, 2011), which is sometime re-
ferred to as Lasso bias (Zhang and Zhang, 2011). We note
that there are two different versions of oracle property used
in the literature: the asymptotical one that examines the
oracle property with the number of measurements going to
infinity (Fan and Li, 2001) and the finite sample one (Zhang
and Zhang, 2011) that examines the oracle property with a
finite number of measurements. In this study, we will use
the finite sample version of oracle property.

It was first suggested in (Fan and Li, 2001) that the Lasso
bias can be corrected by a non–convex regularizer. Sev-
eral theory and algorithms have been developed recently
for sparse recovery using concave regularizers (Zhang and
Zhang, 2011; Zhang, 2012; Loh and Wainwright, 2013),
and their effectiveness for sparse recovery has been verified
empirically by several recent studies (Xiang et al., 2013;
Gong et al., 2013a; Ochs et al., 2013). Despite the appeal-
ing result, it remains to be challenging as how to efficiently
solve the optimization problem with non-convex regular-



izer.

Zhang (2012) proposed a multi-stage algorithm that re-
laxes a non–convex optimization problem into a sequence
of convex optimization problems with weighted `1 regular-
izers. Besides the recovery error, the author also showed
in (Zhang, 2012) that the solution found by multi-stage al-
gorithm satisfies the oracle property when the non-zero en-
tries in the target sparse vector are sufficiently large. The
main shortcoming of the multi-stage algorithm is its po-
tentially high computational cost as it needs to solve a se-
quence of `1 regularized optimization problems. (Zhao-
ran Wang, 2013) relax this problem by computing approxi-
mate solution at each stage, but still require multiple stages
thus is not very efficient. Several proximal gradient descent
methods have been proposed for non-convex regularizers
(Gong et al., 2013b; Loh and Wainwright, 2013) that enjoy
higher computational efficiency than the multi-stage algo-
rithm. However, it is unclear if the solutions found by these
algorithms will be unbiased estimators and have the oracle
property, the key reason for using a non-convex regularizer.

In this work, we propose an algorithm for sparse recovery
using adaptive non-convex regularizer to develop efficient
algorithms with all the desired properties above. The pro-
posed framework, on one hand, enjoys the high computa-
tional efficiency and achieves a linear convergence rate in
the recovery error as some of the proximal gradient descent
methods do. On the other hand, like the multi-stage algo-
rithm, the proposed framewrok is able to find a sparse solu-
tion with optimal recovery error, selection consistency, and
oracle property under appropriate conditions. The key fea-
ture introduced by the proposed framework is introducing
adaptive concave regularizers whose shrinking-threshold
vary over iterations. It is the introduction of the adaptive
concave regularizer that allows us to effectively remove the
noise and identify the support set, leading to high computa-
tional efficiency and a solution with optimal recovery error
and oracle property.

Although the proposed algorithm is compatible with most
popular non-convex regularizers, via a more deep examina-
tion, we find that the type of non-convex regularizer is not
important at all. What really matters is the so–called prox-
imal projection gap that will be defined later. This gap de-
termines the bias of regularizer in sparse estimation. Based
on this discovery, we propose to use a so–called ACCQ reg-
ularizer, whose proximal projection gap is zero. From op-
timization viewpoint, the ACCQ regularizer is equivalent
to one kind of hard-thresholding algorithms with adaptive
threshold. The ACCQ regularizer is the only regularizer
whose projection gap is zero, thus is surperior than other
alternatives.

The rest of this paper is organized as following. Section 2
reviews the related work. Section 3 describes the proposed
algorithm for sparse recovery. Section 4 analyzes theoreti-

cal properties. Experimental results with both synthesized
and real data sets are summarized in Section 5. Section 6
encloses our study with open questions.

2 RELATED WORK

We briefly review the related work on sparse recovery, with
focus on non-convex regularizer. More complete refer-
ences on the related subject can be found in (Tropp and
Wright, 2010), (Davenport et al., 2011) and (Zhang and
Zhang, 2011).

Most sparse recovery methods are based on `1 regulariza-
tion. The most well algorithm is LASSO (Tibshirani, 1996;
Efron et al., 2004). Numerous algorithms have been de-
velop to solve LASSO related optimization problem effi-
ciently (Beck and Teboulle, 2009; Foucart, 2012). It has
been shown that `1 regularization can be solved efficiently
with a linear convergence (up to stochastic tolerance) (Xiao
and Zhang, 2012; Agarwal et al., 2012). A main problem
with LASSO is that it is a biased estimator. In particular,
LASSO is unable to perfectly recover the solution of ora-
cle Least Square Estimation (LSE), a property that is usu-
ally referred to as oracle property. We emphasize that the
LASSO bias is not an artifact of analysis, and it does show
up noticeably in the recovery error, according to our em-
pirical study as well as others (Zhang, 2012; Zou, 2006). It
was pointed out in (Fan and Li, 2001; Zhang and Zhang,
2011) that LASSO bias also exists in other convex regular-
izers.

Multiple non-convex regularizers have been proposed to
address the bias of convex regularizers, including Geman
Penalty (GP) (Geman and Yang, 1995; Trzasko and Mand-
uca, 2009), SCAD (Fan and Li, 2001), Log Sum Penalty
(LSP) (Candes et al., 2008), `q norm (Foucart and Lai,
2009), Minimax Concave Penalty (MCP) (Zhang, 2010a),
Capped–`1 norm (Loh and Wainwright, 2013). Various al-
gorithms have been developed to find local optimal for non-
convex regularizers( (Zhang and Zhang, 2011) and refer-
ences therein). It is however unclear if the local solutions
found by these algorithms have the desired properties (i.e.
the optimal recovery error and the oracle property). Only a
handful algorithms that achieve the desired properties, in-
cluding the multi-stage algorithm (Zhang, 2010b), adap-
tive LASSO (Zou, 2006) that can be shown as a special
case of multi-stage algorithm and achieve the asymptotical
oracle property, and the forward and backward regression
scheme (FOBA) (Zhang, 2011), based on adaptive regular-
ization, also finds the solutions with all the desired proper-
ties. FOBA is guaranteed to terminiate within O(s) itera-
tions, where s is the sparsity. The main limitation of FOBA
is that it is unclear if the oracle property recovery error of
their algorithm can achieve a linear convergence rate. Each
iteration of FOBA is an optimization problem therefore is
not efficient. Ji Liu (2013) propose an variant of FOBA but



they still suffer the same problem. The FOBA and its vari-
ants make different assumptions that is complementary to
our analysis. Although the multi-stage algorithm achieves a
linear convergence, it requires to solve a weighted `1 regu-
larization problem that can be computationally costly when
the dimension of data is high.

3 SPARSE RECOVERY BY ADAPTIVE
NON-CONVEX REGULARIZER

In this section, we first introduce the background materi-
als and notations for sparse recovery. We then present our
algorithm and its main theoretical property. The sketch of
proofs is given at the end of this section.

3.1 BACKGROUNDS AND NOTATIONS

Let A be an n × d design matrix and y ∈ Rn be response
vector satisfying

y = Ax∗ + z , (1)

where x∗ ∈ Rd is the s-sparse vector to be recovered
and z ∈ Rn is a noise vector. We assume that each
element [A>z]i follows a subgaussian distribution with
‖[A>z]i‖ψ2

≤ σ
√
n, i = 1, . . . , d, where σ indicates the

noise level in z and ‖ · ‖ψ2
is Orlicz norm (Koltchinskii,

2011). Using the property of subgaussianianity, we have,
with a high probability (1− d−3),

‖[Az]i‖∞ ≤ 2σ
√
n log d (2)

For the rest of the paper, we will simply assume condition
(2) holds.

Following (Candes and Tao, 2005), we assume A satisfies
Restricted Isometric Property (R.I.P.) defined as follows.

Definition 1 (Restricted Isometric Property). A matrix A
satifies δs–R.I.P. condition, if there exits a possitive con-
stant δs such that for all s-sparse vector x,

(1− δs) ‖x‖22 ≤
1

n
‖Ax‖22 ≤ (1 + δs) ‖x‖22 . (3)

A is called δs,s–restricted orthogonal, if there exists a pos-
sitive constant δs,s such that for any two s–sparse vector
u,v whose support sets are disjoint,

1

n
|〈Au, Av〉| ≤ δs,s‖u‖2‖v‖2 . (4)

Small δs and δs,s indicate that A is approximately isomet-
ric on sparse subspace and any two set of s columns are
approximately orthogonal if they are disjoint. In the rest of
this paper, we will say A is δ–R.I.P. when both (3) and (4)
are satisfied with δ = max{δ2s, δs,s}.

Algorithm 1 Proximal Gradient Descent With Adaptive
Capped Concave Quadratic (ACCQ) Regularizer
Input: the size of target vector R ≥ ‖x∗‖2, design matrix
A, measurements y, threshold θ, shrinking parameter q ∈
(0, 1), and number of iterations T

1: Initialization: x1 = 0
2: for t = 1 to T do
3: Compute τt by τt = Rqt−1 + θ
4: Compute x̂t+1 by x̂t+1 = xt −∇L(xt)
5: Update xt+1 using (8)
6: end for

Output: xT+1

There are other alternative conditions for spare recovery
which are more general than R.I.P, such as restricted eigen-
value condition (Bickel et al., 2009). A complete list of
conditions for sparse recovery and their comparison can
be found (Van De Geer and Bühlmann, 2009). We choose
R.I.P condition due to its simplicity, and extension to more
general cases will be studied in the future. From now on we
will assume that A is δ–R.I.P.. In experiments we gener-
ate A from random Gaussian distribution, which is widely
known to obey the R.I.P. with a high probability.

To recover the sparse vector x∗, a common approach is to
minimize the regularized empirical loss

min
x

1

2n
‖y −Ax‖22 + Ω(x) , (5)

where Ω(x) is a regularizer that controls the sparsity of the
solution. To remove the LASSO bias, a non-convex regu-
larizer is used for Ω(x), leading to a non-convex optimiza-
tion problem that is not only difficult to solve numerically
and but also challenging to analyze the theoretical proper-
ties for the found solution.

The following notation will be used throughout this paper.
For a vector x, we denote by [x]i the i-the entry of x, by
|x|i the absolute value of [x]i, by [x]A the subvector of x
that only includes the elements in the index setA ⊆ [d], and
by λmin(x) the minimum absolute value of the non-zero
entries in x. We will use supp(x) for the support set for a
vector x. We will use ‖x‖2, ‖x‖1, and ‖x‖∞ to represent
the `2, `1, and `∞ norm of vector x. We will denote by S∗
the support set of x∗ and by St the support set for xt.

3.2 PROXIMAL GRADIENT DESCENT USING
ADAPTIVE CAPPED CONCAVE QUADRATIC
(ACCQ) REGULARIZER

The proposed framework essentially follows the proximal
gradient descent method that has been widely used in con-
vex optimization. At each iteration, we first obtain an aux-



iliary solution x̂t by

x̂t = xt −∇L(xt)

where L(x) =
1

2n
‖y −Ax‖22

. (6)

The updated solution xt+1 is then given by

xt+1 = arg min
x

1

2
‖x− x̂t‖22 + Ωt(x) (7)

where the regularizer Ωt has a subscript t and therefore
varies from trial to trial.

To ensure Eq. (7) leading to an unbiased sparse estima-
tion, we make some assumptions on the adaptive regular-
izer Ωt(x). The type of Ωt(x) is not important at all. We
only care about its shrinking strategy in step Eq. (7).

Assumption 1. Define variables τt and constant α. The
adaptive non-convex regularizer Ωt(x) in Eq. (7) shrinks
x̂t in the following way:

• For |x̂t|i < τt, [xt+1]i = 0.
• For |x̂t|i > τt + α, [xt+1]i = [x̂t]i.
• For τt ≤ |x̂t|i ≤ τt + α, 0 < [xt+1]i < [x̂t]i.

The τt is a threshold parameter that adaptively shrinks
over iterations. We will describe the updating rule of τt
later in Eq. (9). α is called proximal projection gap. In
Assumption 1, if the intermedia solution |x̂t|i is outside
[τt, τt + α], the proximal projection of Ωt is equivalent
to hard-thresholding. Otherwise |x̂t|i is projected onto
(0, |x̂t|i), whose value depends on the specific regularizer
being used. The hard-thresholding is the key to unbias es-
timation, which is only possible when using non-convex
regularizer. The proximal projection gap α reflects the non-
convexity of Ωt(x) in the proximal projection. For con-
vex regularizer, α is infinity by definition because they are
soft-thresholding methods that never do hard-thresholding.
For a particular non-convex regularizer, we natually prefer
small α to avoid involving bias as much as possible.

The shrinking strategy of non-convex regularizer is very
similar to greedy algorithms. The following concavity
assumption distinguish non-convex methods from greedy
methods, which at the same time build a bridge of the two
realms.

Assumption 2. Ωt(x) is concave in x :

Ωt(x1)−Ωt(x2) ≤ 〈∂Ωt(x2),x1 − x2〉 , ‖∂Ωt(x)‖ ≤ τt ,

where ∂Ωt(x) is the subgradient.

Most popular static non-convex regularizer and their adap-
tive variants fit Assumption 1 and Assumption 2, with dif-
ferent τt and α. We list a few of them in Table 1. We notice
that in Table 1, most regularizers’ α is not zero. Although
our theory could deal with non-zero α, we natually hope

there is a regularizer that doesn’t need to suffer this gap α,
which results in a better estimation. Inspired by this obser-
vation, we introduce Adaptive Capped Concave Quadratic
regularizer (ACCQ) , defined in the last row of Table 1.
Clearly, this regularizer is the only hard-thresholding regu-
larizer whose proximal projection gap is zero. It is proxi-
mal projection is given by :

[xt+1]i =

{
[x̂t]i |x̂t|i ≥ τt
0 otherwise

(8)

This specific adaptive hard-thresholding strategy allows us
to correct the LASSO bias and consequentially achieve the
oracle property when the signals in the target vectors are
strong.

In the rest of this paper, we only focus on ACCQ and its
recovery properties. For regularizers with α > 0, all of the
following theorems hold true except an extra α in the upper
bound. Therefore they are always suboptimal compared
with ACCQ.

Threshold parameter τt is determined by the following
equation

τt = Rqt−1 + θ . (9)

• Threshold parameter θ > 0 determines the lower
bound for τt. It is introduced to ensure that the reg-
ularization is strong enough to overcome the noise.
• Shrinking parameter q ∈ (0, 1) controls the speed

of shrinkage. The idea of using a shrinking regular-
izer is motivated by a simple observation: as we go
through the iteration t, we expect the solution xt will
approach the target vector x∗ with a smaller error.
As a result, only a smaller regularization is needed
to overcome the noise caused by the recovery error.
We note that similar shrinking strategy has been used
in sparse recovery with the `1 regularizer (Xiao and
Zhang, 2012).

Algorithm 1 gives the details for the proposed algorithm.

Remark 1 In practice, the settings of q and θ is robust, as
suggested by our theorems and experiments. We suggest to
set 0.9 ≤ q < 1 and θ ∈ [O(σ/

√
n), λmin(x∗)]. For exam-

ple, q = 0.95, θ = 0.005 usually satisfies our assumption
and works well in practice.

Remark 2 It is interesting to compare Algorithm 1 with
greedy hard-thresholding algorithms like GraDeS. GraDeS
keeps exactly s entries at each iteration, even if the small-
est s-th entry contains large noise. The proposed algorithm
gradually collects entries according to their magnitude and
current estimation uncertainty. It doesn’t keep entries that
contain large noise, so at the beginning of each iteration, it
will keep less than s entries. Another greedy algorithm is
OMP, which greedy select entries then keep them as sup-
port set. OMP must ensure that it always collect right entry



Table 1: Adaptive Regularizers And Proximal Projection Gap
Name Ωt(xi) Gap α
adaptive `1 norm τtλ|xi| ∞
adaptive capped `1 norm τtλmin(|xi|, θ) θ > 0 τt(θ − λ)

adaptive MCP τtλ
∫ |xi|
0

min(1, [θλ−xi]+
(θ−1)λ ) dx θ ≥ 2 τt(θ − 1)λ

ACCQ ΩCCQ
t (x) =

∑d
i=1

{
− 1

2 (|x|i − τt)2 + 1
2τ

2
t |x|i < τt

1
2τ

2
t otherwise

0

at each iteration, otherwise it will fail definitely. The pro-
pose algorithm adaptively throw out entries that is collected
in the previous iterations. This strategy is clealy much more
robst against noise.

3.3 MAIN THEORETICAL RESULTS

The following theorem shows that the recovery error for
Algorithm 1 is reduced exponentially, and all the interme-
diate solutions are 2s-sparse.

Theorem 1. Assume x∗ is s-sparse, and 6δ < 1. Set pa-
rameter q, and θ in Algorithm 1 as

q = max

(
3δ, 2

√
δ

1− 2δ

)
, θ = 2σ

√
log d

n
(10)

Let x1, . . . ,xT be the sequence of solutions output from
algorithm 1. Let St be the support set for xt and let S∗ be
the support set for x∗. We have

|St \ S∗| ≤ s, ‖xt − x∗‖2 ≤ Rqt−1 +
4σ

1− q

√
s log d

n
(11)

First, as revealed by Theorem 1, the recovery error will
converge geometrically to O(σ

√
s log d/n), which has

shown to be minimax optimal in (Raskutti et al., 2009).
Second, as indicated in (11), all the intermediate solutions
are at most 2s-sparse, making it computational appealing
as our algorithm only needs to maintain a vector of no
more than 2s non-zero entries. This is similar to itera-
tive hard thresholding algorithms (e.g. (Garg and Khan-
dekar, 2009) ). Finally, the linear convergence takes place
when δ ≤ 1/6, which worse than some other conditions
on δ (e.g. (Garg and Khandekar, 2009)). We believe that
this condition is improvable by more carefully tuning the
inequalities in our analysis via similar techniques demon-
strated in (Garg and Khandekar, 2009).

Next, we will show that the solution found by Algo-
rithm 1 is selection consistent and has the oracle property
if λmin(x∗), the smallest absolute value for the non-zero
entries in x∗, is larger than O(σ

√
log d/n). To this end,

we first define the solution of Least Square Oracle (LSE)
estimation.

Definition 2 (Least Square Oracle (LSE)). The Least
Square Oracle estimation is the least square estimation of
x∗ by assuming that the support set S∗ of x∗ is provided.
The LSE solution xo is given by

xo = xS∗ = (A>S∗AS∗)
−1A>S∗y.

Definition 3 (Selection Consistent and Oracle Property).
An estimator is selection consistent if the estimated solu-
tion x̂ satisfies supp(x̂) = supp(x∗), and has the oracle
property if x̂ = xo.

We note that since the solution of oracle LSE xo is ob-
tained without using any regularizer, the oracle property
(i.e. x̂ = xo) essentially ensures that the sparse recovery al-
gorithm will not be biased by the regularizer, of course un-
der the assumption that λmin(x∗) is sufficiently large. We
note that the early definition of oracle property (e.g. (Fan
and Li, 2001)) requires x̂S∗ − xo converge to a Gaussian
random vector when the number of measurements n goes
to infinity, which is weaker than the finite sample version
defined above.

Theorem 2. Assume 6δ < 1 and with q and θ set in (10).
Define

t0 = log2

(
max(R, 1)

σ

√
log d

n

)
Then, we have St = S∗ for t > t0 (i.e. selection consis-
tency) and

‖xt − xo‖2 ≤
(

3δ

1− 3δ

)(t−t0)/2 8σ

1− q

√
s log d

n

if

λmin(x∗) ≥
4σ

1− δ

√
2

log d

n
(12)

and

s ≤ 1

50δ
(1− q)2(2− 1

1− δ
) (13)

As revealed by the above theorem, xo, the solution of or-
acle LSE, can be perfectly recovered by Algorithm 1 with
sufficiently large number of iterations, provided (i) the non-
zero entries in x∗ are sufficiently large, and (ii) the RIP
constant δ is sufficiently small.



Remark 1 Eq. (13) is essentially a particular form of
Generalized Uncertainty Principle (GUP) (Candès et al.,
2006). GUP claims that for any compress sensing meth-
ods, the number s of non-zeros elements in x∗ couldn’t be
larger than half of the number n of frequence sampling,
i.e., s ≤ 0.5n. Otherwise there is no algorithm could re-
cover the sparse signal. In Eq. (13), generally speaking,
δ = O(1/n). So Eq. (13) is claiming that s should be
smaller than

s ≤ cn ,

where c is a constant. The constant c given by Eq. (13)
is slightly loose than 1/2 which is proven to be optimal in
GUP. We believe this could be refined by carefully tuning
the inequalities in our analysis.

Remark 2 λmin(x∗) in Eq. (12) doesn’t contain
√
s

thanks to the non-convexity of ACCQ. For convex regu-
larizer, λmin(x∗) = O(

√
sσ) therefore is significantly sub-

optimal compared to Eq. (12).

Remark 3 If the proximal projection gap α > 0, Eq. (12)
should be modified as :

λmin(x∗) ≥ O(

√
log d

n
+ α) .

This is inferior than α = 0. For α > 0, the proof is similar.
We will explore α > 0 in the journal version of this paper.

3.4 PROOF SKETCH

In this analysis, we provide a sketch of proof for Theo-
rem 1. The proof for Theorem 2 mostly follows the analysis
of Theorem 1 by carefully exploiting the property of non-
convex regularizer. All the detailed proofs can be found in
the supplementary document.

The first step toward the proof for Theorem 1 is to show
that the solution xt+1 will be sparse if xt is sparse, which
is revealed by the following theorem.

Theorem 3. Assume |S∗| ≤ s, and |St \ S∗| ≤ s. Then, if
we set

τt ≥
3δ√
s
‖xt − x∗‖2 + 2σ

√
log d

n
,

we have |St+1 \ S∗| ≤ s.

In the second step, we show in the theorem below that
the recovery error will be reduced exponentially, up to the
stochastic tolerance (i.e. O(σ

√
s log d/n)).

Theorem 4. Assume |S∗| ≤ s, |St \ S∗| ≤ s, and ‖xt −
x∗‖2 ≤ ∆t. Then, by setting

τt =
3δ√
s

∆t + 2σ

√
log d

n
,

we have

‖xt+1 − x∗‖2 ≤ q∆t + 4σ

√
s log d

n

where

q = max

(
3δ, 2

√
δ

1− 2δ

)

With the above two theorems, we will show Theorem 1 by
induction. Since ‖x1 − x∗‖2 = ‖x∗‖2 ≤ R, Theorem 1
holds for t = 1. Let’s assume that it holds for xt. Using
Theorem 3, we have that xt+1 is a 2s sparse vector with
|St+1 \ S∗| ≤ s. Using Theorem 4, we have

‖xt+1 − x∗‖2 ≤ q∆t + 4σ

√
s log d

n

≤ qtR+
4σ

1− q

√
s log d

n

4 EXPERIMENTS

Since there are thounsands of papers discussing compress
sensing, it it impossible to compare every method pub-
lished in this paper. We mainly select methods with the-
oretical gaurantees and provable geometrical convergence
rate. We compare Algorithm 1 (ACCQ) with five baseline
methods:

• the greedy hard thresholding method (GraDeS) (Garg
and Khandekar, 2009),

• Multiple Stage Capped `1–norm method
(MSCL1) (Zhang, 2012),

• non–convex proximal gradient descent with MCP (P–
MCP) (Loh and Wainwright, 2013),

• the GIST method (Gong et al., 2013b), and
• Homotopy LASSO (LASSO) (Xiao and Zhang,

2012).

GraDeS is a greedy hard thresholding method with a ge-
ometrical convergence rate. We set γ = 3 in GraDeS as
recommended in (Garg and Khandekar, 2009). Homotopy
LASSO is a LASSO solver with geometrical convergence
rate. We tune the regularizer parameter λ in Homotopy
LASSO in set {1, 0.1, 10−2, 10−3, 10−4}, and report the
best performance. MSCL1, GIST and P–MCP are based
on non–convex regularizers. The threshold parameter θ
in MSCL1 is set to be θ = λmin(x∗)/2 = 0.05. Any
θ < λmin(x∗) should work as well (Zhang, 2012). Here
we choose θ = λmin(x∗)/2 because it is at the same time
large enough to suppress the noise. For the proposed algo-
rithm, we similarly set θ = λmin(x∗)/2 = 0.05. We tune
parameter q in the set {0.8, 0.9, 0.95, 0.99, 0.995}.

Two metrics are used to evaluate the recovery performance
of different algorithms. To evaluate the recovery error, we
follow compress sensing settings (Candes and Tao, 2005;



Table 2: Dataset Statistics
d ‖x∗‖0 ‖x∗‖∞ ‖x∗‖2 λmin(x∗)

airplanes 6.3× 104 ± 6× 103 4.2× 102 ± 92 0.36± 0.059 0.96± 0.011 0.01
butterfly 7× 104 ± 1× 104 6.3× 102 ± 2.6× 102 0.28± 0.084 0.93± 0.045 0.01
camera 7.4× 104 ± 1.5× 104 5× 102 ± 1.6× 102 0.33± 0.11 0.94± 0.019 0.01
dolphin 6.4× 104 ± 1.1× 104 6× 102 ± 2.1× 102 0.27± 0.061 0.94± 0.027 0.01

Statistics of dataset of each category. d the dimension of x∗. ‖x∗‖0 is the number of non-zero entries in x∗. ‖x∗‖∞ is the
maximal amplitude of entries in x∗. ‖x∗‖2 is the `2–norm of x∗. λmin(x∗) is the smallest absolute value of the non-zero
entries in x∗. All numbers in the table are average values plus variances.

Table 3: Support Set Recovery Errors εsupp
LASSO GraDeS MSCL1 P-MCP GIST ACCQ

airplanes
σ = 0 2.1× 10−3 0.0× 100 0.0× 100 2.0× 10−1 0.0× 100 0.0× 100

σ = 0.01 5.9× 10−2 8.2× 10−3 2.1× 10−4 2.0× 10−1 1.7× 10−1 0.0× 100

σ = 0.1 6.0× 10−2 1.5× 10−3 5.3× 10−4 4.0× 10−1 4.4× 10−2 1.6× 10−4

butterfly
σ = 0 3.8× 10−2 7.9× 10−3 4.4× 10−3 4.1× 10−1 5.9× 10−3 3.1× 10−3

σ = 0.01 3.9× 10−2 8.5× 10−3 4.7× 10−3 4.1× 10−1 1.0× 10−1 2.5× 10−3

σ = 0.1 6.3× 10−2 9.3× 10−3 1.1× 10−2 4.1× 10−1 8.4× 10−3 6.7× 10−3

camera
σ = 0 5.2× 10−3 0.0× 100 0.0× 100 6.8× 10−3 0.0× 100 0.0× 100

σ = 0.01 5.4× 10−2 6.1× 10−3 5.0× 10−3 6.8× 10−3 9.7× 10−2 0.0× 100

σ = 0.1 5.4× 10−2 2.6× 10−3 7.9× 10−4 6.8× 10−3 4.0× 10−2 1.5× 10−4

dolphin
σ = 0 1.3× 10−2 3.8× 10−3 1.9× 10−2 2.1× 10−1 1.4× 10−2 0.0× 100

σ = 0.01 2.3× 10−2 9.7× 10−3 1.9× 10−2 2.1× 10−1 1.4× 10−2 0.0× 100

σ = 0.1 6.8× 10−2 5.9× 10−3 1.1× 10−3 2.1× 10−1 2.0× 10−3 1.5× 10−4

Support set recovery errors under different noise level. The smaller, the better.
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Figure 1: `2 Norm Recovery Errors For Synthetic Data Sets. x–Axis is CPU Time (Seconds) in Logrithmic Scale and
y–Axis is `2 Norm Recovery Error ‖xt − x∗‖
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Figure 2: The Recovery Error For Real Images From The Caltech 101 Data Set

Zou and Hastie, 2005; Loh and Wainwright, 2012) and
measure the `2 norm of the difference between the target
vector and the recovered one. In order to take into the com-
putational efficiency, we plot the recovery error vs. the run-
ning time for each algorithm. To evaluate the property of
selection consistency, we also measure the accuracy in re-
covering the support set of the original sparse vector that
defined as follows:

εsupp = (|St\S∗|+ |S∗\St|)/d .

Therefore εsupp = 0 if and only if St = S∗.

All codes are implemented in Matlab, running on In-
tel(R) Core(TM)2 Duo CPU, P8700@2.53 GHz, Windows
7 64bit, 4GB memory. We terminate each algorithm if it
runs more than five hours.

4.1 EXPERIMENTS WITH SYNTHETIC DATA

First we verify the effectiveness of the proposed algorithm
on synthetic data. We generate A and z∗ independently
from standard normal distributions. To generate the sparse
vector x∗, we first draw a random Gaussian vector x′∗. We
then normalize x′∗ to be one and only keep the largest s
entries in x′∗. We create two synthetic data sets: toy1 (d =
1000, s = 50, σ = {0, 0.1}, n = 500), and toy2 (d =
5000, s = 50, σ = {0, 0.5}, n = 1000). Clearly toy2 is
more difficult than toy1 because of the high dimensionality
and large noise. The performance averaged over 10 trials

is reported in this study. Since GraDeS needs to set all the
entries in the intermediate solution to be zero except for
the first k largest entries at each iteration, we tune k in set
{40, 60, 80, 100}, and report the best performance.

Figure 1 shows the recovery results for the synthetic data
sets, where the horizontal axis is CPU time (second) in the
logarithmic scale. We observe that the proposed method
ACCQ, although has the slow start at the beginning, is able
to find a solution with small recovery error significantly
faster than the other baseline methods. The slow start of
the proposed algorithm is mostly due to the fact that the
initial threshold τ1 is set too high, leading to xt = 0 for
the first a few of iterations. The LASSO bias is revealed by
the noisy cases, where LASSO has the worst recovery error
compared to the other methods. We also observe that the
GraDeS method, an iterative hard thresholding algorithm,
works well for the two toy datasets, in terms of both com-
putational time and recovery error. We however found that
for the real images, the GraDeS method behaves unstably
when measurements are contaminated with random noise,
as shown in the experimental result in the next subsection.

4.2 EXPERIMENTS WITH REAL IMAGES

Dataset We select a subset of images in Caltech101 as
the sparse signals. Five images randomly chosen from four
categories categories— “airplanes”, “butterfly”, “camera”
and “dolphin”— are used in this study. For the convenience



of presentation, we denote each of the five images selected
from one category by “001.jpg” to “005.jpg”. The total
number of images we extract is 20. To generate a truely
s–sparse signal, all images are first normalized to be zero–
mean and unit variance. We then apply Fourier transform
to the normalized image and filter out Fourier components
with coefficient smaller than 0.01. The final sparse vec-
tor x∗ is constructed based on the survived Fourier compo-
nents. Table 2 summarizes the statistics of our dataset.

For each s–sparse signal x∗, we independently gener-
ate random Gaussian design matrix A with n = 5000.
The entries in noise vector z are independently drawn
from a Gaussian distribution with variance σ varied in set
{0, 0.01, 0.1}. When σ > 0.1, no algorithm could do a
good job due to heavy information corruption. For param-
eter k in GraDeS, i.e. the number of non-zero entries to be
kept at each iteration, we tune it in set {500, 1000, 2000}
and report the best performance.

Figure 2 presents the convergence rate of `2-norm recov-
ery error of the six methods. To save space we only show
the result for “001.jpg” in each category here, and the re-
sults for the remaining images can be found in the supple-
mentary document. Similar to the result of the synthetic
data sets, The bias of LASSO is again revealed by its large
recovery error for the noisy cases compared to several al-
gorithms in comparison. The proposed algorithm ACCQ,
although with a slow start, is able to find the solution with a
small error significantly faster than the baseline algorithms
on almost all cases except for airplanes with σ = 0 and
camera with σ = 0.1, where the GraDeS method is the
most efficient but with a slightly worse error. We notice
that the performance of the GraDeS method appears to be
not very consistent across images: it performs well for air-
plane and camera images, but does poorly for the images
of butterfly and dolphin. Similarly, P-MCP and GIST, two
sparse recovery algorithms with non-convex regularizers,
although works well for the synthetic datasets, performs
poorly for a number of cases. More investigation is needed
to further understand the behavior of these algorithms.

In Table 2, we report the support set recovery error for each
dataset under different noise level. Similar to `2 norm re-
covery error, ACCQ achieves perfect support set recovery
on almost all datasets under σ = {0, 0.01} except for but-
terfly. When noise σ = 0.1 is large, although ACCQ is
unable to recover the exact support set, its error in recov-
ering the support set is the smallest among the methods in
comparison.

5 CONCLUSION

We propose an adaptive non–convex method to efficiently
recover the sparse signal under compress sensing settings.
The proposed method achieves a geometrical convergence
rate for `2–norm recovery error up to the statistical tol-

erance. By using a non-convex regularizer, the proposed
method is able to remove the LASSO bias and achieve
the selection consistency and oracle property. Experiments
with both synthetic data sets and real images verify both the
efficiency and effectiveness of the proposed method com-
pared to the state-of-the-art methods for sparse recovery.
In the future, we would like to improve our analysis to re-
move the extra condition in (13) for selection consistency
and oracle property. We also plan to extend the proposed
algorithm to other sparse recovery problems such as group
sparsity and low rank matrix recovery.
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