A Proof for Theorems

We prove Theorem 2 before Theorem 1 since the former one includes more technical steps and main parts of the two proofs are similar.

A.1 Proof of Theorem 2 (C-TS)

Proof. By definition, \(\mu_a := E[Y|a] = \sum_{t=1}^{k^n} E[Y|Pa_Y = Z_t] P(Pa_Y = Z_t|a), a^* = \arg \max_a \mu_a \).

Define:

\[
T_Z(t) := \sum_{s=1}^{t} \mathbb{1}(z_{(s)}=z), \\
\hat{\mu}_Z(t) := \frac{1}{T_Z(t)} \sum_{s=1}^{t} Y_s \mathbb{1}(z_{(s)}=z), \\
\mu_Z := E[Y|Pa_Y = Z],
\]

where \(Z_{(s)} \) denotes the observed values of parent nodes for \(Y \), in round \(s \). Note that \(\hat{\mu}_Z(t) = 0 \) when \(T_Z(t) = 0 \).

Let \(E \) be the event that for all \(t \in [T], i \in [k^n] \) such that \(\max_{a \in A} P(Pa_Y = Z_t|a) > 0 \), we have

\[
|\hat{\mu}_Z(t) - \mu_Z| \leq \sqrt{\frac{2\log(1/\delta)}{1 \vee T_Z(t)} T_Z(t)}.
\]

For fixed \(t \) and \(i \), by Sub-Gaussian property, we can show

\[
P\left(|\hat{\mu}_Z(t) - \mu_Z| \geq \sqrt{\frac{2\log(1/\delta)}{1 \vee T_Z(t)} T_Z(t)} \right) \leq \mathbb{E}[2\delta] = 2\delta.
\]

By union bound, we have \(P(E^c) \leq 2\delta Tk^n \).

The Bayesian regret can be written as

\[
BR_T = \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] = \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}[\mu_{a^*} - \mu_{a_t} | \mathcal{F}_{t-1}] \right],
\]

where \(\mathcal{F}_{t-1} = \sigma(a_1, Z_1, Y_1, \ldots, a_{t-1}, Z_{t-1}, Y_{t-1}) \).

The key insight is to notice that by definition of Thompson Sampling,

\[
P(a^* = \cdot | \mathcal{F}_{t-1}) = P(a_t = \cdot | \mathcal{F}_{t-1}). \tag{1}
\]

Further, define \(UCB_a(t) := \sum_{j=1}^{k^n} UCB_{Z_j}(t) P(Pa_Y = Z_j|a) \), we can bound the conditional expected difference between optimal arm and the arm played at round \(t \) using equation 1 by

\[
\mathbb{E}[\mu_{a^*} - \mu_{a_t} | \mathcal{F}_{t-1}] \\
= \mathbb{E}[\mu_{a^*} - UCB_{a_t}(t-1) + UCB_{a_t}(t-1) - \mu_{a_t} | \mathcal{F}_{t-1}] \\
= \mathbb{E}[\mu_{a^*} - UCB_{a^*}(t-1) + UCB_{a_t}(t-1) - \mu_{a_t} | \mathcal{F}_{t-1}].
\]

Next by tower rule, we have

\[
BR_T = \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - UCB_{a^*}(t-1) + UCB_{a_t}(t-1) - \mu_{a_t}) \right].
\]
On event E^c, by the original definition of BR_T we have $BR_T \leq 2T$. On event E, the first term is negative showing by the definition of $UCB_{Z_j}, j = 1, \ldots, k^n$ and

$$\mu_{\alpha^*} - UCB_{\alpha^*}(t - 1) = \sum_{j=1}^{k^n} \left(\mathbb{E}[Y|Pa_Y = Z_j] - UCB_{Z_j}(t - 1) \right) P(Pa_Y = Z_j|a^*) \leq 0,$$

because $\mathbb{E}[Y|Pa_Y = Z_j] - UCB_{Z_j}(t - 1) \leq 0$ on event E. Also on event E, the second term can be bounded by

$$\mathbb{1}_E \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k^n} \mathbb{1}_{\{Z(t) = j\}} \mathbb{1}_{\{P(Y_t|a^*_t) < 1\}} \left(P(Pa_Y = Z_j|a^*_t) - \mathbb{1}_{\{Z(t) = Z_j\}} \right).$$

The second part of equation 2 can be bounded by

$$\mathbb{1}_E \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 + \sqrt{TZ_j(t - 1)}}} \mathbb{1}_{\{Z(t) = j\}} \leq \mathbb{1}_E \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{s}} ds \leq \sqrt{32T} (T \log(1/\delta)) \leq 32k^n T \log(1/\delta).$$

For the first part of equation 2 we define $X_t := \sum_{s=1}^{t} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 + \sqrt{TZ_j(t - 1)}}} \left(P(Pa_Y = Z_j|a_s) - \mathbb{1}_{\{Z(t) = Z_j\}} \right)$. $X_0 := 0$. Note that $\{X_t\}_{t=0}^{T}$ is a martingale sequence and we have

$$|X_t - X_{t-1}|^2 \leq \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 + \sqrt{TZ_j(t - 1)}}} \left(P(Pa_Y = Z_j|a_t) - \mathbb{1}_{\{Z(t) = Z_j\}} \right)^2 \leq 32 \log(1/\delta).$$

By applying Azuma’s inequality we have

$$P(|X_T| > \sqrt{k^n T \log(T) \log(T)}) \leq \exp \left(-\frac{k^n \log^3(T)}{32 \log(1/\delta)} \right).$$

We take $\delta = 1/T^2$, combine the first and second part of equation 2 we show that with probability $1 - P(E^c) - \exp \left(-\frac{k^n \log^2(T)}{64} \right) = 1 - 2k^n / T - \exp \left(-\frac{k^n \log^2(T)}{64} \right)$,

$$R_T \leq 16 \sqrt{k^n T \log(T) \log(T)}.$$

Thus the Bayesian regret can be bounded by

$$\mathbb{E}[R_T] \leq P(E^c) \times 2T + \exp \left(-\frac{k^n \log^2(T)}{64} \right) \times 2T + \sqrt{64k^n T \log(T) \log(T)}$$

$$\leq C \sqrt{k^n T \log(T) \log(T)}.$$

where C is a constant and the above inequality holds for large T. Thus we have proved that $\mathbb{E}[R_T] = \tilde{O} \left(\sqrt{k^n T} \right)$.
A.2 Proof of Theorem 1 (C-UCB)

Proof. Let E be the event that for all $t \in [T]$, $j \in [k^n]$, we have

$$\left| \hat{\mu}_{Z_j}(t-1) - \mathbb{E}[Y|Pa_Y = Z_j] \right| \leq \sqrt{\frac{2 \log(1/\delta)}{1 \sqrt{T_{Z_j}(t-1)}}}.$$

Use same proof idea in Theorem 2 we have $P(E^c) \leq 2\delta Tk^n$. Define $UCB_a(t) := \sum_{j=1}^{k^n} UCB_{Z_j}(t) P(Pa_Y = Z_j|a)$, the regret can be rewritten as

$$R_T = \sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t})$$

$$= \sum_{t=1}^{T} (\mu_{a^*} - UCB_{a_t}(t-1) + UCB_{a_t}(t-1) - \mu_{a_t}).$$

On event E^c, $R_T \leq 2T$. On event E we can show

$$\mu_{a^*} - UCB_{a_t}(t-1) = \sum_{j=1}^{k^n} \mathbb{E}[Y|Pa_Y = Z_j] P(Pa_Y = Z_j|a^*) - \sum_{j=1}^{k^n} UCB_{Z_j}(t-1) P(Pa_Y = Z_j|a_t)$$

$$\leq \sum_{j=1}^{k^n} UCB_{Z_j}(t-1) P(Pa_Y = Z_j|a^*) - \sum_{j=1}^{k^n} UCB_{Z_j}(t-1) P(Pa_Y = Z_j|a_t) \leq 0,$$

where the last inequality follows by the way to choose a_t in Algorithm 1, the second last inequality follows by the definition of event E. Thus on event E we have

$$R_T \leq \sum_{t=1}^{T} (UCB_{a_t}(t-1) - \mu_{a_t})$$

$$= \sum_{t=1}^{T} \sum_{j=1}^{k^n} (UCB_{Z_j}(t-1) - \mathbb{E}[Y|Pa_Y = Z_j]) P(Pa_Y = Z_j|a_t)$$

$$\leq \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \sqrt{T_{Z_j}(t-1)}}} P(Pa_Y = Z_j|a_t)$$

$$\leq \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \sqrt{T_{Z_j}(t-1)}}} \left(P(Pa_Y = Z_j|a_t) - 1_{\{z(t)=z_j\}} \right).$$

The second part of Equation 3 can be bounded by

$$\sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \sqrt{T_{Z_j}(t-1)}}} 1_{\{z(t)=z_j\}} \leq \sum_{j=1}^{k^n} \int_{0}^{T_{Z_j}(T)} \sqrt{\frac{8 \log(1/\delta)}{s}} ds$$

$$\leq \sum_{j=1}^{k^n} \sqrt{32T_{Z_j}(T) \log(1/\delta)}$$

$$\leq \sqrt{32Tk^n T \log(1/\delta)}.$$

For the first part of equation 3 we define $X_t := \sum_{s=1}^{t} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \sqrt{T_{Z_j}(s-1)}}} \left(P(Pa_Y = Z_j|a_s) - 1_{\{z(t)=z_j\}} \right),$

$X_0 := 0$. Note that $\{X_t\}_{t=0}^{T}$ is a martingale sequence.

$$|X_t - X_{t-1}|^2 = \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \sqrt{T_{Z_j}(t-1)}}} \left(P(Pa_Y = Z_j|a_t) - 1_{\{z(t)=z_j\}} \right)^2$$

$$\leq 32 \log(1/\delta).$$
By applying Azuma’s inequality we have
\[P(|X_T| > \sqrt{k^n T \log(T) \log(T)}) \leq \exp \left(-\frac{k^n \log^3(T)}{32 \log(1/\delta)} \right). \]

We take \(\delta = 1/T^2 \), combine the first and second part of equation 3 with probability \(1 - P(E^c) - \exp \left(-\frac{k^n \log^3(T)}{64} \right) = 1 - 2k^n/T - \exp \left(-\frac{k^n \log^2(T)}{64} \right) \), the regret can be bounded by
\[R_T \leq 16\sqrt{k^n T \log(T) \log(T)}. \]

Thus the expected regret can be bounded by:
\[\mathbb{E}[R_T] \leq P(E^c) \times 2T + \exp \left(-\frac{k^n \log^2(T)}{64} \right) \times 2T + 64k^n T \log(T) \log(T) \]
\[\leq C \sqrt{k^n T \log(T) \log(T)} \]

where \(C \) is a constant, above inequality holds for large \(T \). Thus we prove \(\mathbb{E}[R_T] = \tilde{O} \left(\sqrt{k^n T} \right) \)

A.3 Proof of Theorem 3 (CL-TS)

Lemma 1. [Lattimore and Szepesvári, 2020] Notations same as algorithm 4 and algorithm 5. Let \(\delta \in (0, 1) \). Then with probability at least \(1 - \delta \) it holds that for all \(t \in \mathbb{N} \),
\[\|\hat{\theta}_t - \theta\|_{V_t(\lambda)} \leq \sqrt{\lambda} \|\theta\|_2 + \sqrt{2 \log \left(\frac{1}{\delta} \right) + \log \left(\frac{\det V_t(\lambda)}{\lambda^d} \right)}. \]

Furthermore, if \(\|\theta^*\| \leq m_2 \), then \(P(\exists t \in \mathbb{N}^+ : \theta^* \notin C_t) \leq \delta \) with
\[C_t = \left\{ \theta \in \mathbb{R}^d : \|\hat{\theta}_{t-1} - \theta\|_{V_{t-1}(\lambda)} \leq m_2 \sqrt{\lambda} + \sqrt{2 \log \left(\frac{1}{\delta} \right) + \log \left(\frac{\det V_{t-1}(\lambda)}{\lambda^d} \right)} \right\}.

Lemma 2. [Lattimore and Szepesvári, 2020] Let \(x_1, \ldots, x_T \in \mathbb{R}^d \) be a sequence of vectors with \(\|x_t\|_2 \leq L < \infty \) for all \(t \in [T] \), then
\[\sum_{t=1}^{T} \left(1 \wedge \|x_t\|_{V_{t-1}}^2 \right) \leq 2 \log (\det V_T) \leq 2d \log \left(1 + \frac{TL^2}{d} \right), \]

where \(V_t = I_d + \sum_{s=1}^{t} x_s x_s^T \).

Proof. We define \(\beta = 1 + \sqrt{2 \log (T) + d \log (1 + \frac{L}{2})} \) and \(V_t = I_d + \sum_{s=1}^{t} m_a, m_a^T \) same as Algorithm 5, where \(m_a := \sum_{i=1}^{k^n} f(Z_t) P(PaY = Z_i | a) \). Define upper confidence bound UCB_t : \(\mathcal{A} \rightarrow \mathbb{R} \) by
\[\text{UCB}_t(a) = \max_{\theta \in \mathcal{C}_t} (\theta, m_a) = \langle \hat{\theta}_{t-1}, m_a \rangle + \beta \|m_a\|_{V_{t-1}}, \]

where \(\mathcal{C}_t = \left\{ \theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_{t-1}\|_{V_{t-1}} \leq \beta \right\} \). By Lemma 1 we have
\[P \left(\exists t \leq T : \|\hat{\theta}_{t-1} - \theta\|_{V_{t-1}} \geq 1 + \sqrt{2 \log (T) + \log (\det V_t)} \right) \leq \frac{1}{T}. \]

And note \(\|m_a\|_2 \leq 1 \), thus by geometric means inequality we have
\[\det V_t \leq \left(\text{trace}(V_t) \right)^d \leq \left(1 + \frac{T}{d} \right)^d. \]
Thus, by \(\|\theta\|_2 \leq 1 \),

\[
P \left(\exists t \leq T : \left\| \hat{\theta}_{t-1} - \theta \right\|_{V_{t-1}} \geq 1 + 2 \sqrt{\log(T) + d \log \left(1 + \frac{T}{d}\right)} \right) \leq \frac{1}{T}.
\]

Let \(E_t \) be the event that \(\left\| \hat{\theta}_{t-1} - \theta \right\|_{V_{t-1}} \leq \beta \), \(E := \cap_{t=1}^T E_t \), \(a^* := \underset{a}{\arg\max} \sum_{i=1}^n f(Z_i), \theta) P(Pa_Y = Z_i|a) \), which is a random variable in this setting because \(\theta \) is random. Then

\[
BR_T = E \left[\sum_{t=1}^T \left(\sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta \right) \right]
\]

\[
= E \left[\sum_{t=1}^T \sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta \right]
\]

\[
\leq 2TP(E^c) + E \left[\sum_{t=1}^T \sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta \right]
\]

\[
\leq 2 + E \left[\sum_{t=1}^T \sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta \right]. \quad (4)
\]

Again, we know from equation \([1]\) such that \(P(a^* = \cdot | \mathcal{F}_{t-1}) = P(a_t = \cdot | \mathcal{F}_{t-1}) \), where \(\mathcal{F}_{t-1} = \sigma(Z_1, a_1, Y_1, \ldots, Z_{t-1}, a_{t-1}, Y_{t-1}) \). Thus we have

\[
E \left[\sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta | \mathcal{F}_{t-1} \right]
\]

\[
= 1_{E_t} E \left[\sum_{i=1}^n f(Z_i) (P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_t)) , \theta | \mathcal{F}_{t-1} \right]
\]

\[
= 1_{E_t} E \left[\sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a^*), \theta - UCB_t(a^*) + UCB_t(a_t) - \sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a_t), \theta | \mathcal{F}_{t-1} \right]
\]

\[
\leq 1_{E_t} E \left[UCB_t(a_t) - \sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a_t), \theta | \mathcal{F}_{t-1} \right]
\]

\[
\leq 1_{E_t} E \left[\sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a_t), \hat{\theta}_{t-1} - \theta | \mathcal{F}_{t-1} \right] + \beta \left\| \sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a) \right\|_{V_{t-1}}
\]

\[
\leq 2 \beta \left\| \sum_{i=1}^n f(Z_i) P(Pa_Y = Z_i|a) \right\|_{V_{t-1}}.
\]
Thus we can bound the difference of expected reward between optimal arm and \(E \), where
\[
\begin{align*}
\mathbb{E} \left[\sum_{t=1}^{T} \mathbb{I}_{E_t} \left(\sum_{i=1}^{k^n} f(Z_i) \left(P(Pa_Y = Z_i | a^*) - P(Pa_Y = Z_i | a_t) \right), \theta \right) \right] \\
\leq 2 \mathbb{E} \left[\beta \sum_{t=1}^{T} \left(1 \wedge \left\| \sum_{i=1}^{k^n} f(Z_i) P(Pa_Y = Z_i | a) \right\|_{V_{t-1}^{-1}}^{2} \right) \right] \\
\leq 2 \sqrt{T} \mathbb{E} \left[\beta^2 \sum_{t=1}^{T} \left(1 \wedge \left\| \sum_{i=1}^{k^n} f(Z_i) P(Pa_Y = Z_i | a) \right\|_{V_{t-1}^{-1}}^{2} \right) \right] \\
\leq 2 \sqrt{2dT \beta^2 \log \left(1 + \frac{T}{\beta^2} \right)}
\end{align*}
\]
(By Cauchy-Schwartz)

Putting together we prove
\[
BR_T \leq 2 + 2 \sqrt{2dT \beta^2 \log \left(1 + \frac{T}{\beta^2} \right)} = \tilde{O} \left(d \sqrt{T} \right). \tag{5}
\]

A.4 Proof of Theorem 3 (CL-UCB)

Proof. Define \(\beta = 1 + \sqrt{2 \log (T) + d \log \left(1 + \frac{2}{\beta} \right)} \), by Lemma 1 and above proof for CL-TS we have
\[
P(\exists t \leq T : \left\| \hat{\theta}_{t-1} - \theta^* \right\|_{V_{t-1}^{-1}} \geq \beta) \leq \frac{1}{T},
\]
\[
P(\exists t \in \mathbb{N}^+ : \theta^* \notin C_t) \leq \frac{1}{T},
\]
where \(C_t = \left\{ \theta \in \mathbb{R}^d : \left\| \theta - \hat{\theta}_{t-1} \right\|_{V_{t-1}^{-1}} \leq \beta \right\} \).

Let \(\hat{\theta}_t \) denote a \(\theta \) that satisfies \((\hat{\theta}_t, a_t) = UCB_t(a_t) \). Again let \(E_t \) be the event that \(\left\| \hat{\theta}_{t-1} - \theta^* \right\|_{V_{t-1}^{-1}} \leq \beta \), let \(E = \bigcap_{t=1}^{T} E_t, a^* = \arg\max_a \sum_{j=1}^{k^n} \left(f(Z_j), \theta \right) P(Pa_Y = Z_j | a) \). Then on event \(E_t \), using the fact that \(\theta^* \in C_t \) we have
\[
(\theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a^*)) \leq UCB_t(a^*) \leq UCB_t(a_t) = (\hat{\theta}_t, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a_t))
\]

Thus we can bound the difference of expected reward between optimal arm and \(a_t \) by
\[
\mu_{a^*} - \mu_{a_t} = \left\langle \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a^*) \right\rangle - \left\langle \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a_t) \right\rangle \\
\leq \left\langle \hat{\theta}_t - \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a_t) \right\rangle \\
\leq 2 \wedge 2 \beta \left\| \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a_t) \right\|_{V_{t-1}^{-1}} \\
\leq 2 \beta \left(1 \wedge \left\| \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j | a_t) \right\|_{V_{t-1}^{-1}} \right).
\]
So the expected regret can be further bounded by:

$$
\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] = \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] + \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] \\
\leq \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t})1_{E_t} \right] + \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] \\
\leq 2\beta \sum_{t=1}^{T} \left(1 \wedge \sum_{j=1}^{k^n} f(Z_j)P(Pa_Y = Z_j|a_t) \right) + 2TP(E^c) \\
\leq 2 + 2\beta \sqrt{2dT \log \left(1 + \frac{T}{d} \right)} \quad \text{(By Lemma 2)}
$$

A.5 Proof of Claim 1

Proof. Denote the reward variable for action a by $Y|_a$ and denote the reward variable given fixed parent values by $Y|_{Pa_Y=Z}$. According to the causal information, $Y|_a$ can be represented as a weighted sum of $Y|_{Pa_Y=Z}$:

$$
Y|_a = \sum_{Z} P(Pa_Y = Z|a)Y|_{Pa_Y=Z}.
$$

In the statement of claim 1 we know that $Y|_{Pa_Y=Z}$ are independent Gaussian distributions, therefore $Y|_a$, a weighted sum of Gaussian distributions still follows a Gaussian distribution. It remains to show the variance of $Y|_a$ is less than 1.

$$
\text{Var}(Y|_a) = \sum_{Z} P(Pa_Y = Z|a)^2\text{Var}(Y|_{Pa_Y=Z}) \\
\leq \sum_{Z} P(Pa_Y = Z|a)^2 \leq \sum_{Z} P(Pa_Y = Z|a) = 1,
$$

where the first inequality above uses the condition that $\text{Var}(Y|_{Pa_Y=Z}) \leq 1$. We show that the reward for every arm $Y|_a$ is Gaussian distributed with variance less than 1, thus the bandit environment ν' described in the claim is an instance in Gaussian bandit environment class.

A.6 Proof of Theorem 4

We first introduce an important concept.

Definition 2 (p-order Policy). For K-arm unstructured Gaussian bandit environments $\mathcal{E} := \mathcal{E}_K(\mathcal{N})$ and policy π, whose regret, on any $\nu \in \mathcal{E}$, is bounded by $C TP$ for some $C > 0$ and $p > 0$. We call this policy class $\Pi(\mathcal{E}, C, T, p)$, the class of p-order policies.

Note that UCB and TS are in this class with $C = C' \sqrt{K}$ and $p = 1/2 + \epsilon$ with some $C' > 0$ for arbitrary small ϵ.

We use the following result to prove our theorem.

Theorem 5 (Finite-time, instance-dependent regret lower bound for p-order policies, Theorem 16.4 in [Lattimore and Szepesvári (2020)]. Let $\nu \in \mathcal{E}_K(\mathcal{N})$ be a K-arm Gaussian bandit with mean vector $\mu \in \mathbb{R}^K$ and suboptimality gaps $\Delta \in (0, \infty)^K$. Let

$$
\mathcal{E}(\nu) = \{ \nu' \in \mathcal{E}_K(\mathcal{N}) : \mu_i(\nu') \in [\mu_i, \mu_i + 2\Delta_i] \}.
$$
Suppose \(\pi \) is a \(p \)-order policy such that \(\exists C > 0 \) and \(p \in (0, 1) \), \(R_T(\pi, \nu') \leq CT^p \) for all \(T \) and \(\nu' \in \mathcal{E}(\nu) \). Then for any \(\epsilon \in (0, 1] \),
\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{2}{(1 + \epsilon)^2} \sum_{i: \Delta_i > 0} \left(\frac{(1 - p) \log(T) + \log(\frac{\Delta_i}{8C})}{\Delta_i} \right)^+, \]
where \((x)^+ = \max(x, 0)\) is the positive part of \(x \in \mathbb{R} \).

Proof of Theorem 4. Consider the bandit environment \(\nu \) described in section 4. By claim 1 we know \(\nu \) is an instance in unstructured Gaussian bandit environment class, so we can further apply Theorem 5. The size of three types of actions are all \(\frac{3N}{3} \). For Type 1 actions, its gap compared to the optimal actions is \(\Delta \), for Type 0 actions, gap is \(p_1 \Delta \). Plugging into the results of Theorem 5, for every \(p \)-order policy over \(\mathcal{E}(\nu) \), we have
\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{1}{2} \frac{3N}{3} \left(\frac{(1 - p) \log(T) + \log(\frac{\Delta}{8C})}{\Delta} \right)^+ + \frac{1}{2} \frac{3N}{3} \left(\frac{(1 - p) \log(T) + \log(\frac{p_1 \Delta}{8C})}{p_1 \Delta} \right)^+. \tag{9}
\]
In particular, choose \(\Delta = 8pCT^{p-1} \), we get
\[
(1 - p) \log(T) + \log(\frac{\Delta}{8C}) = \log(p),
\]
\[
(1 - p) \log(T) + \log(\frac{p_1 \Delta}{8C}) = \log(p_1 p).
\]
Note that \(\sup_{p>0} \log(p)/p = \exp(-1) \approx 0.35 \), and we next plug above two equations in Equation 9 to get
\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{3N}{3} \frac{0.35}{8CT^{p-1}}.
\]
Now consider \(\pi \) to be UCB, by plugging in \(C = C' \sqrt{3N} \) and \(p = 1/2 + \epsilon \) we have
\[
\mathbb{E} R_T(UCB, \nu) \geq \frac{0.35}{24C'} \sqrt{3N} T^{1.5 - \epsilon}.
\]

\[
\begin{array}{|c|c|c|}
\hline
i & 1 & 2 & 3 \\
\hline
P(X_1 = i) & 0.3 & 0.4 & 0.3 \\
P(X_2 = i) & 0.3 & 0.3 & 0.4 \\
P(X_3 = i) & 0.5 & 0.3 & 0.2 \\
P(X_4 = i) & 0.25 & 0.25 & 0.5 \\
P(W_1 = 1|X_1 = i) & 0.2 & 0.5 & 0.8 \\
P(W_2 = 1|X_2 = i) & 0.3 & 0.2 & 0.8 \\
P(W_3 = 1|X_3 = i) & 0.4 & 0.6 & 0.5 \\
P(W_4 = 1|X_4 = i) & 0.3 & 0.5 & 0.6 \\
\hline
\end{array}
\]

Table 1: Marginal and conditional probabilities for pure simulation experiment in section 5.1.1, numbers are randomly selected.
Table 2: Marginal and conditional probabilities for email campaign causal graph.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X_1 = i))</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>(P(X_2 = i))</td>
<td>0.05</td>
<td>0.6</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>(P(Z_3 = i))</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(P(Z_1 = 1</td>
<td>X_2 = i))</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>(P(Z_2 = 1</td>
<td>X_1 = 3, X_2 = i))</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>
| \(P(Z_2 = 1|X_1
eq 3, X_2 = i) \) | 0.8 | 0.9 | 0.5 | 0.2 |