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Abstract

The paper presents and evaluates the power of
limited memory best-first search over AND/OR
spaces for optimization tasks in graphical mod-
els. We propose Recursive Best-First AND/OR
Search with Overestimation (RBFAOO), a new
algorithm that explores the search space in a
best-first manner while operating with restricted
memory. We enhance RBFAOO with a simple
overestimation technique aimed at minimizing
the overhead associated with re-expanding inter-
nal nodes and prove correctness and complete-
ness of RBFAOO. Our experiments show that
RBFAOO is often superior to the current state-
of-the-art approaches based on AND/OR search,
especially on very hard problem instances.

1 INTRODUCTION

Graphical models provide a powerful framework for rea-
soning with probabilistic information. These models use
graphs to capture conditional independencies between vari-
ables, allowing a concise knowledge representation and ef-
ficient graph-based query processing algorithms. Combi-
natorial optimization tasks such as MAP or marginal MAP
inference arise in many applications and are typically tack-
led with either search or inference algorithms (Pearl, 1988;
Dechter, 2003). The most common search scheme is the
depth-first branch and bound. Its use for finding exact so-
lutions was studied and evaluated extensively in the context
of AND/OR search spaces that are sensitive to the underly-
ing problem structure (Marinescu and Dechter, 2009a,b).

Meanwhile, best-first search algorithms, despite their bet-
ter time efficiency than depth-first search (Dechter and
Pearl, 1985), are largely ignored in practice primarily due
to their inherently enormous memory requirements (Mari-
nescu and Dechter, 2009b). Furthermore, an important
best-first search property, avoiding the exploration of un-
bounded paths, seems irrelevant to optimization tasks in

graphical models where all solutions are at the same depth
(ie, the number of variables).

We aim at inheriting the advantages of both depth-first
and best-first search schemes. We introduce RBFAOO, a
new algorithm that explores the context minimal AND/OR
search graph associated with a graphical model in a best-
first manner (even with non-monotonic heuristics) while
operating within restricted memory. RBFAOO extends Re-
cursive Best-First Search (RBFS) (Korf, 1993) to graphical
models and thus uses a threshold controlling technique to
drive the search in a depth-first like manner while using the
available memory to cache and reuse partial search results.
In addition, RBFAOO employs an overestimation method
designed to further reduce the high overhead caused by
re-expanding internal nodes. RBFAOO is also related to
the AND/OR search algorithms based on proof/disproof
numbers (Allis et al., 1994) (eg, df-pn and df-pn+ (Na-
gai, 2002)) which are very popular for solving two-player
zero-sum games. However, since game solvers ignore the
solution cost, they do not come with optimality guarantee.
Moreover, while df-pn’s completeness on finding subop-
timal solutions assumes that the cache table preserves all
search results of nodes previously explored (Kishimoto and
Müller, 2008), RBFAOO is proven to be complete with
a small cache table. We evaluate empirically RBFAOO
on benchmark problems used during the PASCAL2 Infer-
ence Challenge. Our results show that RBFAOO is often
superior to the state-of-the-art solvers based on AND/OR
search, especially on the hardest problem instances.

2 PRELIMINARIES

We consider combinatorial optimization problems defined
over graphical models, including Bayesian networks and
Markov random fields (Pearl, 1988; Koller and Friedman,
2009). A graphical model is a tupleM = 〈X,D,F,⊗〉,
where X = {X1, . . . , Xn} is a set of variables and D =
{D1, . . . , Dn} is the set of their finite domains of values.
F = {f1, . . . , fr} is a set of positive real-valued func-
tions defined on subsets of variables, called scopes (ie,



(a) Primal graph (b) Pseudo tree

Figure 1: A simple graphical model.

∀j fj : Yj → R+ and Yj ⊆ X). The set of func-
tion scopes implies a primal graph whose vertices are the
variables and which includes an edge connecting any two
variables that appear in the scope of the same function.
The combination operator

⊗ ∈ {∏,
∑} defines the com-

plete function represented by the graphical model M as
C(X) =

⊗r
j=1 fj(Yj). In this paper, we focus on min-sum

problems, in which we would like to compute the optimal
value C∗ and/or its optimizing configuration x∗:

C∗ = C(x∗) = min
X

r∑
j=1

fj(Yj) (1)

Koller and Friedman (2009) convert the MAP task defined
bymaxX

∏
j fj to log-space and solve it as an energy min-

imization (min-sum) problem to avoid numerical issues.

2.1 AND/OR SEARCH SPACES

Dechter and Mateescu (2007) introduce the concept of
AND/OR search spaces for graphical models. A pseudo
tree of the primal graph defines the search space and cap-
tures problem decomposition.

Definition 2.1. A pseudo tree of an undirected graph G =
(V,E) is a directed rooted tree T = (V,E′), such that
every arc ofG not included inE′ is a back-arc in T , namely
it connects a node in T to an ancestor in T . The arcs in E′

may not all be included in E.

Given a graphical modelM = 〈X,D,F,∑〉 with primal
graph G and a pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes cor-
responding to the variables and AND nodes correspond-
ing to the values of the OR parent’s variable, with edges
weighted according to F. Identical subproblems, identi-
fied by their context (the partial instantiation that separates
the subproblem from the rest of the problem graph), can be
merged, yielding an AND/OR search graph (Dechter and
Mateescu, 2007). Merging all context-mergeable nodes
yields the context minimal AND/OR search graph, denoted
by CT . The size of the context minimal AND/OR graph is
exponential in the induced width of G along a depth-first
traversal of T (Dechter and Mateescu, 2007).

Figure 2: Context minimal AND/OR search graph.

A solution tree T of CT is a subtree such that: (1) it con-
tains the root node of CT ; (2) if an internal AND node n
is in T then all its children are in T ; (3) if an internal OR
node n is in T then exactly one of its children is in T ; (4)
every tip node in T (ie, nodes with no children) is a ter-
minal node. The cost of a solution tree is the sum of the
weights associated with its arcs.

Each node n in CT is associated with a value v(n) captur-
ing the optimal solution cost of the conditioned subprob-
lem rooted at n. It was shown that v(n) can be com-
puted recursively based on the values of n’s successors:
OR nodes by minimization, AND nodes by summation (see
also (Dechter and Mateescu, 2007)).

Example 1. Figure 1(a) shows a simple graphical model
with 5 bi-valued variables {A,B,C,D,E} and 3 functions
{f1(ABC), f2(ABD), f3(BDE)}, respectively. Figure 2
displays the context minimal AND/OR search graph based
on the pseudo tree from Figure 1(b). The contexts of the
variables are shown next to the corresponding pseudo tree
nodes. A solution tree corresponding to the assignment
(A = 0, B = 1, C = 1, D = 0, E = 0) is highlighted.

2.2 AND/OR SEARCH ALGORITHMS

AND/OR Branch and Bound (AOBB) (Marinescu and
Dechter, 2009a,b) is a state-of-the-art informed search ap-
proach for solving optimization tasks over graphical mod-
els. AOBB explores in a depth-first manner the context
minimal AND/OR search graph associated with the prob-
lem and therefore takes advantage of problem decompo-
sition. During search, AOBB keeps track of the value of
the best solution found so far (an upper bound on the opti-
mal cost) and uses this value and the heuristic function to
prune away portions of the search space that are guaran-
teed not to contain the optimal solution in a typical branch
and bound manner. Most notably, AOBB guided by a class
of partitioning based heuristics won the first place in the
PASCAL2 competition (Otten et al., 2012).

Best-First AND/OR Search (Marinescu and Dechter,
2009b) (AOBF) is a variant of AO* (Nilsson, 1980) appli-
cable to graphical models that explores the graph in a best-
first rather than depth-first manner. This enables AOBF
to visit a significantly smaller search space than AOBB



which sometimes translates into important time savings.
Extensive empirical evaluations (Marinescu and Dechter,
2009b) showed that when given enough memory AOBF is
often superior to AOBB. However, in many practical sit-
uations AOBF’s overhead of maintaining in memory the
explicated portion of the search space is still prohibitively
large. AOBB therefore remains the best alternative.

3 RECURSIVE BEST-FIRST AND/OR
SEARCH WITH OVERESTIMATION

We introduce RBFAOO, a new algorithm that belongs to
the class of recursive best-first search algorithms and em-
ploys a local threshold controlling mechanism to explore
the context minimal AND/OR search graph in a depth-first
like manner (Korf, 1993; Nagai, 2002). It can however use
additional memory to cache and reuse partial search results
to enhance performance. RBFAOO also leverages an over-
estimation technique to possibly find a suboptimal solution
and then refine it to an optimal one. The latter plays an
essential role in enhancing the performance by avoiding a
high overhead of re-expanding internal nodes.

Before explaining RBFAOO in detail, we give an overview
of the threshold controlling scheme that makes RBFAOO
behave similarly to AO*. Assume that the weight from an
OR node to an AND node is 1, the weight from an AND
node to an OR node is 0, and a heuristic function h returns
values as shown in Figure 3. Let q(n), called q-value, be
a lower bound of the solution cost at node n and th(n) be
RBFAOO’s threshold at n. RBFAOO keeps examining the
subtree rooted at n until either q(n) > th(n) or the subtree
is solved optimally. In Figure 3(a), RBFAOO selects B to
expand, because w(A,B) + q(B) = w(A,B) + h(B) =
3 < w(A,C) + q(C) = w(A,C) + h(C) = 5. It sets
th(B) = w(A,C) + q(C) − w(A,B) = 4 to indicate
that C becomes the best child (ie, w(A,B) + q(B) >
w(A,C) + q(C) holds) if q(B) > th(B). Then, RBFAOO
expands B and updates q(B) by using the q-values of B’s
children (Figure 3(b)). Because q(B) = q(D) + q(E) =
h(D) + h(E) = 3, q(B) ≤ th(B) still holds. Hence,
RBFAOO examines B’s descendants with no backtracks
to A. Assume that D is chosen to examine. RBFAOO
sets th(D) = th(B) − q(E) = 2 to indicate that C be-
comes best if q(D) > th(D) holds, which is equivalent
to q(B) > th(B), because q(B) = q(D) + q(E) and
th(B) = th(D) + q(E). Next, RBFAOO expands D and
updates q(D) = w(D,F ) + h(F ) = 4 (Figure 3(c)). Be-
cause q(D) > th(D), the subtree rooted at D contains no
best leaf in terms of AO*’s strategy. RBFAOO backtracks
to A by updating q(B) = q(D) + q(E) = 6 and exam-
ines C (Figure 3(d)) with th(C) = w(A,B) + q(B) −
w(A,C) = 6 to be able to select B when B becomes best.

RBFAOO gradually grows its search space by updating the
q-values of internal nodes and re-expanding them. The

overhead of internal node re-expansions is still high, even
if RBFAOO does not always propagate back the q-values.
For example, assume that an internal OR node n has two
children c1 and c2, c1 is selected to re-expand, and RB-
FAOO proves that c2 becomes best to examine after ex-
panding only one leaf that is k-steps away from c1. If k is
large, RBFAOO need to spend most of time in re-expanding
internal nodes without exploring the new search space. The
overestimation technique avoids this scenario by increasing
the threshold while it verifies solution optimality.

3.1 ALGORITHM DESCRIPTION

Figure 4 shows the pseudo-code of RBFAOO. Let ε be a
small number and assume∞− ε <∞. In practice, a finite
real number is used to represent∞. Let δ be an empirically
tuned parameter that determines the amount of overestima-
tion. HasNoChildren checks whether a node has no chil-
dren (ie, terminal leaf or dead-end) or not. Evaluate eval-
uates a terminal leaf/dead-end n and returns a pair of the
cost (ie, 0 or∞) and a Boolean flag indicating whether n is
solved or a dead-end. UnsolvedChild returns an unsolved
child. SaveInCache saves in the cache table a q-value
and a flag indicating whether a node is solved optimally or
not. RetrieveFromCache retrieves them from the cache
table. Context calculates the context of a node.

When RBFAOO starts solving a problem, the threshold of
the root node is set to ∞ − ε. If RBFAOO exceeds this
threshold, the problem is proven to have no solution. Oth-
erwise, RBFAOO returns the optimal solution cost to the
problem. In addition, RBFAOO can be easily instrumented
to recover the assignment corresponding to the optimal so-
lution cost (this extension is omitted for clarity reasons).

Function RBFS(n) traverses the subtree rooted at n in a
depth-first manner. It calculates either an optimal solution
cost or a lower bound by using BestChild or Sum and
checks if the termination condition is satisfied. If the solu-
tion optimality is guaranteed at n, n.solved is set to true.

At an OR node,RBFS(n) may find a suboptimal solution.
In this case, n.solved is still set to false and RBFS(n)
continues examining other children until it finds an optimal
solution at n. Because the solution cost found so far is an
upper bound of the optimal one, RBFS(n) uses that so-
lution cost (maintained by ub) to prune away unpromising
branches and to adjust the threshold.

WhenRBFS(n) selects cbest, it examines cbest with a new
threshold. At OR nodes, cbest.th is set to subtracting the
weight between n and cbest from the minimum of:

1. The current threshold for n.

2. The second smallest lower bound q2 to solve n’s
child with considering the weight from n to that child
among a list of such lower bounds of n’s children.
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Figure 3: Snapshot of RBFAOO without overestimation.

This indicates when the current second best child be-
comes the best one. Additionally, a parameter δ called
overestimation rate, that allows for returning a subop-
timal solution cost is added to q2 to avoid an excessive
number of backtracks to n.

3. The upper bound of the optimal solution at n.

At AND nodes, cbest.th is set to the sum of cbest’s q-value
and the gap between n.th and the total q-value of n’s chil-
dren. If q(cbest) > cbest.th, q(n) > n.th also holds.

Let N be the number of nodes in the search space. If the
search space fits into memory, AO* expands O(N) nodes
in the worst case. In contrast, due to node re-expansions,
RBFAOO’s worst-case scenario is O(N2). However, in
practice, by introducing δ, RBFAOO avoids such a high
node re-expansion overhead (see Section 4).

3.2 IMPLEMENTATION DETAILS

The cache table is implemented as a hash table with the
Zobrist function (Zobrist, 1970) using 96-bit integers. The
Zobrist function computes almost uniformly distributed
hash keys by XORing precomputed random integers, each
of which represents the component of a context and is com-
monly used in game-playing programs and in planning.
Each cache table entry preserves the context of a node to
avoid collisions caused by an astronomically small possi-
bility of two different nodes having the same hash key.

When RBFAOO fills up the cache table and tries to store
new results there, some cached results must be replaced.
We use SmallTreeGC (Nagai, 1999), a batch-based re-
placement that discards R% of the table entries with small
subtree sizes. We set R to 30.

Due to floating-point errors, RBFAOO is occasionally un-
able to expand a new leaf. We bypass this by using small
error margins when comparing floating-point numbers.

As in full RBFS (Korf, 1993), q-values of children can be
increased based on the current q-value of their parent. This
technique generates more accurate heuristic information
when cache table entries are replaced or non-monotonic
heuristic functions are used. We implemented this tech-

nique and observed small performance improvement.

3.3 CORRECTNESS AND COMPLETENESS

We prove that RBFAOO is both correct and complete for
solving optimization tasks defined over graphical models
even with a small cache table and arbitrary cache table
replacement schemes as long as certain table entries are
preserved. In contrast, df-pn+ may return suboptimal so-
lutions if the contexts of nodes are used. Additionally,
although its completeness on finding either one (possibly
suboptimal) or no solution is proven, df-pn+ must preserve
all TT entries and the completeness with TT replacement
schemes remains an open question (Kishimoto and Müller,
2008). The following theorems hold with/without enhance-
ments described in Section 3.2.

Theorem 3.1 (correctness). Given a graphical model
M = 〈X,D,F,∑〉, if RBFAOO solves M with admis-
sible heuristic function h, its solution is always optimal.

Proof. Let v(n) be the optimal solution cost for node n.
We first prove that for any value q for node n in the cache
table, q ≤ v(n) holds. Since different nodes with the
same context are proven to be equivalent in DAGs (Mari-
nescu and Dechter, 2009b), we denote n as Context(n)
when a search result at node n is saved in the cache table.
Additionally, we assume h(n) = h(n′) if Context(n) =
Context(n′).

Let Cachet be the state of the cache table immediately af-
ter the t-th save is performed in the cache table. Let Qt(n)
be the value saved in Cachet for n if that value exists in
Cachet or h(n) if n is not preserved in Cachet. By induc-
tion on t, we prove that all the entries in cache table contain
values that do not overestimate optimal ones.

1. Because no result is stored inCache0, the above prop-
erty holds for t = 0.

2. Assume that the above property holds for t = k.
Qk+1(n), saved in Cachek+1, is then calculated as:

• If n is a terminal leaf, Evaluate(n) in the pseudo
code always returns v(n). Qk+1(n) = v(n)
therefore holds.



// Set up for the root node
double RBFAOO(node root) {
root.th =∞− ε;
q = RBFS(root);
return q;
}
// Depth-first search with a threshold
double RBFS(node n) {

// Terminal leaf/dead-end check
if (HasNoChildren(n)) {

// Calculate the probability
// for a terminal leaf or dead-end
(q, s) = Evaluate(n);
// Store search results
SaveInCache(Context(n),q,s);
return q;
}
GenerateChildren(n);
// Continue search until satisfying
// the termination condition
if (n is an OR node)

loop {
(cbest, q, q2, ub) = BestChild(n);
if (n.th < q || n.solved = true)

break;
// Update the threshold
cbest.th = min(n.th,

q2 + δ,
ub)− w(n, cbest);

RBFS(cbest);
}

else
loop { // AND node
q = Sum(n);
if (n.th < q || n.solved = true)

break;
(cbest, qcbest) = UnsolvedChild(n);
// Update the threshold
cbest.th = n.th− (q − qcbest);
RBFS(cbest);
}

// Store search results
SaveInCache(Context(n),q,n.solved);
return q;
}

// Select the best child
double BestChild(node n) {
q = q2 = ub =∞;
n.solved=false;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s=false;
}
qci = w(n, ci) + qci ;
if (s=true) // ci is solved
ub = min(ub, qci);

if (qci < q ||
(qci = q && n.solved=false)) {
q2 = q;
n.solved = s;
q = qci ;
cbest = ci;
} else if (qci < q2)
q2 = qci ;

}
return (cbest, q, q2, ub);
}
// Calculate the total value
double Sum(node n) {
q = 0;
n.solved = true;
foreach (n’s child ci) {
ct = Context(ci);
if (ct is in the cache table)
(qci , s) = RetrieveFromCache(ct);

else {
qci = h(ci);
s = false;
}
q = q + qci ;
n.solved = n.solved ∧ s;
}
return q;
}

Figure 4: Pseudo-code of RBFAOO

• If n is an internal OR node, Qk+1(n) =
w(n, cbest) + Qk(cbest) = mini(w(n, ci) +
Qk(ci)) holds where ci is n’s child. Addi-
tionally, because Qk(ci) ≤ v(ci), Qk+1(n) ≤
mini(w(n, ci) + v(ci)) = v(n) holds.

• If n is an internal AND node, Qk+1(n) =∑
iQk(ci) where ci is n’s child. SinceQk(ci) ≤

v(ci), Qk+1(n) ≤
∑

i v(ci) = v(n) holds.

Hence, Qt(n) ≤ v(n) holds in case of t = k + 1.

Let Q(root) be a value that is about to be saved in the
cache table with satisfying the termination condition of

root.solved = true. Q(root) ≤ v(root) holds from the
above. Additionally, because RBFAOO has traced a so-
lution tree with the cost of Q(root), v(root) ≤ Q(root)
holds. Therefore, Q(root) = v(root) holds.

Theorem 3.2 (completeness). LetM = 〈X,D,F,∑〉 be
a graphical model with primal graph G, let T be a pseudo
tree G and let CT be the context minimal AND/OR search
graph based on T (also a finite DAG). Assume that RB-
FAOO preserves the q-values of the nodes n1, n2, · · · , nk
which are on the current search path and the q-values of
ni’s siblings. Then RBFAOO eventually returns an optimal
solution or proves no solution exists.



Proof sketch. Let a marked node be a node expanded at
least once by RBFAOO and an unmarked node be a node
that has never been expanded. Denote p1 ⊂ p2 if the path
length of p2 is longer than that of p1 and p2 is identical to
p1 if p2 is limited to the path with the length of p1. Denote
p1 6⊂ p2 unless it holds p1 ⊂ p2. Let s(n, p) be the sum of
the edge costs from the root to n via path p. Assume that
s(n, p) + q(n) <∞− ε holds for any path p if q(n) 6=∞,
which is reasonable in practical settings.

Let qt,p(n) and tht,p(n) be the q-value and threshold for t-
th visit to n via path p, respectively. Assume that RBFAOO
expands no unmarked nodes after expanding k unmarked
nodes. Then, because the search space is finite, there are
two unproven marked nodes n and m examined as follows:

1. RBFAOO starts searching downward from n via path
p1 since qt1,p1

(n) ≤ tht1,p1
(n) holds.

2. RBFAOO reaches m via path p2 that satisfies
tht2,p2(m) < qt2,p2(m) and p1 ⊂ p2.

3. RBFAOO keeps exploring the remaining search space
rooted at n via p1 (and composed of marked nodes)
and backtracks to n.

4. Continue steps (1)-(3).

If n is an AND node, satisfying tht′,p3(c) < qt′,p3(c) im-
mediately leads to satisfying tht,p1

(n) < qt,p1
(n) where

c is n’s unproven child and p1 ⊂ p3. Because back-
tracking to n’s parent contradicts step (1), n is an OR
node. Additionally, tht′,p3

(c) < thu,p3
(c) holds for any

unproven child c, t′ < u and p1 ⊂ p3, because the q-values
of n’s children are preserved in memory as described in
the assumption of the theorem. With similar discussions,
there is an infinite sequence u1, u2, · · · , uk, · · · that satis-
fies ui < uj for i < j, thui,p2

(m) < thuj ,p2
(m) and

thui,p2(m) < qui,p2(m). This indicates that m has at least
one unproven child o1 via path r1 (p2 6⊂ r1) that contributes
to increasing qui,p2

(m) and satisfying thui,p2
< qui,p2

(m)
when qui,p2

(m) is calculated. Because the search space is
DAG, q(o1) is never affected by q(m). With similar dis-
cussions, if no unmarked node is expanded, there is an in-
finite number of nodes o1, o2, · · · , ok, · · · , where oj+1 is
a child of oj that contributes to increasing q(oj) and sat-
isfying th(oj) < q(oj). However, this contradicts the as-
sumption of the finite search space. Hence, by eventually
examining the whole search space, RBFAOO finds an opti-
mal solution (see Theorem 3.1) or proves no solution.

4 EXPERIMENTS

We empirically evaluate our proposed best-first search
scheme on the MAP task in graphical models. We compare

RBFAOO against the state-of-the-art depth-first and best-
first AND/OR search solvers proposed recently in (Mari-
nescu and Dechter, 2009b) and denoted by AOBB and
AOBF, respectively. All competing algorithms use pre-
compiled mini-bucket heuristics (Kask and Dechter, 2001;
Marinescu and Dechter, 2009b) for guidance and are re-
stricted to a static variable ordering obtained as a depth-first
traversal of a minfill pseudo tree (Marinescu and Dechter,
2009a). Since AOBF cannot use an initial upper bound (ob-
tained via local search) we also disabled its use by AOBB
and RBFAOO in order to maintain a fair comparison.

Our benchmark problems1 include three sets of instances
from genetic linkage analysis (Fishelson and Geiger, 2002)
(denoted pedigree), grid networks and protein side-
chain interaction networks (denoted pdb) (Yanover et al.,
2008). In total, we evaluated 21 pedigrees, 32 grids and
240 protein networks. The algorithms were implemented
in C++ (64-bit) and the experiments were run on a 2.6GHz
8-core processor with 80GB of RAM.

We report the CPU time in seconds and the number of
nodes expanded for solving the problems. We also specify
the problems parameters such as the number of variables
(n), maximum domain size (k), the depth of the pseudo
tree (h) and the induced width of the graph (w∗). The
best performance points are highlighted. In each table,
’oom’ stands for out-of-memory and ’-’ denotes out-of-
time. Note that oom for RBFAOO/AOBB indicates that
the mini-bucket heuristic pre-computation procedure uses
up the physical memory before search is performed.

Tables 1 and 2 show the results obtained for experiments
with pedigree, grid and protein networks. For space rea-
sons and clarity we select a representative subset from the
full 293 instances. The columns are indexed by the mini-
bucket i-bound which ranged between 6 and 16 for pedi-
grees and grids, and between 2 and 5 for proteins, respec-
tively. All algorithms were allotted a 1 hour time limit.
Algorithm AOBF(i) was allowed a maximum of 80GB of
RAM while algorithm RBFAOO(i) used a 10-20GB cache
table with 134,217,728 entries pre-allocated before search.
The overestimation parameter δ was set to 1.

We observe clearly that RBFAOO(i) improves consider-
ably over its competitors, especially at relatively small i-
bounds which yield relatively weak heuristics. For ex-
ample, on the pedigree30 instance, RBFAOO(6) with the
smallest reported i-bound (i = 6) was 4 and 41 times
faster than AOBF(6) and AOBB(6), respectively. Similarly,
RBFAOO(6) solves the 75-23-5 grid in about 30 minutes
and expands over 300 million nodes, while both AOBB(6)
and AOBF(6) run out of time and memory, respectively.
As the i-bound increases and the heuristics become more
accurate thus pruning the search space more effectively,
the differences in running time between the algorithms de-

1All instances are available at http://graphmod.ics.uci.edu.



Table 1: CPU time (seconds) and number of nodes expanded for pedigree and grid networks. Time limit 1 hour.
RBFAOO(i) ran with a 10-20GB cache table (134,217,728 entries) and overestimation parameter δ = 1.

instance algorithm i = 6 i = 8 i = 10 i = 12 i = 14 i = 16
(n, k, w∗, h) time nodes time nodes time nodes time nodes time nodes time nodes

pedigree instances
AOBB - - - - - -

pedigree7 AOBF oom oom oom oom oom oom
(1068,4,28,140) RBFAOO - - - 2210 345204317 1368 216767091 818 144733023

AOBB - - - - - 1076 139749607
pedigree9 AOBF oom oom 1846 30506650 1379 20960401 1152 20897564 263 7682927
(1118,7,25,123) RBFAOO 1084 195214857 728 136764248 522 97410715 248 46922921 241 44561263 60 10634230

AOBB - - - - - -
pedigree13 AOBF oom oom oom oom oom oom
(1077,3,30,125) RBFAOO - - - - - 2629 364037130

AOBB - - - - - -
pedigree19 AOBF oom oom oom oom oom oom
(793,5,21,51) RBFAOO - - 1753 319268527 834 168262596 226 45738797 378 69780223

AOBB 825 113195179 1450 198371250 244 34182326 63 10855277 102 17794376 3 107437
pedigree30 AOBF 83 2648120 103 2689106 45 1717523 24 867988 39 932986 3 30794
(1289,5,20,105) RBFAOO 20 5435997 19 5401921 14 3840692 5 1406493 6 1691396 3 60479

AOBB - 935 125740961 107 15616376 5 885551 9 1272810 5 24174
pedigree39 AOBF 307 9740964 215 8073776 53 2347928 8 384757 14 607860 5 19960
(1272,5,20,77) RBFAOO 79 19804239 67 16260143 14 3461943 2 480866 4 666873 5 24826

AOBB - - - - - -
pedigree41 AOBF oom oom oom oom oom oom
(1062,5,29,119) RBFAOO - - - 2706 373308327 3312 440228598 1517 210630024

binary grid instances
AOBB - - - - - -

50-20-5 AOBF oom oom oom oom 1309 33138951 789 19857843
(400,2,27,97) RBFAOO 1163 214829892 736 142564959 385 80803927 232 48848448 120 25641963 66 13994679

AOBB - 738 111785572 309 43858649 36 5997367 19 3234878 10 1405451
75-20-5 AOBF 2268 30767273 567 20761132 182 5685498 42 1766240 23 930839 12 442278
(400,2,27,99) RBFAOO 212 46289779 89 19603768 39 8451032 9 2026625 5 1007726 4 511806

AOBB - - - 2206 314621887 994 144092486 67 10500198
75-22-5 AOBF oom oom 1123 34528523 743 22103512 313 10577016 49 1714348
(484,2,30,107) RBFAOO 563 107126385 643 118981360 227 44947693 153 29325424 91 18077594 17 3047665

AOBB - - - - - 131 16039678
75-23-5 AOBF oom oom 1751 39532238 417 11103193 340 8092564 37 1218023
(529,2,31,122) RBFAOO 1860 304935340 1109 198613807 455 87285533 106 20952230 71 13910863 17 2915543

AOBB - - - - - oom
75-26-5 AOBF oom oom oom oom oom oom
(676,2,36,134) RBFAOO - - - - 3005 394135020 oom

AOBB - - 1479 195188949 560 74507590 51 7366618 102 13921196
90-23-5 AOBF 970 32478634 376 12937697 289 10087022 91 3169720 52 1944481 33 1224632
(529,2,31,116) RBFAOO 277 52920346 105 20736738 71 14460847 18 3602104 9 1810658 9 1390189

AOBB - - - - - 1647 186283089
90-26-5 AOBF 1016 25948278 1108 29700313 505 16035732 552 16728882 457 12983459 159 4413795
(676,2,36,136) RBFAOO 241 44068170 183 33284922 68 12738955 65 12176988 49 9170451 30 5180019

crease. In terms of the size of the search spaces explored,
we see that AOBF(i) typically expands the smallest number
of nodes, as expected. RBFAOO(i) expands more nodes
that AOBF(i), due to re-expansions, but in many cases
it expands significantly fewer nodes than AOBB(i) which
translates into important time savings. We also notice that
RBFAOO(i) and AOBB(i) have a relatively small overhead
per node expansion. On the other hand, the computational
overhead of AOBF(i) is much larger. It is caused primarily
by maintaining an extremely large search space in memory
and, secondly, because the node values are typically up-
dated all the way up to the root. Most notably, RBFAOO(i)
was the only algorithm that could solve the most difficult
instances in these benchmarks (eg, pedigrees 7, 13, 19 and
41, as well as grid 75-26-5). This demonstrates the ben-
efit of expanding nodes in best-first rather than depth-first
manner as well as using efficiently a bounded amount of
memory, thus overcoming the most critical limitation of
AOBF(i). Finally, the results on the protein networks show
a similar pattern, namely RBFAOO(i) improves consider-
ably over both AOBB(i) and AOBF(i) for relatively small
i-bounds. This is important because, unlike the pedigrees
and grids, these problems have very large domains (81 val-

ues) and therefore the mini-bucket heuristics could only be
compiled for small i-bounds. Figure 5 which plots the
normalized total CPU time as a function of the i-bound
summarizes the running time profile of the competing al-
gorithms across the benchmarks we considered.

In Table 3 we report on five additional very difficult genetic
linkage analysis networks. The mini-bucket i-bound was
set to 20 in this case. We see again that RBFAOO is the best
performing algorithm closing all instances within the 100
hour time limit. In contrast, AOBB could solve only one
instance while AOBF ran out of memory. For example, on
the type4-120-17 instance, RBFAOO was nearly 3 orders
of magnitude faster than AOBB, while expanding 3 orders
of magnitude fewer nodes.

We summarize next the most important additional factors
that could help improve RBFAOO(i)’s performance.

Impact of caching: Table 4 shows the average perfor-
mance of algorithm RBFAOO(i) (as CPU time in seconds,
number of nodes expanded, and number of problem in-
stances solved) as a function of available memory, across
all three benchmarks. The columns are indexed by the
cache table size used, namely very small (10-20MB), small



Table 2: CPU time (seconds) and number of nodes expanded for protein networks. Time limit 1 hour. RBFAOO(i) ran
with a 10-20GB cache table (134,217,728 entries) and overestimation parameter δ = 1.

instance algorithm i = 2 i = 3 i = 4 i = 5
(n, k, w∗, h) time nodes time nodes time nodes time nodes

AOBB - - 2218 65175805 oom
pdb1a3c AOBF oom oom oom oom
(144,81,15,32) RBFAOO 1915 45513907 344 259261 oom

AOBB 129 2919570 8 2694 204 1302 oom
pdb1aac AOBF 2851 3195539 11 6264 205 3072 oom
(85,81,11,21) RBFAOO 51 1148212 8 1492 204 783 oom

AOBB 996 55994055 2672 162495198 16 1593 136 4767
pdb1acf AOBF oom oom 17 4021 139 10464
(90,81,9,22) RBFAOO 22 987416 56 2553896 16 1090 137 3212

AOBB 259 7770890 134 3806154 657 3312980 2552 274955
pdb1ad2 AOBF 831 1250161 394 715399 1109 1049637 2595 135265
(177,81,9,33) RBFAOO 36 1227741 42 858899 585 1218780 2543 113780

AOBB 4 177150 31 75051 610 1474224 oom
pdb1ail AOBF 80 66207 47 15817 1728 928375 oom
(62,81,8,23) RBFAOO 2 78677 30 16427 599 1311325 oom

AOBB - 6 154434 260 9348036 236 24412
pdb1atg AOBF oom 38 119195 632 1196429 247 30072
(175,81,12,39) RBFAOO 620 24347033 4 71446 32 430747 236 11545
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Figure 5: Normalized total CPU time as a function of the i-bound.

Table 3: CPU time (seconds) and node expansions for pre-
viously unsolved linkage networks. Time limit 100 hours.

instance algorithm time nodes
AOBB -

type4b-100-19 AOBF oom
(7308,5,29,354) RBFAOO 107258 15157422871

AOBB 162196 5473951156
type4b-120-17 AOBF oom
(7766,5,24,319) RBFAOO 218 3388901

AOBB -
type4b-130-21 AOBF oom
(8883,5,29,416) RBFAOO 312887 43341893185

AOBB -
type4b-140-19 AOBF oom
(9274,5,30,366) RBFAOO 270856 28653407450

AOBB -
largeFam3-10-52 AOBF oom
(1905,3,36,80) RBFAOO 129633 12826083707

(100-200MB), medium (1-2GB) and large (10-20GB), re-
spectively. We see that, as expected, as more memory is
available, the performance improves considerably, namely
more problem instances are solved while the running time
and size of the search space decrease significantly. The best
results were obtained with the 10-20GB cache.

Impact of overestimation: Figure 6 plots the CPU time,
node re-expansion rate (as the ratio of the number of nodes
re-expanded to the total number of expansions) and per-
centage of problem instances solved by RBFAOO(i) as a
function of the overestimation rate δ, across all bench-

marks. We see that RBFAOO(i) without overestimation
(ie, δ = 0) performed rather poorly and was outperformed
considerably by AOBB(i) and AOBF(i), respectively. This
was due to a relatively large number of node re-expansions.
On grids, for example, more than 78% of the nodes were
actually re-expanded for δ = 0 compared to only 11% re-
expansions for δ = 1.2. However, as δ increases the re-
expansion rate decreases but the CPU time starts to increase
due to explorations of unpromising search spaces. There-
fore, we obtained the overall best performance for δ = 1.

Impact of heuristics quality: Based on our empirical
evaluation we noticed that RBFAOO(i) was superior to its
competitors especially for relatively inaccurate heuristics
(which are typically obtained for smaller i-bounds) and on
the hardest problem instances. This is important because
it is likely that for these types of problems it may only be
possible to compute rather weak heuristics given limited
resources (eg, type4 instances in Table 3).

5 RELATED WORK

Algorithms based on proof and disproof numbers (Allis
et al., 1994) have been dominating AND/OR search tech-
niques and successfully applied to many game domains (eg,
(Nagai, 2002; Kishimoto and Müller, 2005; Schaeffer et al.,
2007)). See (Kishimoto et al., 2012) for a comprehensive
literature review.



Table 4: Average CPU time (seconds), number of nodes expanded and number of problem instances solved by RBFAOO(i)
with different cache sizes. Time limit 1 hour. i = 10 for grids and pedigrees, i = 4 for protein networks.

10-20MB 100-200MB 1-2GB 10-20GB
benchmark time nodes solved time nodes solved time nodes solved time nodes solved
grids 1928 496571526 15/32 1685 321943731 18/32 1257 203898268 22/32 1220 173080755 22/32
pedigree 1416 366052904 12/21 1350 277666996 13/21 1180 223258293 14/21 1155 188200810 14/21
protein 574 35439167 208/240 509 27532421 213/240 443 23135969 217/240 396 20521511 222/240
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Figure 6: Average CPU time (seconds), node re-expansion rate and percentage of instances solved by RBFAOO(i) as a
function of the overestimation rate δ. Time limit 1 hour. i = 10 for grids and pedigrees, i = 4 for protein networks.

A proof/disproof number estimates the difficulty of proving
that the first/second player wins in a partially built tree. The
proof number of node n is defined as the minimum number
of leaf nodes that must be expanded to prove that the first
player wins at n. A node with a smaller proof number is
assumed to be easier to prove a win for the first player. In
contrast, the disproof number of n is the minimum number
of leaf nodes that must be expanded to prove that the second
player wins at n. A node with a smaller disproof number is
assumed to be easier to prove a win for the second player.

Depth-First Proof-Number Search (df-pn) (Nagai, 2002)
is a depth-first reformulation of Best-First Proof-Number
Search (PNS) (Allis et al., 1994) enhanced with a so-called
transposition table (TT), a cache table preserving the search
effort for the expanded nodes. While preserving PNS’ leaf
selection strategy, df-pn empirically re-expands fewer in-
ternal nodes than PNS that always restarts from the root the
procedure of finding a promising leaf to expand. Besides,
df-pn runs using a small amount of space limited by the TT
size in practice, although whether df-pn is complete or not
with a limited amount of TT still remains an open question.
As in RBFS (Korf, 1993), df-pn introduces thresholds to
limit the search depth of depth-first search. Df-pn updates
the thresholds of a node by taking into account when the
search tree rooted at that node contains none of the most
promising leaf nodes chosen by PNS’ best-first strategy.
The df-pn+ algorithm (Nagai, 2002) generalizes df-pn by
introducing evaluation functions to heuristically initialize
proof and disproof numbers and a weight in each edge to
decrease the overhead of node re-expansions (Kishimoto
and Müller, 2005).

Other related work includes MAO* (Chakrabati et al.,
1989), memory-limited AO*. Although MAO* can run un-
der a similar memory limit to RBFAOO, it needs a spe-

cific strategy to discard examined nodes from memory. In
contrast, RBFAOO can leverage arbitrary TT replacement
strategies including SmallTreeGC (Nagai, 1999), which is
empirically most effective in solving games. Additionally,
by incorporating ideas behind RBFS and the overestima-
tion technique, RBFAOO has much smaller overhead to
update node values than MAO* and AO*.

6 CONCLUSION

The paper presents RBFAOO, a limited memory best-first
AND/OR search algorithm for solving combinatorial op-
timization defined over graphical models. RBFAOO be-
longs to the Recursive Best-First Search family of algo-
rithms and therefore uses a threshold controlling mecha-
nism to guide the search in a depth-first like manner. It also
employs a flexible caching scheme to reuse partial search
results as well as an overestimation mechanism to further
reduce the internal node re-expansions. We prove correct-
ness and completeness of the algorithm. We evaluate RB-
FAOO empirically on a variety of benchmarks used dur-
ing the PASCAL2 Inference Challenge. Our results show
that RBFAOO is often superior to current state-of-the-art
solvers based on AND/OR search, especially on the most
difficult problem instances.

For future work we plan to extend RBFAOO to use dy-
namic variable orderings, an initial upper bound obtained
via local search and soft arc-consistency based heuristics.
One possibility we are currently investigating is to imple-
ment RBFAOO on top of the toulbar solver (de Givry
et al., 2005). Since many interesting real-world problems
are still too hard to solve exactly, we also plan to convert
the algorithm into an anytime best-first search scheme.
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