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Abstract

Recent work on Bayesian optimization has
shown its effectiveness in global optimization of
difficult black-box objective functions. Many
real-world optimization problems of interest also
have constraints which are unknown a priori.
In this paper, we study Bayesian optimization
for constrained problems in the general case that
noise may be present in the constraint func-
tions, and the objective and constraints may be
evaluated independently. We provide motivating
practical examples, and present a general frame-
work to solve such problems. We demonstrate
the effectiveness of our approach on optimizing
the performance of online latent Dirichlet allo-
cation subject to topic sparsity constraints, tun-
ing a neural network given test-time memory
constraints, and optimizing Hamiltonian Monte
Carlo to achieve maximal effectiveness in a fixed
time, subject to passing standard convergence di-
agnostics.

1 INTRODUCTION

Bayesian optimization (Mockus et al., 1978) is a method
for performing global optimization of unknown “black
box” objectives that is particularly appropriate when objec-
tive function evaluations are expensive (in any sense, such
as time or money). For example, consider a food company
trying to design a low-calorie variant of a popular cookie.
In this case, the design space is the space of possible recipes
and might include several key parameters such as quantities
of various ingredients and baking times. Each evaluation of
a recipe entails computing (or perhaps actually measuring)
the number of calories in the proposed cookie. Bayesian
optimization can be used to propose new candidate recipes
such that good results are found with few evaluations.

Now suppose the company also wants to ensure the taste of
the cookie is not compromised when calories are reduced.

Therefore, for each proposed low-calorie recipe, they per-
form a taste test with sample customers. Because different
people, or the same people at different times, have differing
opinions about the taste of cookies, the company decides to
require that at least 95% of test subjects must like the new
cookie. This is a constrained optimization problem:

min
x

c(x) s.t. ρ(x) ≥ 1− ε ,

where x is a real-valued vector representing a recipe, c(x)
is the number of calories in recipe x, ρ(x) is the fraction of
test subjects that like recipe x, and 1− ε is the minimum
acceptable fraction, i.e., 95%.

This paper presents a general formulation of constrained
Bayesian optimization that is suitable for a large class of
problems such as this one. Other examples might include
tuning speech recognition performance on a smart phone
such that the user’s speech is transcribed within some ac-
ceptable time limit, or minimizing the cost of materials for
a new bridge, subject to the constraint that all safety mar-
gins are met.

Another use of constraints arises when the search space
is known a priori but occupies a complicated volume that
cannot be expressed as simple coordinate-wise bounds on
the search variables. For example, in a chemical synthe-
sis experiment, it may be known that certain combinations
of reagents cause an explosion to occur. This constraint
is not unknown in the sense of being a discovered prop-
erty of the environment as in the examples above—we do
not want to discover the constraint boundary by trial and
error explosions of our laboratory. Rather, we would like
to specify this constraint using a boolean noise-free oracle
function that declares input vectors as valid or invalid. Our
formulation of constrained Bayesian optimization naturally
encapsulates such constraints.

1.1 BAYESIAN OPTIMIZATION

Bayesian optimization proceeds by iteratively developing a
global statistical model of the unknown objective function.
Starting with a prior over functions and a likelihood, at each



iteration a posterior distribution is computed by condition-
ing on the previous evaluations of the objective function,
treating them as observations in a Bayesian nonlinear re-
gression. An acquisition function is used to map beliefs
about the objective function to a measure of how promis-
ing each location in input space is, if it were to be evaluated
next. The goal is then to find the input that maximizes the
acquisition function, and submit it for function evaluation.

Maximizing the acquisition function is ideally a relatively
easy proxy optimization problem: evaluations of the ac-
quisition function are often inexpensive, do not require the
objective to be queried, and may have gradient informa-
tion available. Under the assumption that evaluating the
objective function is expensive, the time spent computing
the best next evaluation via this inner optimization problem
is well spent. Once a new result is obtained, the model is
updated, the acquisition function is recomputed, and a new
input is chosen for evaluation. This completes one iteration
of the Bayesian optimization loop.

For an in-depth discussion of Bayesian optimization, see
Brochu et al. (2010b) or Lizotte (2008). Recent work has
extended Bayesian optimization to multiple tasks and ob-
jectives (Krause and Ong, 2011; Swersky et al., 2013; Zu-
luaga et al., 2013) and high dimensional problems (Wang
et al., 2013; Djolonga et al., 2013). Strong theoretical
results have also been developed (Srinivas et al., 2010;
Bull, 2011; de Freitas et al., 2012). Bayesian optimiza-
tion has been shown to be a powerful method for the
meta-optimization of machine learning algorithms (Snoek
et al., 2012; Bergstra et al., 2011) and algorithm configura-
tion (Hutter et al., 2011).

1.2 EXPECTED IMPROVEMENT

An acquisition function for Bayesian optimization should
address the exploitation vs. exploration tradeoff: the idea
that we are interested both in regions where the model be-
lieves the objective function is low (“exploitation”) and re-
gions where uncertainty is high (“exploration”). One such
choice is the Expected Improvement (EI) criterion (Mockus
et al., 1978), an acquisition function shown to have strong
theoretical guarantees (Bull, 2011) and empirical effective-
ness (e.g., Snoek et al., 2012). The expected improve-
ment, EI(x), is defined as the expected amount of improve-
ment over some target t, if we were to evaluate the objective
function at x:

EI(x) = E[(t− y)+] =

∫ ∞
−∞

(t− y)+p(y |x) dy , (1)

where p(y |x) is the predictive marginal density of the ob-
jective function at x, and (t− y)+ ≡ max(0, t− y) is the
improvement (in the case of minimization) over the target t.
EI encourages both exploitation and exploration because it
is large for inputs with a low predictive mean (exploita-
tion) and/or a high predictive variance (exploration). Of-

ten, t is set to be the minimum over previous observations
(e.g., Snoek et al., 2012), or the minimum of the expected
value of the objective (Brochu et al., 2010a). Following our
formulation of the problem, we use the minimum expected
value of the objective such that the probabilistic constraints
are satisfied (see Section 1.5, Eq., 6).

When the predictive distribution under the model is Gaus-
sian, EI has a closed-form expression (Jones, 2001):

EI(x) = σ(x) (z(x)Φ (z(x)) + φ (z(x))) (2)

where z(x) ≡ t−µ(x)
σ(x) , µ(x) is the predictive mean

at x, σ2(x) is the predictive variance at x, Φ(·) is the stan-
dard normal CDF, and φ(·) is the standard normal PDF.
This function is differentiable and fast to compute, and can
therefore be maximized with a standard gradient-based op-
timizer. In Section 3 we present an acquisition function for
constrained Bayesian optimization based on EI.

1.3 OUR CONTRIBUTIONS

The main contribution of this paper is a general formula-
tion for constrained Bayesian optimization, along with an
acquisition function that enables efficient optimization of
such problems. Our formulation is suitable for addressing
a large class of constrained problems, including those con-
sidered in previous work. The specific improvements are
enumerated below.

First, our formulation allows the user to manage uncer-
tainty when constraint observations are noisy. By reformu-
lating the problem with probabilistic constraints, the user
can directly address this uncertainty by specifying the re-
quired confidence that constraints are satisfied.

Second, we consider the class of problems for which the
objective function and constraint function need not be eval-
uated jointly. In the cookie example, the number of calories
might be predicted very cheaply with a simple calculation,
while evaluating the taste is a large undertaking requiring
human trials. Previous methods, which assume joint evalu-
ations, might query a particular recipe only to discover that
the objective (calorie) function for that recipe is highly un-
favorable. The resources spent simultaneously evaluating
the constraint (taste) function would then be very poorly
spent. We present an acquisition function for such prob-
lems, which incorporates this user-specified cost informa-
tion.

Third, our framework, which supports an arbitrary number
of constraints, provides an expressive language for speci-
fying arbitrarily complicated restrictions on the parameter
search spaces. For example if the total memory usage of a
neural network must be within some bound, this restriction
could be encoded as a separate, noise-free constraint with
very low cost. As described above, evaluating this low-cost
constraint would take priority over the more expensive con-



straints and/or objective function.

1.4 PRIOR WORK

There has been some previous work on constrained
Bayesian optimization. Gramacy and Lee (2010) propose
an acquisition function called the integrated expected con-
ditional improvement (IECI), defined as

IECI(x) =

∫
X

[EI(x′)− EI(x′|x)]h(x′)dx′ . (3)

In the above, EI(x′) is the expected improvement
at x′, EI(x′|x) is the expected improvement at x′ given that
the objective has been observed at x (but without making
any assumptions about the observed value), and h(x′) is
an arbitrary density over x′. In words, the IECI at x is
the expected reduction in EI at x′, under the density h(x′),
caused by observing the objective at x. Gramacy and Lee
use IECI for constrained Bayesian optimization by set-
ting h(x′) to the probability of satisfying the constraint.
This formulation encourages evaluations that inform the
model in places that are likely to satisfy the constraint.

Zuluaga et al. (2013) propose the Pareto Active Learning
(PAL) method for finding Pareto-optimal solutions when
multiple objective functions are present and the input space
is a discrete set. Their algorithm classifies each design can-
didate as either Pareto-optimal or not, and proceeds itera-
tively until all inputs are classified. The user may specify a
confidence parameter determining the tradeoff between the
number of function evaluations and prediction accuracy.
Constrained optimization can be considered a special case
of multi-objective optimization in which the user’s utility
function for the “constraint objectives” is an infinite step
function: constant over the feasible region and negative in-
finity elsewhere. However, PAL solves different problems
than those we intend to solve, because it is limited to dis-
crete sets and aims to classify each point in the set versus
finding a single optimal solution.

Snoek (2013) discusses constrained Bayesian optimization
for cases in which constraint violations arise from a fail-
ure mode of the objective function, such as a simulation
crashing or failing to terminate. The author introduces
the weighted expected improvement acquisition function,
namely expected improvement weighted by the predictive
probability that the constraint is satisfied at that input.

1.5 FORMALIZING THE PROBLEM

In Bayesian optimization, the objective and constraint
functions are in general unknown for two reasons. First, the
functions have not been observed everywhere, and there-
fore we must interpolate or extrapolate their values to new
inputs. Second, our observations may be noisy; even after
multiple observations at the same input, the true function is

not known. Accounting for this uncertainty is the role of
the model, see Section 2.

However, before solving the problem, we must first de-
fine it. Returning to the cookie example, each taste test
yields an estimate of ρ(x), the fraction of test subjects
that like recipe x. But uncertainty is always present, even
after many measurements. Therefore, it is impossible to
be certain that the constraint ρ(x) ≥ 1− ε is satisfied for
any x. Likewise, the objective function can only be eval-
uated point-wise and, if noise is present, it may never be
determined with certainty.

This is a stochastic programming problem: namely, an opti-
mization problem in which the objective and/or constraints
contain uncertain quantities whose probability distributions
are known or can be estimated (see e.g., Shapiro et al.,
2009). A natural formulation of these problems is to mini-
mize the objective function in expectation, while satisfying
the constraints with high probability. The condition that
the constraint be satisfied with high probability is called a
probabilistic constraint. This concept is formalized below.

Let f(x) represent the objective function. Let C(x) rep-
resent the the constraint condition, namely the boolean
function indicating whether or not the constraint is sat-
isfied for input x. For example, in the cookie prob-
lem, C(x) ⇐⇒ ρ(x) ≥ 1− ε. Then, our probabilistic
constraint is

Pr(C(x)) ≥ 1− δ , (4)

for some user-specified minimum confidence 1− δ.

If K constraints are present, for each con-
straint k ∈ (1, . . . ,K) we define Ck(x) to be the constraint
condition for constraint k. Each constraint may also
have its own tolerance δk, so we have K probabilistic
constraints of the form

Pr(Ck(x)) ≥ 1− δk . (5)

All K probabilistic constraints must ultimately be satisfied
at a solution to the optimization problem.1

Given these definitions, a general class of constrained
Bayesian optimization problems can be formulated as

min
x

E[f(x)] s.t. ∀k Pr(Ck(x)) ≥ 1− δk . (6)

The remainder of this paper proposes methods for solving
problems in this class using Bayesian optimization. Two
key ingredients are needed: a model of the objective and
constraint functions (Section 2), and an acquisition func-
tion that determines which input x would be most benefi-
cial to observe next (Section 3).

1Note: this formulation is based on individual constraint sat-
isfaction for all constraints. Another reasonable formulation re-
quires the (joint) probability that all constraints are satisfied to be
above some single threshold.



2 MODELING THE CONSTRAINTS

2.1 GAUSSIAN PROCESSES

We use Gaussian processes (GPs) to model both the ob-
jective function f(x) and the constraint functions. A GP
is a generalization of the multivariate normal distribution
to arbitrary index sets, including infinite length vectors or
functions, and is specified by its positive definite covari-
ance kernel function K(x,x′). GPs allow us to condition
on observed data and tractably compute the posterior distri-
bution of the model for any finite number of query points.
A consequence of this property is that the marginal dis-
tribution at any single point is univariate Gaussian with a
known mean and variance. See Rasmussen and Williams
(2006) for an in-depth treatment of GPs for machine learn-
ing.

We assume the objective and all constraints are indepen-
dent and model them with independent GPs. Note that
since the objective and constraints are all modeled inde-
pendently, they need not all be modeled with GPs or even
with the same types of models as each other. Any combi-
nation of models suffices, so long as each one represents its
uncertainty about the true function values.

2.2 THE LATENT CONSTRAINT FUNCTION, g(x)

In order to model constraint conditions Ck(x), we intro-
duce real-valued latent constraint functions gk(x) such
that for each constraint k, the constraint condition Ck(x)
is satisfied if and only if gk(x) ≥ 0.2 Different obser-
vation models lead to different likelihoods on g(x), as
discussed below. By computing the posterior distribu-
tion of gk(x) for each constraint, we can then com-
pute Pr(Ck(x)) = Pr(gk(x) ≥ 0) by simply evaluating the
Gaussian CDF using the predictive marginal mean and
variance of the GP at x.

Different constraints require different definitions of the
constraint function g(x). When the nature of the problem
permits constraint observations to be modeled with a Gaus-
sian likelihood, the posterior distribution of g(x) can be
computed in closed form. If not, approximations or sam-
pling methods are needed (see Rasmussen and Williams,
2006, p. 41-75). We discuss two examples below, one of
each type, respectively.

2.3 EXAMPLE I: BOUNDED RUNNING TIME

Consider optimizing some property of a computer pro-
gram such that its running time τ(x) must not exceed some

2Any inequality constraint g(x) ≤ g0 or g(x) ≥ g1 can
be represented this way by transforming to a new variable
ĝ(x) ≡ g0 − g(x) ≥ 0 or ĝ(x) ≡ g(x)− g1 ≥ 0, respectively,
so we set the right-hand side to zero without loss of generality.

value τmax. Because τ(x) is a measure of time, it is non-
negative for all x and thus not well-modeled by a GP prior.
We therefore choose to model time in logarithmic units. In
particular, we define g(x) = log τmax − log τ , so that the
condition g(x) ≥ 0 corresponds to our constraint condi-
tion τ ≤ τmax, and place a GP prior on g(x). For every
problem, this transformation implies a particular prior on
the original variables; in this case, the implied prior on τ(x)
is the log-normal distribution. In this problem we may
also posit a Gaussian likelihood for observations of g(x).
This corresponds to the generative model that constraint
observations are generated by some true latent function cor-
rupted with i.i.d. Gaussian noise. As with the prior, this
choice implies something about the original function τ(x),
in this case a log-normal likelihood. The basis for these
choices is their computational convenience. Given a Gaus-
sian prior and likelihood, the posterior distribution is also
Gaussian and can be computed in closed form using the
standard GP predictive equations.

2.4 EXAMPLE II: MODELING COOKIE
TASTINESS

Recall the cookie optimization, and let us assume that con-
straint observations arrive as a set of counts indicating the
numbers of people who did and did not like the cookies.
We call these binomial constraint observations. Because
these observations are discrete, they are not modeled well
by a GP prior. Instead, we model the (unknown) bino-
mial probability ρ(x) that a test subject likes cookie x,
which is linked to the observations through a binomial like-
lihood.3 In Section 1.5, we selected the constraint condi-
tion ρ(x) ≥ 1− ε, where 1− ε is the user-specified thresh-
old representing the minimum allowable probability that a
test subject likes the new cookie. Because ρ(x) ∈ (0, 1)
and g(x) ∈ R, we define g(x) = s−1(ρ(x)), where s(·)
is a monotonically increasing sigmoid function map-
ping R→ (0, 1) as in logistic or probit regression.4 In our
implementation, we use s(z) = Φ(z), the Gaussian CDF.
The likelihood of g(x) given the binomial observations is
then the binomial likelihood composed with s−1. Because
this likelihood is non-Gaussian, the posterior distribution
cannot be computed in closed form, and therefore approxi-
mation or sampling methods are needed.

2.5 INTEGRATING OUT THE GP
HYPERPARAMETERS

Following Snoek et al. (2012), we use the Matérn 5/2 ker-
nel for the Gaussian process prior, which corresponds to the

3We use the notation ρ(x) both for the fraction of test sub-
jects who like recipe x and for its generative interpretation as the
probability that a subject likes recipe x.

4When the number of binomial trials is one, this model is
called Gaussian Process Classification.



assumption that the function being modeled is twice differ-
entiable. This kernel has D + 1 hyperparameters in D di-
mensions: one characteristic length scale per dimension,
and an overall amplitude. Again following Snoek et al.
(2012), we perform a fully-Bayesian treatment by integrat-
ing out these kernel hyperparameters with Markov chain
Monte Carlo (MCMC) via slice sampling (Neal, 2000).

When the posterior distribution cannot be computed in
closed form due to a non-Gaussian likelihood, we use ellip-
tical slice sampling (Murray et al., 2010) to sample g(x).
We also use the prior whitening procedure described in
Murray and Adams (2010) to avoid poor mixing due to the
strong coupling of the latent values and the kernel hyperpa-
rameters.

3 ACQUISITION FUNCTIONS

3.1 CONSTRAINT WEIGHTED EXPECTED
IMPROVEMENT

Given the probabilistic constraints and the model for a par-
ticular problem, it remains to specify an acquisition func-
tion that leads to efficient optimization. Here, we present
an acquisition function for constrained Bayesian optimiza-
tion under the Expected Improvement (EI) criterion (Sec-
tion 1.2). However, the general framework presented here
does not depend on this specific choice and can be used in
conjunction with any improvement criterion.

Because improvement is not possible when the constraint
is violated, we can define an acquisition function for con-
strained Bayesian optimization by extending the expecta-
tion in Eq. 1 to include the additional constraint uncer-
tainty. This results in a constraint-weighted expected im-
provement criterion, a(x):

a(x) = EI(x) Pr(C(x)) (7)

= EI(x)

K∏
k=1

Pr(Ck(x)) (8)

where the second line follows from the assumed indepen-
dence of the constraints. The gradient of this acquisition
function is readily computed and therefore this acquisition
function can be maximized in the same manner as stan-
dard EI. In practice we maximize it following the method
in Snoek et al. (2012).

Then, the full acquisition function a(x), after integrating
out the GP hyperparameters, is given by

a(x) =

∫
EI(x|θ)p(θ|D)p(C(x)|x,D′, ω)p(ω|D′)dθdω,

where θ is the set of GP hyperparameters for the objec-
tive function model, ω is the set of GP hyperparameters for
the constraint model(s), D = {xn, yn}Nn=1 are the previous

objective function observations, and D′ are the constraint
function observations.

3.2 FINDING THE FEASIBLE REGION

The acquisition function given above is not defined when
at least one probabilistic constraint is violated for all x, be-
cause in this case the EI target does not exist and therefore
EI cannot be computed. In this case we take the acquisition
function to include only the second factor,

a(x) =

K∏
k=1

Pr(gk(x) ≥ 0) (9)

Intuitively, if the probabilistic constraint is violated every-
where, we ignore the objective function and try to satisfy
the probabilistic constraint until it is satisfied somewhere.
This acquisition function may also be used if no objec-
tive function exists, i.e., if the problem is just to search
for any feasible input. This feasibility search is purely ex-
ploitative: it searches where the probability of satisfying
the constraints is highest. This is possible because the true
probability of constraint satisfaction is either zero or one.
Therefore, as the algorithm continues to probe a particu-
lar region, it will either discover that the region is feasible,
or the probability will drop and it will move on to a more
promising region.

3.3 DECOUPLED OBSERVATIONS

In some problems, the objective and constraint functions
may be evaluated independently. We call this property
the decoupling of the objective and constraint functions.
In decoupled problems, we must choose to evaluate ei-
ther the objective function or one of the constraint func-
tions at each iteration of Bayesian optimization. As dis-
cussed in Section 1.3, it is important to identify problems
with this decoupled structure, because often some of the
functions are much more expensive to evaluate than oth-
ers. Bayesian optimization with decoupled constraints is a
form of multi-task Bayesian optimization (Swersky et al.,
2013), in which the different black-boxes or tasks are the
objective and decoupled constraint(s), represented by the
set {objective, 1, 2, . . . ,K} for K constraints.

3.3.1 Chicken and Egg Pathology

One possible acquisition function for decoupled constraints
is the expected improvement of individually evaluating
each task. However, the myopic nature of the EI crite-
rion causes a pathology in this formulation that prevents
exploration of the design space. Consider a situation, with
a single constraint, in which some feasible region has been
identified and thus the current best input is defined, but a
large unexplored region remains. Evaluating only the ob-
jective in this region could not cause improvement as our
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Figure 1: Constrained Bayesian optimization on the 2D Branin-Hoo function with a disk constraint, after 50 iterations
(33 objective evaluations and 17 constraint evaluations): (a) Branin-Hoo function, (b) true constraint, (c) mean of ob-
jective function GP, (d) variance of objective function GP, (e) probability of constraint satisfaction, (f) probabilistic con-
straint, Pr(g(x) ≥ 0) ≥ 0.99, (g) acquisition function, a(x), and (h) probability distribution over the location of the mini-
mum, pmin(x). Lighter colors indicate lower values. Objective function observations are indicated with black circles in (c)
and (d). Constraint observations are indicated with black ×’s (violations) and o’s (satisfactions) in (e). Orange stars: (a)
unique true minimum of the constrained problem, (c) best solution found by Bayesian optimization, (g) input chosen for
the next evaluation, in this case an objective evaluation because ∆So(x) > ∆Sc(x) at the next observation location x.

belief about Pr(g(x) ≥ 0) will follow the prior and not ex-
ceed the threshold 1− δ. Likewise, evaluating only the
constraint would not cause improvement because our belief
about the objective will follow the prior and is unlikely to
become the new best. This is a causality dilemma: we must
learn that both the objective and the constraint are favorable
for improvement to occur, but this is not possible when
only a single task is observed. This difficulty suggests
a non-myopic aquisition function which assesses the im-
provement after a sequence of objective and constraint ob-
servations. However, such a multi-step acquisition function
is intractable in general (Ginsbourger and Riche, 2010).

Instead, to address this pathology, we propose to use the
coupled acquisition function (Eq. 7) to select an input x
for observation, followed by a second step to determine
which task will be evaluated at x. Following Swersky et al.
(2013), we use the entropy search criterion (Hennig and
Schuler, 2012) to select a task. However, our framework
does not depend on this choice.

3.3.2 Entropy Search Criterion

Entropy search works by considering pmin(x), the proba-
bility distribution over the location of the minimum of the
objective function. Here, we extend the definition of pmin
to be the probability distribution over the location of the
solution to the constrained problem. Entropy search seeks

the action that, in expectation, most reduces the relative en-
tropy between pmin(x) and an uninformative base distribu-
tion such as the uniform distribution. Intuitively speaking,
we want to reduce our uncertainty about pmin as much as
possible at each step, or, in other words, maximize our in-
formation gain at each step. Following Hennig and Schuler
(2012), we choose b(x) to be the uniform distribution on
the input space. Given this choice, the relative entropy of
pmin and b is the differential entropy of pmin up to a con-
stant that does not affect the choice of task. Our decision
criterion is then

T ∗ = arg min
T

Ey
[
S
(
p
(yT )
min

)
− S(pmin)

]
, (10)

where T is one of the tasks in {objective, 1, 2, . . . ,K}, T ∗
is the selected task, S(·) is the differential entropy func-
tional, and p(yT )

min is pmin conditioned on observing the value
yT for task T . When integrating out the GP covariance hy-
perparameters, the full form is

T ∗ = arg min
T

∫
S
(
p
(yT )
min

)
p (yT |θ, ω) dyT dθ dω (11)

where yT is a possible observed outcome of selecting task
T and θ and ω are the objective and constraint GP hyper-
parameters respectively.5

5For brevity, we have omitted the base entropy term (which
does not affect the decision T ∗) and the explicit dependence of
pmin on θ and ω.



3.3.3 Entropy Search in Practice

Solving Eq. 11 poses several practical difficulties, which
we address here in turn. First, estimating pmin(x) requires
a discretization of the space. In the spirit of Hennig and
Schuler (2012), we form a discretization of Nd points by
taking the top Nd points according to the weighted ex-
pected improvement criterion. Second, pmin cannot be
computed in closed form and must be either estimated or
approximated. Swersky et al. (2013) use Monte Carlo sam-
pling to estimate pmin by drawing samples from the GP on
the discretization set and finding the minimum. We use the
analogous method for constrained optimization: we sample
from the objective function GP and all K constraint GPs,
and then find the minimum of the objective for which the
constraint is satisfied for all K constraint samples.

3.3.4 Incorporating cost information

Following Swersky et al. (2013), we incorporate informa-
tion about the relative cost of the tasks by simply scaling
the acquisition functions by these costs (provided by the
user). In doing so, we pick the task with the most informa-
tion gain per unit cost. If λA is the cost of observing task
A, then Eq. 10 becomes

A∗ = arg min
A

1

λA
Ey
[
S
(
p
(yA)
min

)
− S(pmin)

]
. (12)

4 EXPERIMENTS

4.1 BRANIN-HOO FUNCTION

We first illustrate constrained Bayesian optimization on
the Branin-Hoo function, a 2D function with three global
minima (Fig. 1(a)). We add a decoupled disk constraint
(x1 − 2.5)2 + (x2 − 7.5)2) ≤ 50, shown in Fig. 1(b). This
constraint eliminates the upper-left and lower-right solu-
tions, leaving a unique global minimum at x = (π, 2.275),
indicated by the orange star in Fig. 1(a). After 33 objective
function evaluations and 17 constraint evaluations, the best
solution is (3.01, 2.36), which satisfies the constraint and
has value 0.48 (true best value = 0.40).

4.2 ONLINE LDA WITH SPARSE TOPICS

Online Latent Dirichlet Allocation (LDA, Hoffman et al.,
2010) is an efficient variational formulation of a popular
topic model for learning topics and corresponding word
distributions given a corpus of documents. In order for top-
ics to have meaningful semantic interpretations, it is de-
sirable for the word distributions to exhibit sparsity. In
this experiment we optimize the hyperparameters of on-
line LDA subject to the constraint that the entropy of the
per-topic word distribution averaged over topics is less than
log2 200 bits, which is achieved, for example by allocating
uniform density over 200 words. We used the online LDA

implementation from Agarwal et al. (2011) and optimized
five hyperparameters corresponding to the number of top-
ics (from 2 to 100), two Dirichlet distribution prior base
measures (from 0 to 2), and two learning rate parameters
(rate from 0.1 to 1, decay from 10−5 to 1). As a baseline,
we compare with unconstrained Bayesian optimization in
which constraint violations are set to the worst possible
value for this LDA problem. Fig. 2(a) shows that con-
strained Bayesian optimization significantly outperforms
the baseline and the IECI method from Gramacy and Lee
(2010) (see Section 1.4). Intuitively, the baseline is poor
because the GP has difficulty modeling the sharp disconti-
nuities caused by the large values.

4.3 MEMORY-LIMITED NEURAL NET

In the final experiment, we optimize the hyperparameters
of a deep neural network on the MNIST handwritten digit
classification task in a memory-constrained scenario. We
optimize over 11 parameters: 1 learning rate, 2 momen-
tum parameters (initial and final), the number of hidden
units per layer (2 layers), the maximum norm on model
weights (for 3 sets of weights), and the dropout regular-
ization probabilities (for the inputs and 2 hidden layers).
We optimize the classification error on a withheld vali-
dation set under the constraint that the total number of
model parameters (weights in the network) must be less
than one million. This constraint is decoupled from the
objective and inexpensive to evaluate, because the number
of weights can be calculated directly from the parameters,
without training the network. We train the neural network
using momentum-based stochastic gradient descent which
is notoriously difficult to tune as training can diverge un-
der various combinations of the momentum and learning
rate. When training diverges, the objective function can-
not be measured. Reporting the constraint violation as a
large objective value performs poorly because it introduces
sharp discontinuities that are hard to model (Fig. 2). This
necessitates a second noisy, binary constraint which is vi-
olated when training diverges, for example when the both
the learning rate and momentum are too large. The network
is trained6 for 25,000 weight updates and the objective is
reported as classification error on the standard validation
set. Our Bayesian optimization routine can thus choose be-
tween two decoupled tasks, evaluating the memory con-
straint or the validation error after a full training run. Eval-
uating the validation error can still cause a constraint viola-
tion when the training diverges, which is treated as a binary
constraint in our model. Fig. 2(b) shows a comparison
of our constrained Bayesian optimization against a base-
line standard Bayesian optimization where constraint vio-
lations are treated as resulting in a random classifier (90%
error). Only the objective evaluations are presented, since

6We use the Deepnet package: https://github.com/
nitishsrivastava/deepnet.
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Figure 2: Empirical performance of constrained Bayesian optimization for (a) Online Latent Dirichlet Allocation and (b)
turning a deep neural network. Blue curves: our method. Red curves: unconstrained Bayesian optimization with constraint
violations as large values. Purple curve: Integrated Expected Conditional Improvement method from Gramacy and Lee
(2010). Errors bars indicate standard error from 5 independent runs.
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Figure 3: Tuning Hamiltonian Monte Carlo with constrained Bayesian optimization: (a) objective function model, (b-
e) constraint satisfaction probability surfaces for (b) Geweke test, (c) Gelman-Rubin test, (d) stability of the numerical
integration, (d) overall, which is the product of the preceding three probability surfaces. In (a), lighter colors correspond to
more effective samples, circles indicate function evaluations, and the orange star indicates the best solution. Vertical axis
label at left is for all subplots. Probability colormap at right is for (b-d).

constraint evaluations are extremely inexpensive compared
to an entire training run. In the event that training diverges
on an objective evaluation, we report 90% error. The opti-
mized net has a learning rate of 0.1, dropout probabilities of
0.17 (inputs), 0.30 (first layer), and 0 (second layer), initial
momentum 0.86, and final momentum 0.81. Interestingly,
the optimization chooses a small first layer (size 312) and
a large second layer (size 1772).

4.4 TUNING MCMC

Hamiltonian Monte Carlo (HMC) is a popular MCMC
sampling technique that takes advantage of gradient infor-
mation for rapid mixing. However, HMC contains several
parameters that require careful tuning. The two basic pa-
rameters are the number of leapfrog steps τ , and the step
size ε. HMC may also include a mass matrix which in-
troduces O(D2) additional parameters in D dimensions,
although the matrix is often chosen to be diagonal (D pa-
rameters) or a multiple of the identity matrix (1 parameter)
(Neal, 2011). In this experiment, we optimize the perfor-
mance of HMC using Bayesian optimization; see Mahen-
dran et al. (2012) for a similar approach. We optimize the
following parameters: τ , ε, a mass parameter, and the frac-

tion of the allotted computation time spent burning in the
chain.

Our experiment measures the number of effective sam-
ples (ES) in a fixed computation time; this corresponds to
finding chains that minimize estimator variance. We im-
pose the constraints that the generated samples must pass
the Geweke (Geweke, 1992) and Gelman-Rubin (Gelman
and Rubin, 1992) convergence diagnostics. In particular,
we require the worst (largest absolute value) Geweke test
score across all variables and chains to be at most 2.0,
and the worst (largest) Gelman-Rubin score between chains
and across all variables to be at most 1.2. We use PyMC
(Patil et al., 2010) for the convergence diagnostics and the
LaplacesDemon R package to compute effective sample
size. The chosen thresholds for the convergence diagnos-
tics are based on the PyMC and LaplacesDemon documen-
tation. The HMC integration may also diverge for large
values of ε; we treat this as an additional constraint, and set
δ = 0.05 for all constraints. We optimize HMC sampling
from the posterior of a logistic regression binary classifi-
cation problem using the German credit data set from the
UCI repository (Frank and Asuncion, 2010). The data set
contains 1000 data points, and is normalized to have unit



Table 1: Tuning Hamiltonian Monte Carlo.

Experiment burn-in # steps, τ step size, ε mass # samples accept rate effective samples

Baseline 10% 100 0.047 1 8.3× 103 85% 1.1× 103

BayesOpt 3.8% 2 0.048 1.55 3.3× 105 70% 9.7× 104

variance. We initialize each chain randomly with D inde-
pendent draws from a Gaussian distribution with mean zero
and standard deviation 10−3. For each set of inputs, we
compute two chains, each with 5 minutes of computation
time on a single core of a compute node.

Fig. 3 shows constraint surfaces discovered by Bayesian
optimization for a simpler experiment in which only τ and
ε are varied; burn-in is fixed at 10% and the mass is fixed
at 1. These diagrams yield interpretations of the feasible
region; for example, Fig. 3(d) shows that the numerical
integration diverges for values of ε above ≈ 10−1. Table
1 shows the results of our 4-parameter optimization after
50 iterations, compared with a baseline that is reflective of
a typical HMC configuration: 10% burn in, 100 leapfrog
steps, and the step size chosen to yield an 85% proposal
accept rate. Each row in the table was produced by aver-
aging 5 independent runs with the given parameters. The
optimization chooses to perform very few (τ = 2) leapfrog
steps and spend relatively little time (3.8%) burning in the
chain, and chooses an acceptance rate of 70%. In contrast,
the baseline spends much more time generating each pro-
posal (τ = 100), which produces many fewer total samples
and, correspondingly, significantly fewer effective samples.

5 CONCLUSION

In this paper we extended Bayesian optimization to con-
strained optimization problems. Because constraint ob-
servations may be noisy, we formulate the problem using
probabilistic constraints, allowing the user to directly ex-
press the tradeoff between cost and risk by specifying the
confidence parameter δ. We then propose an acquisition
function to perform constrained Bayesian optimization, in-
cluding the case where the objective and constraint(s) may
be observed independently. We demonstrate the effective-
ness of our system on the meta-optimization of machine
learning algorithms and sampling techniques. Constrained
optimization is a ubiquitous problem and we believe this
work has applications in areas such as product design (e.g.
designing a low-calorie cookie), machine learning meta-
optimization (as in our experiments), real-time systems
(such as a speech recognition system on a mobile device
with speed, memory, and/or energy usage constraints), or
any optimization problem in which the objective function
and/or constraints are expensive to evaluate and possibly
noisy.
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Markus Püschel. Active learning for multi-objective op-
timization. In ICML, 2013.


