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Abstract

The paper introduces a novel conditional in-
dependence (CI) based method for linear and
nonlinear, lagged and contemporaneous causal
discovery from observational time series in
the causally sufficient case. Existing CI-based
methods such as the PC algorithm and also
common methods from other frameworks suf-
fer from low recall and partially inflated false
positives for strong autocorrelation which is an
ubiquitous challenge in time series. The novel
method, PCMCI+, extends PCMCI [Runge et
al., 2019b] to include discovery of contempo-
raneous links. PCMCI+ improves the relia-
bility of CI tests by optimizing the choice of
conditioning sets and even benefits from auto-
correlation. The method is order-independent
and consistent in the oracle case. A broad
range of numerical experiments demonstrates
that PCMCI+ has higher adjacency detec-
tion power and especially more contempo-
raneous orientation recall compared to other
methods while better controlling false posi-
tives. Optimized conditioning sets also lead to
much shorter runtimes than the PC algorithm.
PCMCI+ can be of considerable use in many
real world application scenarios where often
time resolutions are too coarse to resolve time
delays and strong autocorrelation is present.

1 INTRODUCTION

A number of frameworks address the problem of
causal discovery from observational data utilizing
different assumptions. Next to Bayesian score-
based methods [Chickering, 2002], classical Granger
causality (GC) [Granger, 1969], and the more re-
cent restricted structural causal models (SCM) frame-

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

work [Peters et al., 2017, Spirtes and Zhang, 2016], con-
ditional independence (CI) based network learning al-
gorithms [Spirtes et al., 2000] form a main pillar. A
main representative of the CI framework in the causally
sufficient case (no unobserved common drivers) is the
PC algorithm [Spirtes and Glymour, 1991]. Its advan-
tages lie, firstly, in the flexibility of utilizing a wide
and growing class of CI tests, from linear partial corre-
lation (ParCorr) and non-parametric residual-based ap-
proaches [Ramsey, 2014, Runge et al., 2019b] to Ker-
nel measures [Zhang et al., 2011], tests based on con-
ditional mutual information [Runge, 2018b], and neural
networks [Sen et al., 2017]. Secondly, the PC algorithm
utilizes sparsity making it applicable also to large num-
bers of variables while score- and SCM-based methods
are more difficult to adapt to nonlinear high-dimensional
causal discovery.

Causal discovery in the time series case is partially less
and partially more challenging [Runge et al., 2019a].
Obviously, time-order greatly helps in identifying causal
directions for lagged links (causes precede effects). This
forms the basis of GC which, however, cannot deal
with contemporaneous links and suffers from the curse
of dimensionality [Runge et al., 2019b]. SCM-based
methods such as LiNGAM [Hyvärinen et al., 2010]
and also CI-based methods [Runge et al., 2019b,
Entner and Hoyer, 2010, Malinsky and Spirtes, 2018]
have been adapted to the time series case. In
[Moneta et al., 2011] GC is augmented by the PC
algorithm. However, properties such as non-stationarity
and especially autocorrelation can make causal discovery
much less reliable.

Here I show that autocorrelation, an ubiquitous prop-
erty of time series (e.g., temperature data), is es-
pecially detrimental and propose a novel CI-based
method, PCMCI+, that extends the PCMCI method
from [Runge et al., 2019b] to also include discovery
of contemporaneous links, which requires substantial
changes. PCMCI+ is based on two central ideas



that deviate from the PC algorithm and the time-
series adaptations of FCI in [Entner and Hoyer, 2010,
Malinsky and Spirtes, 2018]: First, an edge removal
phase is conducted separately for lagged and contem-
poraneous conditioning sets and the lagged phase uses
much fewer CI tests. Secondly, and more importantly,
PCMCI+ optimizes the choice of conditioning sets for
the individual CI tests to make them better calibrated
under autocorrelation and increase detection power by
utilizing the momentary conditional independence idea
[Runge et al., 2019b]. The paper is structured as follows.
Section 2 briefly introduces the problem and Sect. 3 de-
scribes the method and states theoretical results. Numer-
ical experiments in Sect. 4 show that PCMCI+ benefits
from strong autocorrelation and yields much more ad-
jacency detection power and especially more orientation
recall for contemporaneous links while better controlling
false positives at much shorter runtimes than the PC algo-
rithm. A Supplementary Material (SM) contains proofs
and further numerical experiments.

2 TIME SERIES CAUSAL DISCOVERY

2.1 PRELIMINARIES

We are interested in discovering time series graphs (e.g.,
[Runge, 2018a]) that can represent the temporal depen-
dency structure underlying complex dynamical systems.
Consider an underlying discrete-time structural causal
process Xt = (X1

t , . . . , X
N
t ) with

Xj
t = fj

(
P(Xj

t ), ηjt

)
(1)

where fj are arbitrary measurable functions with non-
trivial dependencies on their arguments and ηjt repre-
sents mutually (i 6= j) and serially (t′ 6= t) indepen-
dent dynamical noise. The nodes in a time series graph
G (example in Fig. 1) represent the variables Xj

t at dif-
ferent lag-times and the set of variables that Xj

t de-
pends on defines the causal parents P(Xj

t ) ⊂ X−t+1 =

(Xt,Xt−1, . . .)\{Xj
t }. We denote lagged parents by

P−t (Xj
t ) = P(Xj

t ) ∩ X−t . A lagged (τ > 0) or con-
temporaneous (τ = 0) causal link Xi

t−τ → Xj
t exists if

Xi
t−τ ∈ P(Xj

t ). Throughout this work the graph G is
assumed acyclic and the causal links stationary meaning
that if Xi

t−τ → Xj
t for some t, then Xi

t′−τ → Xj
t′ for

all t′ 6= t. Then we can always fix one variable at t and
take τ ≥ 0. Note that the stationarity assumption may
be relaxed. The graph is actually infinite in time, but in
practice only considered up to some maximum time lag
τmax. We define the set of adjacencies A(Xj

t ) of a vari-
ableXj

t to include allXi
t−τ for τ ≥ 0 that have a (lagged

or contemporaneous) link with Xj
t in G. We define con-

temporaneous adjacencies as At(Xj
t ) = A(Xj

t ) ∩ Xt.

A sequence of m contemporaneous links is called a di-
rected contemporaneous path if for all k ∈ {1, . . . ,m}
the link Xi+k−1

t → Xi+k
t occurs. We call Xi

t a con-
temporaneous ancestor of Xj

t if there is a directed con-
temporaneous path from Xi

t to Xj
t and we denote the set

of all contemporaneous ancestors as Ct(Xj
t ) (which ex-

cludes Xj
t itself). We denote separation in the graph by

./, see [Runge, 2018a] for further notation details.

2.2 PC ALGORITHM

The PC algorithm is the most wide-spread CI-based
causal discovery algorithm for the causally sufficient
case and utilizes the Markov and Faithfulness assump-
tions as formally defined in Sect. S1. Adapted to time
series (analogously to the methods for the latent case in
[Entner and Hoyer, 2010, Malinsky and Spirtes, 2018]),
it consists of three phases: First, a skeleton of adjacen-
cies is learned based on iteratively testing which pairs of
variables (at different time lags) are conditionally inde-
pendent at some significance level αPC (Alg. 2 with the
PC option). For lagged links, time-order automatically
provides orientations, while for contemporaneous links
a collider phase (Alg. S2) and rule phase (Alg. S3) de-
termine the orientation of links. CI-based discovery al-
gorithms can identify the contemporaneous graph struc-
ture only up to a Markov equivalence class represented as
a completed partially directed acyclic graph (CPDAG).
We denote links for which more than one orientation
occurs in the Markov equivalence class by Xi

t◦−◦X
j
t .

Here we consider a modification of PC that removes an
undesired dependence on the order of variables, called
PC-stable [Colombo and Maathuis, 2014]. These mod-
ifications also include either the majority or conserva-
tive [Ramsey et al., 2006] rule for handling ambiguous
triples where separating sets are inconsistent, and con-
flicting links where different triples in the collider or
orientation phase lead to conflicting link orientations.
With the conservative rule the PC algorithm is consis-
tent already under the weaker Adjacency Faithfulness
condition [Ramsey et al., 2006]. Another approach for
the time series case (considered in the numerical exper-
iments) is to combine vector-autoregressive modeling to
identify lagged links with the PC algorithm for the con-
temporaneous causal structure [Moneta et al., 2011].

2.3 AUTOCORRELATION

To illustrate the challenge of autocorrelation, in Fig. 1
we consider a linear example with lagged and contempo-
raneous ground truth links shown for the PCMCI+ case
(right panel). The PC algorithm (Alg. 2 with ParCorr
CI test) starts by testing all unconditional independen-
cies (p = 0). Here the coupled pairs (X5, X6) as well
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Figure 1: The curse and blessing of autocorrelation. Linear example of model (3) with ground truth links shown for the
PCMCI+ case (right panel). All autodependency coefficients are 0.95 (except 0.475 for X5,6) and all cross-coupling
coefficients are 0.4 (± indicated by red/blue links). The graphs show true and false link detection rates as the link
width (if > 0.06) for true (color indicating ParCorr) and incorrect links (grey) for the PC algorithm, Alg. 1, and the
variants PCMCI+ and PCMCI+0 as explained in the text (detection rates based on 500 realizations run at αPC = 0.01
for T = 500).

as (X7, X8) are independent of the other variables and
removed from each others adjacency sets, which shows
how PC exploits sparsity and reduces the estimation di-
mension compared to fitting a full model on the whole
past as in the GC framework. Due to the strong autocor-
relation the remaining variables, on the other hand, are
almost all adjacent to each other at multiple time lags in
this iteration. In the next iteration, CI for all remain-
ing links is tested conditional on all one-dimensional
(p = 1) conditioning sets. Here the PC algorithm re-
moves the true lagged link X1

t−1 → X0
t (black dots)

due to the incorrect CI result X1
t−1 ⊥⊥ X0

t |X1
t−2 (con-

dition marked by blue box). Later this then leads to
the false positive X1

t−2 → X0
t (grey link) since X1

t−1
is not conditioned on. In a similar way the true link
X1
t−2 → X3

t is missed leading to the false positive
X0
t−1 → X3

t . Further, the true contemporaneous link
X2
t ◦−◦X3

t (similarly X3
t ◦−◦X4

t ) is removed when con-
ditioning on S = (X4

t−1, X
3
t−1) (blue boxes), which

leads to the false positive autodependencies at lag 2 for
X2
t , X

4
t , while the false autodependency X3

t−2 → X3
t is

due to missing X1
t−2 → X3

t . This illustrates the pattern
of a cascade of false negative errors (missing links) lead-
ing to false positives in later stages of the PC algorithm.

What determines the removal of a true link in the finite
sample case? Detection power depends on sample size,
the significance level αPC, the CI test dimension (p+ 2),
and effect size, e.g., the absolute ParCorr (population)
value, here denoted I(Xi

t−τ ;Xj
t |S) for some condition-

ing set S. Within each p-iteration the sample size, αPC,
and the dimension are the same and a link will be re-
moved if I(Xi

t−τ ;Xj
t |S) falls below the αPC-threshold

for any considered S. Hence, the overall minimum effect
size minS [I(Xi

t−τ ;Xj
t |S)] determines whether a link is

removed. The PC algorithm will iterate through all sub-
sets of adjacencies such that this minimum can become
very small. Low effect size can be understood as a low
(causal) signal-to-noise ratio: Here I(X1

t−1;X0
t |X1

t−2)
is small since the signal X1

t−1 is reduced by condition-
ing on its autodependency X1

t−2 and the ‘noise’ in X0
t is

large due to its strong autocorrelation.

But autocorrelation can also be a blessing. The con-
temporaneously coupled pair (X7, X8) illustrates a case
where autocorrelation helps to identify the orientation of
the link. Without autocorrelation the output of PC would
be an unoriented link to indicate the Markov equivalence
class. On the other hand, the detection rate here is rather
weak since, as above, the signal (link from X8

t ) is small
compared to the noise (autocorrelation in X7).

This illustrates the curse and blessing of autocorrelation.
In summary, the PC algorithm often results in false neg-
atives (low recall) and these then lead to false positives.
Another reason for false positives are ill-calibrated tests:
To correctly model the null distribution, each individual
CI test would need to account for autocorrelation, which
is difficult in a complex multivariate and potentially non-
linear setting [Runge, 2018a]. In the experiments we will
see that the PC algorithm features inflated false positives.

As a side comment, the pair (X5, X6) depicts a feed-
back cycle. These often occur in real data and the exam-
ple shows that time series graphs allow to resolve time-
delayed feedbacks while an aggregated summary graph
would contain a cyclic dependency and summary graph-
based methods assuming acyclic graphs would not work.
The orientation of the contemporaneous link X6

t → X5
t

is achieved via rule R1 in the orientation phase of PC
(Alg. S3).



3 PCMCI+

3.1 ALGORITHM

The goal of PCMCI+ is to optimize the choice of con-
ditioning sets in CI tests in order to increase detection
power and at the same time maintain well-calibrated
tests. The approach is based on two central ideas, (1) sep-
arating the skeleton edge removal phase into a lagged and
contemporaneous conditioning phase with much fewer
CI tests and (2) utilizing the momentary conditional in-
dependence (MCI) test [Runge et al., 2019b] idea in the
contemporaneous conditioning phase. Below, I explain
the reasoning behind.

First, the goal of PC’s skeleton phase is to remove all
those adjacencies that are due to indirect paths and com-
mon causes by conditioning on subsets S of the vari-
ables’ neighboring adjacencies in each iteration. Con-
sider a variable Xj

t . If we test lagged adjacencies from
nodes Xi

t−τ ∈ X−t conditional on the whole past, i.e.,
S = X−t \{Xi

t−τ}, the only indirect adjacencies remain-
ing are due to paths through contemporaneous parents of
Xj
t . This is in contrast to conditioning sets on contempo-

raneous adjacencies which can also open up pathsXj
t →

Xk
t ← Xi

t−τ if Xk
t is conditioned on. One reason why

the PC algorithm tests all combinations of subsets S is to
avoid opening up such collider paths. Therefore, one ap-
proach would be to start by S = X−t \ {Xi

t−τ} and then
iterate through contemporaneous conditions. A similar
idea lies behind the combination of GC and the PC al-
gorithm in [Moneta et al., 2011]. However, conditioning
on large-dimensional conditioning sets strongly affects
detection power [Runge et al., 2019b]. To avoid this, the
lagged conditioning phase of PCMCI+ (Alg. 1) tests all
pairs (Xi

t−τ , X
j
t ) for τ > 0 conditional on only the

strongest p adjacencies of Xj
t in each p-iteration without

going through all p-dimensional subsets of adjacencies.
This choice (i) improves the causal signal-to-noise ratio
and recall since for a given test Xi

t−τ ⊥⊥ Xj
t | S the

‘noise’ in Xj
t due to other lagged adjacencies is condi-

tioned out, (ii) leads to fewer CI tests further improving
recall, and (iii) speeds up the skeleton phase. We de-
note the lagged adjacency set resulting from Alg. 1 as
B̂−t (Xj

t ). Lemma 1 in Sect. 3.2 states that the only re-
maining indirect adjacencies in B̂−t (Xj

t ) are then due to
paths passing through contemporaneous parents of Xj

t .

Secondly, in Alg. 2 the graph G is initialized with all
contemporaneous adjacencies plus all lagged adjacencies
from B̂−t (Xj

t ) for all Xj
t . Algorithm 2 tests all (un-

ordered lagged and ordered contemporaneous) adjacent
pairs (Xi

t−τ , X
j
t ) and iterates through contemporaneous

conditions S ⊆ At(Xj
t ) with the MCI test

Xi
t−τ⊥⊥X

j
t | S, B̂−t (Xj

t )\{Xi
t−τ}, B̂−t−τ (Xi

t−τ ). (2)

The condition on B̂−t (Xj
t ) blocks paths through lagged

parents and the advantage of the additional conditioning
on B̂−t−τ (Xi

t−τ ) is discussed in the following. We de-
note the variant without the condition on B̂−t−τ (Xi

t−τ )
as PCMCI+0 . Both versions are followed by the collider
orientation phase (Alg. S2) and rule orientation phase
(Alg. S3) which are deferred to the SM since they are
equivalent to the PC algorithm with the modification that
the additional CI tests in the collider phase for the con-
servative or majority rule are also based on the test (2).

We now discuss PCMCI+0 and PCMCI+ on the example
in Fig. 1. Algorithm 1 tests X1

t−1 → X0
t conditional

on S = {X0
t−1} for p = 1 and S = {X0

t−1, X
1
t−2} for

p = 2 as the two strongest adjacencies (as determined
by the test statistic value, see pseudo-code). In both of
these tests the effect size I (causal signal-to-noise ratio)
is much larger than for the condition on S = {X1

t−2}
which lead to the removal of X1

t−1 → X0
t in the PC al-

gorithm. In Sect. 3.2 we elaborate more rigorously on
effect size. In the example B̂−t (X2

t ) is indicated as blue
boxes in the second panel and contains lagged parents
as well as adjacencies due to paths passing through con-
temporaneous parents of X2

t . One false positive, likely
due to an ill-calibrated test caused by autocorrelation, is
marked by a star.

Based on these lagged adjacencies, Alg. 2 with the
PCMCI+0 option then recovers all lagged links (3rd
panel), but it still the misses contemporaneous adjacen-
cies X2

t ◦−◦X3
t and X3

t ◦−◦X4
t and we also see strong

lagged false positives fromX3 toX2 andX4. What hap-
pened here? The problem are now tests on contempora-
neous links: The CI test for PCMCI+0 in the p = 0 loop,
like the original PC algorithm, will test ordered contem-
poraneous pairs. Hence, first X2

t ◦−◦X3
t conditional on

B̂−t (X3
t ) and, if the link is not removed, X3

t ◦−◦X2
t con-

ditional on B̂−t (X2
t ). Here X2

t ◦−◦X3
t is removed condi-

tional on B̂−t (X3
t ) (indicated by blue boxes in the panel)

because I(X2
t ;X3

t |B̂−t (X3
t )) falls below the significance

threshold.

The second central idea of PCMCI+ is to improve the
effect size of CI tests for contemporaneous links by con-
ditioning on both lagged adjacencies B̂−t in the CI test (2)
(see blue and red boxes in Fig. 1 right panel). At least for
the initial phase p = 0 one can prove that for non-empty
B̂−t the effect size of the PCMCI+ CI test is always
strictly larger than that of the PCMCI+0 test (Thm. 4).
I conjecture that this similarly holds for PCMCI+ vs. the
PC algorithm. Higher effect size leads to higher recall



and PCMCI+ now recovers all lagged as well as contem-
poraneous links and also correctly removes the lagged
false positives that PCMCI+0 obtains. Also the contem-
poraneous coupled pair (X7, X8) is now much better
detected since the MCI effect size I(X7

t ;X8
t |X7

t−1) is
larger than I(X7

t ;X8
t ), one of the two PCMCI+0 and PC

algorithm effect sizes tested here.

Another advantage, discussed in [Runge et al., 2019b] is
that PCMCI+ CI tests are better calibrated, in contrast
to PCMCI+0 and PC algorithm tests, since the condition
on both parents removes autocorrelation effects. Note
that for lagged links the effect size of PCMCI+ is gen-
erally smaller than that of PCMCI+0 since the extra con-
dition on B̂−t−τ (Xi

t−τ ) can only reduce effect size (see
[Runge et al., 2012]). This is the cost of avoiding inflated
false positives.

In summary, the central PCMCI+ idea is to increase ef-
fect size in individual CI tests to achieve higher detec-
tion power and at the same time maintain well-controlled
false positives also for high autocorrelation. Correct ad-
jacency information then leads to better orientation recall
in Alg. S2, S3. The other advantage of PCMCI+ com-
pared to the PC algorithm is a much faster and, as nu-
merical examples show, also much less variable runtime.

The full algorithm is detailed in pseudo-code Algo-
rithms 1,2,S2,S3 with differences to PC and PCMCI+0
indicated. Note that pairs (Xi

t−τ , X
j
t ) in lines 5 and

6 of Alg. 2 are ordered for τ = 0 and unordered for
τ > 0. One can construct (rather conservative) p-values
for the skeleton adjacencies (Xi

t−τ , X
j
t ) by taking the

maximum p-value over all CI tests conducted in Alg. 2.
A link strength can be defined corresponding to the test
statistic value of the maximum p-value. Based on the PC
stable variant, PCMCI+ is fully order-independent. Here
shown is the majority-rule implementation of the collider
phase, the version without handling ambiguous triples
and for the conservative rule are detailed in Alg. S2. Note
that the tests in the collider phase also use the CI tests (2).

Like other CI-based methods, PCMCI+ has the free pa-
rameters αPC, τmax, and the choice of the CI test. αPC

can be chosen based on cross-validation or an infor-
mation criterion (implemented in tigramite). τmax

should be larger or equal to the maximum true time lag
of any parent and can in practice also be chosen based on
model selection. However, the numerical experiments
indicate that, in contrast to GC, a too large τmax does
not degrade performance much and τmax can also be
chosen based on the lagged dependence functions, see
[Runge et al., 2019b]. PCMCI+ can flexibly be com-
bined with different CI tests for nonlinear causal discov-
ery, and for different variable types (discrete or continu-
ous, univariate or multivariate).

The computational complexity of PCMCI+ strongly de-
pends on the network structure. The sparser the causal
dependencies, the faster the convergence. Compared to
the original PC algorithm with worst-case exponential
complexity, the complexity is much reduced since Alg. 1
only has polynomial complexity [Runge et al., 2019b]
and Alg. 2 only iterates through contemporaneous condi-
tioning sets, hence the worst-case exponential complex-
ity only applies to N and not to Nτmax.

3.2 THEORETICAL RESULTS

This section states asymptotic consistency, finite sample
order-independence, and further results regarding effect
size and false positive control. The consistency of net-
work learning algorithms is separated into soundness,
i.e., the returned graph has correct adjacencies, and com-
pleteness, i.e., the returned graph is also maximally in-
formative (links are oriented as much as possible). We
start with the following assumptions.

Assumptions 1 (Asymptotic case). Throughout this pa-
per we assume Causal Sufficiency, the Causal Markov
Condition, the Adjacency Faithfulness Conditions, and
consistent CI tests (oracle). In the present time series
context we also assume stationarity and time-order and
that the maximum time lag τmax ≥ τPmax, where τPmax

is the maximum time lag of any parent in the SCM (1).
Furthermore, we rule out selection variables and mea-
surement error.

Definitions of these assumptions, adapted from
[Spirtes et al., 2000] to the time series context, are in
Sect. S1 and all proofs are in Sect. S2. We start with the
following lemma.

Lemma 1. Under Assumptions 1 Alg. 1 returns a set
that always contains the parents of Xj

t and, at most, the
lagged parents of all contemporaneous ancestors of Xj

t ,
i.e., B̂−t (Xj

t ) =
⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t).

B̂−t (Xj
t ) contains all lagged parents of all contempora-

neous ancestors if the weaker Adjacency Faithfulness as-
sumption is replaced by standard Faithfulness.

This establishes that the conditions B̂−t (Xj
t ) estimated

in the first phase of PCMCI+ will suffice to block all
lagged confounding paths that do not go through con-
temporaneous links. This enables to prove the soundness
of Alg. 2, even though Alg. 2 is a variant of the PC algo-
rithm that only iterates through contemporaneous condi-
tioning sets.

Theorem 1 (Soundness of PCMCI+). Algorithm 2 re-
turns the correct adjacencies under Assumptions 1, i.e.,
Ĝ∗ = G∗, where the G∗ denotes the skeleton of the time
series graph.



Algorithm 1 (PCMCI+ / PCMCI+0 lagged skeleton phase)

Require: Time series dataset X = (X1, . . . , XN ), max. time lag τmax, significance threshold αPC, CI test
CI(X, Y, Z) returning p-value and test statistic value I

1: for all Xj
t in Xt do

2: Initialize B̂−t (Xj
t )=X−t =(Xt−1, . . . ,Xt−τmax) and Imin(Xi

t−τ , X
j
t ) =∞ ∀ Xi

t−τ ∈ B̂−t (Xj
t )

3: Let p = 0
4: while any Xi

t−τ ∈ B̂−t (Xj
t ) satisfies |B̂−t (Xj

t )\{Xi
t−τ}| ≥ p do

5: for all Xi
t−τ in B̂−t (Xj

t ) satisfying |B̂−t (Xj
t )\{Xi

t−τ}| ≥ p do
6: S = first p variables in B̂−t (Xj

t ) \ {Xi
t−τ}

7: (p-value, I)← CI(Xi
t−τ , X

j
t , S)

8: Imin(Xi
t−τ , X

j
t ) = min(|I|, Imin(Xi

t−τ , X
j
t ))

9: if p-value > αPC then mark Xi
t−τ for removal

10: Remove non-significant entries and sort B̂−t (Xj
t ) by Imin(Xi

t−τ , X
j
t ) from largest to smallest

11: Let p = p+ 1

12: return B̂−t (Xj
t ) for all Xj

t in Xt

Algorithm 2 (PCMCI+ / PCMCI+0 contemporaneous skeleton phase / PC full skeleton phase)

Require: Time series dataset X = (X1, . . . , XN ), max. time lag τmax, significance threshold αPC, CI(X, Y, Z),
PCMCI+ / PCMCI+0 : B̂−t (Xj

t ) for all Xj
t in Xt

1: PCMCI+ / PCMCI+0 : Form time series graph G with lagged links from B̂−t (Xj
t ) for allXj

t in Xt and fully connect
all contemporaneous variables, i.e., add Xi

t◦−◦X
j
t for all Xi

t 6= Xj
t ∈ Xt

PC: Form fully connected time series graph G with lagged and contemporaneous links
2: PCMCI+ / PCMCI+0 : Initialize contemporaneous adjacencies Â(Xj

t ) := Ât(Xj
t ) = {Xi

t 6=X
j
t ∈ Xt :

Xi
t◦−◦X

j
t in G}

PC: Initialize full adjacencies Â(Xj
t ) for all (lagged and contemporaneous) links in G

3: Initialize Imin(Xi
t−τ , X

j
t ) =∞ for all links in G

4: Let p = 0
5: while any adjacent pairs (Xi

t−τ , X
j
t ) for τ ≥ 0 in G satisfy |Â(Xj

t )\{Xi
t−τ}| ≥ p do

6: Select new adjacent pair (Xi
t−τ , X

j
t ) for τ ≥ 0 satisfying |Â(Xj

t )\{Xi
t−τ}| ≥ p

7: while (Xi
t−τ , X

j
t ) are adjacent in G and not all S ⊆ Â(Xj

t )\{Xi
t−τ} with |S| = p have been considered do

8: Choose new S⊆Â(Xj
t )\{Xi

t−τ} with |S|=p
9: PCMCI+: Set Z=(S, B̂−t (Xj

t )\{Xi
t−τ}, B̂−t−τ (Xi

t−τ ))

PCMCI+0 : Set Z=(S, B̂−t (Xj
t )\{Xi

t−τ})
PC: Set Z=S

10: (p-value, I)← CI(Xi
t−τ , X

j
t ,Z)

11: Imin(Xi
t−τ , X

j
t ) = min(|I|, Imin(Xi

t−τ , X
j
t ))

12: if p-value > αPC then
13: Delete link Xi

t−τ → Xj
t for τ > 0 (or Xi

t◦−◦X
j
t for τ = 0) from G

14: Store (unordered) sepset(Xi
t−τ , X

j
t ) = S

15: Let p = p+ 1
16: Re-compute Â(Xj

t ) from G and sort by Imin(Xi
t−τ , X

j
t ) from largest to smallest

17: return G, sepset

To prove the completeness of PCMCI+, we start with the
following observation.

Lemma 2. Due to time-order and the stationarity as-
sumption, the considered triples in the collider phase
(Alg. S2) and rule orientation phase (Alg. S3) can be re-

stricted as follows: In the collider orientation phase only
unshielded triples Xi

t−τ → Xk
t ◦−◦X

j
t (for τ > 0) or

Xi
t◦−◦Xk

t ◦−◦X
j
t (for τ = 0) in G where (Xi

t−τ , X
j
t ) are

not adjacent are relevant. For orientation rule R1 triples
Xi
t−τ → Xk

t ◦−◦X
j
t where (Xi

t−τ , X
j
t ) are not adjacent,



for orientation rule R2 triples Xi
t → Xk

t → Xj
t with

Xi
t◦−◦X

j
t , and for orientation rule R3 pairs of triples

Xi
t◦−◦Xk

t → Xj
t and Xi

t◦−◦X l
t → Xj

t where (Xk
t , X

l
t)

are not adjacent and Xi
t◦−◦X

j
t are relevant. These re-

strictions imply that only contemporaneous parts of sep-
arating sets are relevant for the collider phase.
Theorem 2 (PCMCI+ is complete). PCMCI+ (Algo-
rithms 1,2,S2,S3) when used with the conservative rule
for orienting colliders in Alg. S2 returns the correct
CPDAG under Assumptions 1. Under standard Faith-
fulness also PCMCI+ when used with the majority rule
or the standard orientation rule is complete.

Also the proof of order-independence fol-
lows straightforwardly from the proof in
[Colombo and Maathuis, 2014]. Of course, order
independence does not apply to time-order.
Theorem 3 (Order independence). Under Assump-
tions 1 PCMCI+ with the conservative or majority rule
in Alg. S2 is independent of the order of variables
(X1, . . . , XN ).

Next, we consider effect size. The toy example showed
that a major problem of PCMCI+0 (and also PC) is lack
of detection power for contemporaneous links. A main
factor of statistical detection power is effect size, i.e., the
population value of the test statistic considered (e.g., ab-
solute partial correlation). In the following, I will base
my argument in an information-theoretic framework and
consider the conditional mutual information as a gen-
eral test statistic, denoted I . In Alg. 2 PCMCI+0 will
test a contemporaneous dependency Xi

t◦−◦X
j
t first with

the test statistic I(Xi
t ;X

j
t |B̂−t (Xj

t )), and, if that test was
positive, secondly with I(Xi

t ;X
j
t |B̂−t (Xi

t))). If either
of these tests finds (conditional) independence, the adja-
cency is removed. Therefore, the minimum test statistic
value determines the relevant effect size. On the other
hand, PCMCI+ treats both cases symmetrically since the
test statistic is always I(Xi

t ;X
j
t |B̂−t (Xj

t ), B̂−t (Xi
t)).

Theorem 4 (Effect size of MCI tests for p = 0). Under
Assumptions 1 the PCMCI+ oracle case CI tests in Alg. 2
for p = 0 for contemporaneous true linksXi

t → Xj
t ∈ G

have an effect size that is always greater than that of the
PCMCI+0 CI tests, i.e., I(Xi

t ;X
j
t |B̂−t (Xj

t ), B̂−t (Xi
t)) >

min(I(Xi
t ;X

j
t |B̂−t (Xj

t )), I(Xi
t ;X

j
t |B̂−t (Xi

t))) if both
Xi
t and Xj

t have parents that are not shared with the
other.

I conjecture that this result holds similarly for p > 0 and
also that PCMCI+ has greater effect sizes than the PC
algorithm since the latter iterates over all subsets of adja-
cencies and, hence, the minimum is taken generally over
an even larger set leading to even smaller effect sizes.
For lagged links the effect size of the PCMCI+ tests is

always smaller (or equal) than that of the PCMCI+0 tests
(see [Runge et al., 2012]).

Last, we discuss false positive control. While the ef-
fect size result regards detection power, in the following
I give a mathematical intuition why the MCI tests are
better calibrated than the PC algorithm CI tests and con-
trol false positives below the expected significance level.
Lemma 1 implies that even though Alg. 1 does not aim to
estimate the contemporaneous parents, it still yields a set
of conditions that shieldsXj

t from the ‘infinite’ past X−t ,
either by blocking the parents of Xj

t or by blocking in-
direct contemporaneous paths through contemporaneous
ancestors of Xj

t . Blocking paths from the infinite past,
I conjecture, is key to achieve well-calibrated CI tests
in Alg. 2. The authors in [Runge et al., 2019b] showed
that under certain model assumptions the MCI tests re-
duce to CI tests among the noise terms η from model (1)
which are assumed to be i.i.d. and help to achieve well-
calibrated CI tests. In the numerical experiments be-
low we can see that the PC algorithm has inflated false
positive for high autocorrelation, while PCMCI+ well
controls false positives, but a formal proof of correct
false positive control for this challenging nonlinear, high-
dimensional setting is beyond the scope of this paper.

4 NUMERICAL EXPERIMENTS

We consider a number of typical challenges
[Runge et al., 2019a], contemporaneous and time
lagged causal dependencies, strong autocorrelation,
large number of variables and considered time lags,
different noise distributions and nonlinearity, in the
following additive variant of model (1):

Xj
t = ajX

j
t−1 +

∑
icifi(X

i
t−τi) + ηjt (3)

for j ∈ {1, . . . , N}. Autocorrelations aj are uniformly
drawn from [max(0, a − 0.3), a] for a as indicated in
Fig. 2 and ηj is i.i.d. and follows a zero-mean Gaussian
N or Weibull W (scale parameter 2) distribution (de-
pending on setup) with standard deviation drawn from
[0.5, 2]. In addition to autodependency links, for each
model L = b1.5 · Nc (except for N = 2 with L = 1)
cross-links are chosen whose functional dependencies
are linear or fi(x) = f (2)(x) = (1 + 5xe−x

2/20)x (de-
pending on setup), with f (2) designed to yield more sta-
tionary dynamics. Coefficients ci are drawn uniformly
from ±[0.1, 0.5]. 30% of the links are contemporane-
ous (τi = 0) and the remaining τi are drawn from [1, 5].
Only stationary models are considered. We have an av-
erage cross-in-degree of d = 1.5 for all network sizes
(plus an auto-dependency) implying that models become
sparser for larger N . We consider several model se-
tups: linear Gaussian, linear mixed noise (among the N



variables: 50% Gaussian, 50% Weibull), and nonlinear
mixed noise (50% linear, 50% f (2)(x); 66% Gaussian,
34% Weibull).

For the linear model setups we consider the PC algorithm
and PCMCI+ in the majority-rule variant with ParCorr
and compare these with GCresPC [Moneta et al., 2011],
a combination of GC with PC applied to residu-
als, and a autoregressive model version of LiNGAM
[Hyvärinen et al., 2010], a representative of the SCM
framework (implementation details in Sect. S4). For
the LiNGAM implementation I could not find a way
to set a significance level and used the LASSO option
which prunes ‘non-active’ links to zero. Both GCresPC
and LiNGAM assume linear dependencies and LiNGAM
also non-Gaussianity. For the nonlinear setup the PC al-
gorithm and PCMCI+ are implemented with the GPDC
test [Runge et al., 2019b] that is based on Gaussian pro-
cess regression and a distance correlation test on the
residuals, which is suitable for a large class of nonlinear
dependencies with additive noise.

Performance is evaluated as follows: True (TPR) and
false positive rates (FPR, shown to evaluate false positive
control, not applicable to LiNGAM) for adjacencies are
distinguished between lagged cross-links (i 6= j), con-
temporaneous, and autodependency links. Due to time
order, lagged links (and autodependencies) are automati-
cally oriented. Contemporaneous orientation precision is
measured as the fraction of correctly oriented links (◦−◦
or→) among all estimated adjacencies, and recall as the
fraction of correct orientations among all true contempo-
raneous links. Further shown is the fraction of conflicting
links among all detected contemporaneous adjacencies
(not applicable to LiNGAM). All metrics (and their std.
errors) are computed across all estimated graphs from
500 realizations of model (3) at time series length T . The
average runtimes were evaluated on Intel Xeon Platinum
8260. In Fig. 2 results for the linear Gaussian setup with
default model parameters N = 5, T = 500, a = 0.95
and method parameters τmax = 5 and α = 0.01 (not ap-
plicable to LiNGAM) are shown. Each of the four panels
shows results for varying one of a, N, T, τmax. The in-
sets show ANOVA statistics r ± ∆̄r [per unit], where r
is the performance metric at the leftmost parameter on
the x-axis (a, N, T, τmax, respectively) and ∆̄r denotes
the average change per parameter unit. In the adjacency
subplots the statistics refer to lagged links.

Figure 2A demonstrates that the TPR of PCMCI+ and
GCresPC for contemporaneous links is stable even un-
der high autocorrelation while PC and LiNGAM show
strong declines. Since LiNGAM has no αPC for FPR-
control we focus on its relative changes rather than abso-
lute performance. Lagged TPR decreases strongly for

PC while the other methods are more robust. FPR is
well-controlled for PCMCI+ while PC and slightly also
GCresPC show inflated lagged FPR for high autocorre-
lation. LiNGAM features a strong increase of lagged
FPR. These adjacency results translate into higher con-
temporaneous orientation recall for PCMCI+ which in-
creases with autocorrelation, while it decreases for all
other methods. GCresPC has steady low recall since it
does not use lagged links in the orientation phase. Except
for GCresPC, all methods have increasing precision with
PCMCI+ and PC outperforming LiNGAM. PCMCI+

shows almost no conflicts while PC’s conflicts increase
with autocorrelation until low power reduces them again.
Finally, runtimes are almost constant for GCresPC and
LiNGAM, while they increase for PCMCI+ and much
stronger for PC.

Figure 2B shows that PCMCI+ and GCresPC have the
highest TPR for increasing number of variables N , espe-
cially for contemporaneous links. FPR is well controlled
only for PCMCI+ while PC has false positives for small
N where model connectivity is denser and false nega-
tives are more likely leading to false positives. For high
N PC has false positives only regarding autodependen-
cies while inflated FPR appears for GCresPC. PCMCI+

has more than twice as much contemporaneous recall
compared to the other methods and is almost not af-
fected by higher N . Orientation precision is decreas-
ing for all methods (except PC) with a higher decrease
for PCMCI+. Runtime is increasing at a much smaller
rate for PCMCI+ compared to PC, which also has a very
high runtime variability across the different model real-
izations. LiNGAM and especially GCresPC are fastest.

PCMCI+, GCresPC, and LiNGAM benefit similarly and
PC less so for increasing sample size regarding TPR
(Fig. 2C). FPR is still not controlled for PC for large sam-
ple sizes, lagged FPR increases for GCresPC. PCMCI+

shows the highest increases in contemporaneous recall
and precision. Runtime increases are moderate com-
pared to PC, conflicts decrease.

Last, Fig. 2D shows that all methods are relatively ro-
bust to large maximum time lags τmax (beyond the true
max. time lag 5) for the considered sample size T = 500.
Contemporaneous FPR and runtime increase for PC.

In the SM further results are shown. For too largeNτmax

(relative to T ) GCresPC and LiNGAM (despite LASSO-
regularization) sharply drop in performance. For the lin-
ear mixed noise setup (Fig. S2) results are almost un-
changed for all methods except for LiNGAM for which
recall and precision rise, as expected. Recall is then
higher than PCMCI+ for low autocorrelation, but still
much lower for high autocorrelation and largeN or τmax,
at similar precision.
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Figure 2: Numerical experiments with linear Gaussian setup for varying (A) autocorrelation strength a (B) number
of variables N (C) sample size T and (D) maximum time lag τmax. All remaining setup parameters indicated in the
top right. Errorbars show std. errors or the 90% range (for runtime). The insets show ANOVA statistics.

In the nonlinear mixed noise setup (Fig. S3), the differ-
ence between PC and PCMCI+ is similar. We observe
slight FPR inflation for high autocorrelation. GPDC
seems to not work well in high-dimensional, highly au-
tocorrelated settings. Runtime for GPDC compared to
ParCorr is orders of magnitude longer, especially for PC.
Further figures in the SM show many combinations of
a, N, T, τmax and αPC for the model setups and demon-
strate that the above findings are robust.

5 CONCLUSIONS

PCMCI+ improves the reliability of CI tests by opti-
mizing the choice of conditioning sets and yields much
higher recall, well-controlled false positives, and faster
runtime than the original PC algorithm for highly au-
tocorrelated time series, while maintaining similar per-
formance for low autocorrelation. The algorithm well
exploits sparsity in high-dimensional settings and can
flexibly be combined with different CI tests for non-
linear causal discovery, and for different variable types
(discrete or continuous, univariate or multivariate). Au-
tocorrelation is actually key to increase contemporane-

ous orientation recall since it creates triples Xi
t−1 →

Xi
t◦−◦X

j
t that can often be oriented while an isolated

link Xi
t◦−◦X

j
t stays undirected in the Markov equiva-

lence class, a drawback of CI-based methods. If the data
is at least non-Gaussian, a SCM method like LiNGAM
can exploit this property and recover directionality in
such cases. Still, we saw that LiNGAM suffers from
large autocorrelation. PCMCI+ is available as part of
the tigramite Python package at https://github.
com/jakobrunge/tigramite. A next step will be
to extend the present ideas to an algorithm accounting
for latent confounders and to explore combinations be-
tween SCM-based methods and PCMCI+. The numeri-
cal results will be contributed to the causality benchmark
platform www.causeme.net [Runge et al., 2019a] to
facilitate a further expanded method evaluation.
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J., van Nes, E. H., Peters, J., Quax, R., Reichstein,
M., Scheffer, M., Schölkopf, B., Spirtes, P., Sug-
ihara, G., Sun, J., Zhang, K., and Zscheischler, J.
(2019a). Inferring causation from time series in
earth system sciences. Nature Comm., 10(1):2553.

[Runge et al., 2012] Runge, J., Heitzig, J., Marwan, N.,
and Kurths, J. (2012). Quantifying causal coupling
strength: A lag-specific measure for multivariate
time series related to transfer entropy. Phys. Rev.
E, 86(6):061121.

[Runge et al., 2019b] Runge, J., Nowack, P.,
Kretschmer, M., Flaxman, S., and Sejdinovic,
D. (2019b). Detecting and quantifying causal
associations in large nonlinear time series datasets.
Science Advances, eaau4996(5).

[Sen et al., 2017] Sen, R., Suresh, A. T., Shanmugam,
K., Dimakis, A. G., and Shakkottai, S. (2017).
Model-Powered Conditional Independence Test. In
Proc. 30th Conf. Adv. Neural Inf. Process. Syst.,
pages 2955–2965.

[Spirtes and Glymour, 1991] Spirtes, P. and Glymour,
C. (1991). An Algorithm for Fast Recovery of
Sparse Causal Graphs. Soc. Sci. Comput. Rev.,
9(1):62–72.

[Spirtes et al., 2000] Spirtes, P., Glymour, C., and
Scheines, R. (2000). Causation, Prediction, and
Search. MIT Press, Boston, MA.

[Spirtes and Zhang, 2016] Spirtes, P. and Zhang, K.
(2016). Causal discovery and inference: concepts
and recent methodological advances. Appl. Infor-
matics, 3(1):3.

[Zhang et al., 2011] Zhang, K., Peters, J., Janzing, D.,
and Schölkopf, B. (2011). Kernel-based Condi-
tional Independence Test and Application in Causal
Discovery. In Proc. 27th Conf. Uncertain. Artif. In-
tell., pages 804–813.



Supplementary Material: Discovering contemporaneous and lagged causal
relations in autocorrelated nonlinear time series datasets

Jakob Runge
German Aerospace Center
Institute of Data Science

07745 Jena, Germany

S1 Definitions

The following definitions are adaptations of the standard assumptions of causal discovery to the time series case.
Here we consider the causally sufficient case and assume that all variables X = (X1, . . . , XN ) of the underlying
SCM (1) are observed. Additionally, we assume that the maximum PCMCI+ time lag τmax ≥ τPmax, where τPmax is
the maximum time lag of any parent in the SCM (1).

Definition S1 (Causal Markov Condition). The joint distribution of a process X whose causal structure can be repre-
sented in a time series graph G fulfills the Causal Markov Condition iff for all Xj

t ∈ Xt every non-descendent of Xj
t

in G is independent of Xj
t given the parents P(Xj

t ). In particular, X−t \P(X
j
t ) ⊥⊥ Xj

t | P(X
j
t ) since all variables in

X−t are non-descendants of Xj
t by time-order.

Note that for the SCM (1) with independent noise terms the Causal Markov Condition is automatically fulfilled.

Definition S2 (Adjacency and standard faithfulness Condition). The joint distribution of a process X whose causal
structure can be represented in a time series graph G fulfills the Adjacency Faithfulness Condition iff for all disjoint
Xi
t−τ , X

j
t ,S ∈ X−t+1 with τ > 0

Xi
t−τ ⊥⊥ X

j
t | S ⇒ Xi

t−τ → Xj
t /∈ G

Xi
t−τ → Xj

t ∈ G ⇒ Xi
t−τ��⊥⊥X

j
t | S (contrapositive)

and with τ = 0

Xi
t ⊥⊥ X

j
t | S ⇒ Xi

t◦−◦X
j
t /∈ G

Xi
t◦−◦X

j
t ∈ G ⇒ Xi

t��⊥⊥X
j
t | S (contrapositive) .

Furthermore, the variables fulfill the (standard) Faithfulness Condition iff for τ ≥ 0

Xi
t−τ ⊥⊥ X

j
t | S ⇒ Xi

t−τ ./ X
j
t | S

Xi
t−τ��./X

j
t | S ⇒ Xi

t−τ��⊥⊥X
j
t | S (contrapositive) .

S2 Proofs

S2.1 Proof of Lemma 1

We first consider the following Lemma:

Lemma S1. Algorithm 1 returns a superset of lagged parents under Assumptions 1, i.e., P−t (X
j
t ) ⊆ B̂−t (X

j
t ) for all

Xj
t in Xt.



Proof. We need to show that for arbitrary (Xi
t−τ , X

j
t ) with τ > 0 we have Xi

t−τ /∈ B̂−t (X
j
t ) ⇒ Xi

t−τ /∈ P−t (X
j
t ).

Algorithm 1 removesXi
t−τ from B̂−t (X

j
t ) iffXi

t−τ ⊥⊥ X
j
t | S for some S ⊆ B̂−t (X

j
t )\{Xi

t−τ} in the iterative CI tests.
Then Adjacency Faithfulness directly implies that Xi

t−τ is not adjacent to Xj
t and in particular Xi

t−τ /∈ P−t (X
j
t ).

With this step we can prove Lemma 1.

Proof. The lemma states that under Assumptions 1 with Adjacency Faithfulness replaced by standard Faithfulness
Alg. 1 for all Xj

t ∈ Xt returns B̂−t (X
j
t ) =

⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t) where Ct(Xj
t ) denotes the contemporaneous

ancestors of Xj
t . We need to show that for arbitrary Xi

t−τ , X
j
t ∈ X−t+1 with τ > 0: (1) Xi

t−τ /∈ B̂−t (X
j
t ) ⇒ Xi

t−τ /∈⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t) and (2) Xi
t−τ ∈ B̂−t (X

j
t ) ⇒ Xi

t−τ ∈
⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t).

Ad 1) Algorithm 1 removes Xi
t−τ from B̂−t (X

j
t ) iff Xi

t−τ ⊥⊥ Xj
t | S for some S ⊆ B̂−t (X

j
t )\{Xi

t−τ} in the iterative
CI tests. Then standard Faithfulness implies thatXi

t−τ ./ X
j
t | S and in particularXi

t−τ /∈ P−t (X
j
t ), as proven already

in Lemma S1 under the weaker Adjacency Faithfulness Condition. To show that Xi
t−τ /∈

⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t)

we note that S ⊆ B̂−t (X
j
t )\{Xi

t−τ} does not include any contemporaneous conditions and, hence, all contem-
poraneous directed paths from contemporaneous ancestors of Xj

t are open and also paths from parents of those
ancestors are open. If Xi

t−τ ∈
⋃
Xi

t∈Ct(X
j
t )
P−t (Xi

t), by the contraposition of standard Faithfulness we should

observe Xi
t−τ��⊥⊥X

j
t | S. Then the fact that on the contrary we observe Xi

t−τ ⊥⊥ Xj
t | S implies that Xi

t−τ /∈⋃
Xi

t∈Ct(X
j
t )
P−t (Xi

t).

Ad 2) Now we have Xi
t−τ ∈ B̂−t (X

j
t ) which implies that Xi

t−τ��⊥⊥X
j
t | B̂−t (X

j
t )\{Xi

t−τ} in the last iteration
step of Alg. 1. By (1), B̂−t (X

j
t ) is a superset of

⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t). Define the lagged extra condi-

tions as W−t = B̂−t (X
j
t ) \ {

⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t), X
i
t−τ}. Since W−t is lagged, it is a non-descendant

of Xj
t or any Xk

t ∈ Ct(X
j
t ). We now proceed by a proof by contradiction. Suppose to the contrary that

Xi
t−τ /∈

⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t). The Causal Markov Condition applies to both Xi
t−τ and W−t and implies

that (Xi
t−τ ,W

−
t ) ⊥⊥ Xj

t |
⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t). From the weak union property of conditional independence

we get Xi
t−τ ⊥⊥ Xj

t |
⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t),W
−
t which is equivalent to Xi

t−τ ⊥⊥ Xj
t | B̂−t (X

j
t ) \ {Xi

t−τ},
contrary to the assumption, hence Xi

t−τ ∈
⋃
Xi

t∈{X
j
t }∪Ct(X

j
t )
P−t (Xi

t).

S2.2 Proof of Theorem 1

Proof. The theorem states that under Assumptions 1 Ĝ∗ = G∗, where the G∗ denotes the skeleton of the time series
graph. We denote the two types of skeleton links → and ◦−◦ here generically as ?−? and can assume τmax ≥ τ ≥
0. We need to show that for arbitrary Xi

t−τ , X
j
t ∈ X−t+1: (1) Xi

t−τ?−?X
j
t /∈ Ĝ∗ ⇒ Xi

t−τ?−?X
j
t /∈ G∗ and

(2) Xi
t−τ?−?X

j
t /∈ G∗ ⇒ Xi

t−τ?−?X
j
t /∈ Ĝ∗.

Ad (1): Algorithm 2 deletes a link Xi
t−τ?−?X

j
t from Ĝ∗ iff Xi

t−τ ⊥⊥ Xj
t | S, B̂−t (X

j
t )\{Xi

t−τ}, B̂−t−τ (Xi
t−τ ) for

some S ⊆ Ât(Xj
t ) in the iterative CI tests with B̂−t (X

j
t ) estimated in Alg. 1. Ât(Xj

t ) denotes the contemporaneous
adjacencies. Then Adjacency Faithfulness directly implies that Xi

t−τ is not adjacent to Xj
t : Xi

t−τ?−?X
j
t /∈ G∗.

Ad (2): By Lemma 1 we know that B̂−t (X
j
t ) is a superset of the lagged parents of Xj

t . Denote the lagged, extra
conditions occurring in the CI tests of Alg. 2 as W−t = (B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (Xi
t−τ )) \ P(X

j
t ). W

−
t does not

contain parents of Xj
t and by the assumption also Xi

t−τ is not a parent of Xj
t . We further assume that for τ = 0

Xi
t is also not a descendant of Xj

t since that case is covered if we exchange Xi
t and Xj

t . Then the Causal Markov
Condition implies (Xi

t−τ ,W
−
t ) ⊥⊥ Xj

t | P(X
j
t ). By the weak union property of conditional independence this leads

to Xi
t−τ ⊥⊥ Xj

t | P(X
j
t ),W

−
t which is equivalent to Xi

t−τ ⊥⊥ Xj
t | P(X

j
t ), B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (Xi
t−τ ). Now

Alg. 2 iteratively tests Xi
t−τ ⊥⊥ Xj

t | S, B̂−t (X
j
t ) \ {Xi

t−τ}, B̂−t−τ (Xi
t−τ ) for all S ⊆ Ât(Xj

t ). By the first part of
this proof, the estimated contemporaneous adjacencies are always a superset of the true contemporaneous adjacencies,
i.e., At(Xj

t ) ⊆ Ât(X
j
t ), and by Lemma 1 B̂−t (X

j
t ) is a superset of the lagged parents. Hence, at some iteration step



S = Pt(Xj
t ) and Alg. 2 will find Xi

t−τ ⊥⊥ Xj
t | P(X

j
t ), B̂−t (X

j
t ) \ {Xi

t−τ}, B̂−t−τ (Xi
t−τ ) and remove Xi

t−τ?−?X
j
t

from Ĝ∗.

For empty conditioning sets S (p = 0), Alg. 2 is equivalent to the MCI algorithm [Runge et al., 2019b] with the
slight change that the latter is initialized with a fully connected (lagged) graph, which has no effect asymptotically. In
[Runge et al., 2019b] the authors prove the consistency of PCMCI assuming no contemporaneous causal links under
the standard Faithfulness Condition. The proof above implies that PCMCI is already consistent under the weaker
Adjacency Faithfulness Condition.

S2.3 Proof of Lemma 2

Proof. Time order and stationarity can be used to constrain the four cases as follows. Let us first consider a generic
triple Xi

ti?−?X
k
tk
?−?Xj

tj . By stationarity we can fix t = tj . We only need to consider cases with ti, tk ≤ t. If tk > tj ,
the triple is oriented already by time order and the case ti > tj is symmetric.

The possible triples in the collider phase of the original PC algorithm are Xi
ti?−?X

k
tk
?−?Xj

t where (Xi
ti , X

j
t ) are not

adjacent. For tk < t the time-order constraint automatically orients Xk
tk
→ Xj

t and hence Xk
tk

is a parent of Xj
t and

must always be in the separating set that makes Xi
ti and Xj

t independent. Hence we only need to consider tk = t

and can set τ = t − ti (τmax ≥ τ ≥ 0), leaving the two cases of unshielded triples Xi
t−τ → Xk

t ◦−◦X
j
t (for τ > 0)

or Xi
t◦−◦Xk

t ◦−◦X
j
t (for τ = 0) in G where (Xi

t−τ , X
j
t ) are not adjacent. Since Xk

t is contemporaneous to Xj
t , this

restriction implies that only contemporaneous parts of separating sets are relevant for the collider orientation phase.

For rule R1 in the orientation phase the original PC algorithm considers the remaining triples with Xi
t−τ → Xk

t that
were not oriented by the collider phase (or by time order). This leaves Xi

t−τ → Xk
t ◦−◦X

j
t where τmax ≥ τ ≥ 0.

For rule R2 the original PC algorithm considers Xi
ti → Xk

tk
→ Xj

t with Xi
ti◦−◦X

j
t . The latter type of link leads to

ti = t and time order restricts the triples to Xi
t → Xk

t → Xj
t with Xi

t◦−◦X
j
t .

For rule R3 the original PC algorithm considers Xi
ti◦−◦X

k
tk
→ Xj

t and Xi
ti◦−◦X

l
tl
→ Xj

t where (Xk
tk
, X l

tl
) are not

adjacent and Xi
ti◦−◦X

j
t . The latter constraint leads to ti = t and Xi

ti◦−◦X
k
tk

and Xi
ti◦−◦X

k
tl

imply tk = tl = t.
Hence we only need to check triples Xi

t◦−◦Xk
t → Xj

t and Xi
t◦−◦X l

t → Xj
t where (Xk

t , X
l
t) are not adjacent and

Xi
t◦−◦X

j
t .

S2.4 Proof of Theorem 2

Proof. We first consider the case under Assumptions 1 with Adjacency Faithfulness and PCMCI+ in conjunction
with the conservative collider orientation rule in Alg. S2. We need to show that all separating sets estimated in
Alg. S2 during the conservative orientation rule are correct. From the soundness (Theorem 1) and correctness of the
separating sets follows the correctness of the collider orientation phase and the rule orientation phase which implies
the completeness.

By Lemma 2 we only need to prove that in Alg. S2 for unshielded triples Xi
t−τ → Xk

t ◦−◦X
j
t (for τ > 0) or

Xi
t◦−◦Xk

t ◦−◦X
j
t (for τ = 0) the separating sets among subsets of contemporaneous neighbors of Xj

t and, if τ = 0, of
Xi
t , are correct. Algorithm S2 testsXi

t−τ ⊥⊥ X
j
t | S, B̂−t (X

j
t )\{Xi

t−τ}, B̂−t−τ (Xi
t−τ ) for all S⊆Ât(Xj

t )\{Xi
t−τ} and

for all S⊆Ât(Xi
t)\{X

j
t } (if τ = 0). Since PCMCI+ is sound, all adjacency information is correct and since all CI

tests are assumed correct, all information on separating sets is correct. Furthermore, with the conservative rule those
triples where only Adjacency Faithfulness, but not standard Faithfulness, holds will be correctly marked as ambiguous
triples.

Under standard Faithfulness the completeness requires to prove that PCMCI+ without the conservative orientation
rule yields correct separating set information. By Lemma 2 also here we need to consider only separating sets among
subsets of contemporaneous neighbors of Xj

t . Algorithm 2 tests Xi
t−τ ⊥⊥ Xj

t | S, B̂−t (X
j
t )\{Xi

t−τ}, B̂−t−τ (Xi
t−τ )

for all S⊆Ât(Xj
t )\{Xi

t−τ}. And again, since PCMCI+ is sound, all adjacency information is correct and since all
CI tests are assumed correct, all information on separating sets is correct, from which the completeness for this case
follows.



S2.5 Proof of Theorem 3

Proof. Order-independence follows straightforwardly from sticking to the PC algorithm version in
[Colombo and Maathuis, 2014]. In particular, Alg. 1 and Alg. 2 are order-independent since they are based on
PC stable where adjacencies are removed only after each loop over conditions of cardinality p. Furthermore,
the collider phase (Alg. S2) and rule orientation phase (Alg. S3) are order-independent by marking triples with
inconsistent separating sets as ambiguous and consistently marking conflicting link orientations by ×−×.

S2.6 Proof of Theorem 4

Proof. The theorem states that under Assumptions 1 the effect size for the PCMCI+ oracle case CI tests in Alg. 2 for
p = 0 for contemporaneous true linksXi

t → Xj
t ∈ G is greater than that of PCMCI+0 : I(Xi

t ;X
j
t |B̂−t (X

j
t ), B̂−t (Xi

t)) >

min(I(Xi
t ;X

j
t |B̂−t (X

j
t )), I(X

i
t ;X

j
t |B̂−t (Xi

t))) if both Xi
t and Xj

t have parents that are not shared with the other. We
will use an information-theoretic framework here and consider the conditional mutual information.

To prove this statement, we denote by Bi = B̂−t (Xi
t) \ B̂−t (X

j
t ) the lagged conditions of Xi

t that are not already
contained in those of Xj

t and, correspondingly, Bj = B̂−t (X
j
t ) \ B̂−t (Xi

t). Since both Xi
t and Xj

t have parents that
are not shared with the other and we assume the oracle case, both these sets are non-empty. Further, we denote the
common lagged conditions as Bij = B̂−t (X

j
t ) ∩ B̂−t (Xi

t) and make use of the following conditional independencies,
which hold by the Markov assumption: (1) Bi ⊥⊥ Xj

t |Bj ,Bij , Xi
t and (2) Bj ⊥⊥ Xi

t |Bi,Bij . We first prove that, given
a contemporaneous true link Xi

t → Xj
t ∈ G, I(Xi

t ;X
j
t |Bij ,Bj) > I(Xi

t ;X
j
t |Bij ,Bi) by using the following two

ways to apply the chain rule of conditional mutual information:

I(Xi
t ,Bi;X

j
t ,Bj |Bij) =

= I(Xi
t ,Bi;Bj |Bij) + I(Xi

t ,Bi;X
j
t |BijBj)

= I(Bi;Bj |Bij) + I(Xi
t ;Bj |Bij ,Bi)︸ ︷︷ ︸
=0 (Markov)

+ I(Xi
t ;X

j
t |Bij ,Bj) + I(Bi;Xj

t |Bij ,Bj , Xi
t)︸ ︷︷ ︸

=0 (Markov)

(S1)

and

I(Xi
t ,Bi;X

j
t ,Bj |Bij) =

= I(Bi;Xj
t ,Bj |Bij) + I(Xi

t ;X
j
t ,Bj |BijBi)

= I(Bi;Bj |Bij) + I(Bi;Xj
t |Bij ,Bj)︸ ︷︷ ︸

>0 sinceXi
t → Xj

t

+ I(Xi
t ;X

j
t |Bij ,Bi) + I(Xi

t ;Bj |Bij ,Bi, X
j
t )︸ ︷︷ ︸

>0 sinceXi
t → Xj

t

(S2)

where (S1) and (S2) denote two different applications of the chain rule. From this is follows that I(Xi
t ;X

j
t |Bij ,Bj) >

I(Xi
t ;X

j
t |Bij ,Bi).

Hence, it remains to prove that I(Xi
t ;X

j
t |Bij ,Bj ,Bi) > I(Xi

t ;X
j
t |Bij ,Bi), which we also do by the chain rule:

I(Xi
t ;X

j
t ,Bj |Bij ,Bi) =

= I(Xi
t ;X

j
t |Bij ,Bi) + I(Xi

t ;Bj |Bij ,Bi, X
j
t )︸ ︷︷ ︸

>0 sinceXi
t → Xj

t

(S3)

= I(Xi
t ;Bj |Bij ,Bi)︸ ︷︷ ︸
=0 (Markov)

+I(Xi
t ;X

j
t |Bij ,Bi,Bj) (S4)



S3 Further pseudo code

Algorithms S2 and S3 detail the pseudo-code for the PCMCI+ / PCMCI+0 / PC collider phase with different collider
rules and the orientation phase.

Algorithm S2 (Detailed PCMCI+ / PCMCI+0 / PC collider phase with different collider rules)
Require: G and sepset from Alg. 2, rule = {’none’, ’conservative’, ’majority’}, time series dataset X =

(X1, . . . , XN ), significance threshold αPC, CI(X, Y, Z), PCMCI+ / PCMCI+0 : B̂−t (X
j
t ) for all Xj

t in Xt

1: for all unshielded triples Xi
t−τ → Xk

t ◦−◦X
j
t (τ > 0) or Xi

t◦−◦Xk
t ◦−◦X

j
t (τ = 0) in G where (Xi

t−τ , X
j
t ) are

not adjacent do
2: if rule = ’none’ then
3: if Xk

t is not in sepset(Xi
t−τ , X

j
t ) then

4: Orient Xi
t−τ → Xk

t ◦−◦X
j
t (τ > 0) or Xi

t−τ◦−◦Xk
t ◦−◦X

j
t (τ = 0) as Xi

t−τ → Xk
t ← Xj

t

5: else
6: PCMCI+ / PCMCI+0 : Define contemporaneous adjacencies Â(Xj

t ) = Ât(Xj
t ) = {Xi

t 6=X
j
t ∈ Xt :

Xi
t◦−◦X

j
t in G}

PC: Define full adjacencies Â(Xj
t ) for all (lagged and contemporaneous) links in G

7: for all for all S⊆Â(Xj
t )\{Xi

t−τ} and for all S⊆Â(Xi
t)\{X

j
t } (if τ = 0) do

8: Evaluate CI(Xi
t−τ , X

j
t ,Z) with

9: PCMCI+: Z=(S, B̂−t (X
j
t )\{Xi

t−τ}, B̂−t−τ (Xi
t−τ ))

PCMCI+0 : Z=(S, B̂−t (X
j
t )\{Xi

t−τ})
PC: Z=S

10: Store all subsets S with p-value > αPC as separating subsets
11: if no separating subsets are found then
12: Mark triple as ambiguous
13: else
14: Compute fraction nk of separating subsets that contain Xk

t

15: if rule = ’conservative’ then
16: Orient triple as collider if nk=0, leave unoriented if nk=1, and mark as ambiguous if 0<nk<1
17: else if rule = ’majority’ then
18: Orient triple as collider if nk<0.5, leave unoriented if nk>0.5, and mark as ambiguous if nk=0.5

19: Mark links in G with conflicting orientations as ×−×
20: return G, sepset, ambiguous triples, conflicting links



Algorithm S3 (Detailed PCMCI+ / PCMCI+0 / PC rule orientation phase)
Require: G, ambiguous triples, conflicting links

1: while any unambiguous triples suitable for rules R1-R3 are remaining do
2: Apply rule R1 (orient unshielded triples that are not colliders):
3: for all unambiguous triples Xi

t−τ → Xk
t ◦−◦X

j
t where (Xi

t−τ , X
j
t ) are not adjacent do

4: Orient as Xi
t−τ → Xk

t → Xj
t

5: Mark links with conflicting orientations as ×−×
6: Apply rule R2 (avoid cycles):
7: for all unambiguous triples Xi

t → Xk
t → Xj

t with Xi
t◦−◦X

j
t do

8: Orient as Xi
t → Xj

t

9: Mark links with conflicting orientations as ×−×
10: Apply rule R3 (orient unshielded triples that are not colliders and avoid cycles):
11: for all pairs of unambiguous triples Xi

t◦−◦Xk
t → Xj

t and Xi
t◦−◦X l

t → Xj
t where (Xk

t , X
l
t) are not adjacent

and Xi
t◦−◦X

j
t do

12: Orient as Xi
t → Xj

t

13: Mark links with conflicting orientations as ×−×
14: return G, conflicting links



S4 Implementation details

In the linear and nonlinear numerical experiments PCMCI+ is compared with the PC algorithm, both implemented
with the appropriate CI test (ParCorr for the linear case, GPDC for the nonlinear case). For the linear numerical exper-
iments we additionally consider representatives from two further frameworks: GCresPC, a combination of GC with
PC applied to residuals, and an autoregressive model version of LiNGAM [Hyvärinen et al., 2010], a representative of
the SCM framework. Their implementations are as follows.

S4.1 LiNGAM

For LiNGAM the code was taken from https://github.com/cdt15/lingam which provides a class
VARLiNGAM. The method was called follows:

Input: data, tau_max

model = lingam.VARLiNGAM(lags=tau_max, criterion=None, prune=True)
model.fit(data)
val_matrix = model.adjacency_matrices_.transpose(2,1,0)
graph = (val_matrix != 0.).astype(’int’)

Output: graph

The causal graph graph encodes the causal relations in an array of shape (N, N, tau_max + 1). The option
criterion=None just ignores the optional automatic selection of lags, which is here set to the same tau_max for
all methods. I could not find a way to obtain p-values in the VARLiNGAM implementation, but with the parameter set-
ting prune=True the resulting adjacency matrices are regularized with an adaptive LASSO approach using the BIC
criterion to find the optimal regularization hyper-parameter (sklearn.LassoLarsIC(criterion=’bic’)).
Non-zero adjacencies were then evaluated as causal links. Note that all other methods can be intercompared at different
αPC levels while for comparison against LiNGAM we focus on its relative changes rather than absolute performance.

S4.2 GCresPC

There was no code available for the method proposed in [Moneta et al., 2011]. The present implementation first fits
a VAR model up to τmax and applies the PC algorithm on the residuals. To remove spurious lagged links (due to
contemporaneous paths), the PC algorithm was additionally run on significant lagged and contemporaneous links, but
the orientation phase was restricted to contemporaneous links, as proposed in [Moneta et al., 2011]. The following
Python pseudo-code utilizes functionality from the tigramite package, numpy, and statsmodels:

Input: data, tau_max, alpha
import functions/classes ParCorr, PCMCI, DataFrame from tigramite

graph = np.zeros((N, N, tau_max + 1))

# 1. Estimate lagged adjacencies (to be updated in step 3.)
tsamodel = tsa.var.var_model.VAR(data)
results = tsamodel.fit(maxlags=tau_max, trend=’nc’)
pvalues = results.pvalues
values = results.coefs
residuals = results.resid

lagged_parents = significant lagged links at alpha

# 2. Run PC algorithm on residuals (with tau_max=0)
pcmci = PCMCI(dataframe=DataFrame(residuals), cond_ind_test=ParCorr())
pcmcires = pcmci.run_pcalg(pc_alpha=alpha,



tau_min=0,
tau_max=0)

# Update contemporaneous graph
graph[:,:,0] = pcmcires[’graph’][:,:,0]

# 3. Run PC algorithm on significant lagged and contemporaneous adjacencies
# to remove spurious lagged links due to contemporaneous parents

selected_links = lagged_parents + significant contemporaneous adjacencies
pcmci = PCMCI(dataframe=DataFrame(data), cond_ind_test=ParCorr())
pcmcires = pcmci.run_pcalg(selected_links=selected_links,

pc_alpha=alpha,
tau_min=0,
tau_max=tau_max)

# Update lagged part of graph
graph[:,:,1:] = pcmcires[’graph’][:,:,1:]

Output: graph

Note that the contemporaneous graph structure in graph comes only from applying the PC algorithm to the residuals
and, hence, does not utilize triples containing lagged adjacencies. Step 3 is necessary to remove spurious lagged links
due to contemporaneous parents. The output of GCresPC depends on αPC as for PCMCI+ and the PC algorithm.

S5 Further numerical experiments

Next to repeating the overview figure for the linear Gaussian model setup from the main text in Fig. S1, in Fig. S2
we show the linear mixed noise setup, and in Fig. S3 the nonlinear mixed noise setup. The remaining pages contain
results of further numerical experiments that evaluate different a, N, T, τmax and αPC for the linear model setups. All
results and more will be contributed to the causality benchmark platform www.causeme.net [Runge et al., 2019a]
to facilitate a further expanded method evaluation.
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Figure S1: Numerical experiments with linear Gaussian setup for varying (A) autocorrelation strength a (B) number
of variables N (C) sample size T and (D) maximum time lag τmax. All remaining setup parameters indicated in the
top right. Errorbars show std. errors or the 90% range (for runtime). The insets show ANOVA statistics.
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Figure S2: Numerical experiments with linear mixed noise setup for varying (A) autocorrelation strength a (B)
number of variables N (C) sample size T and (D) maximum time lag τmax. All remaining setup parameters indicated
in the top right. Errorbars show std. errors or the 90% range (for runtime). The insets show ANOVA statistics.
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Figure S3: Numerical experiments with nonlinear mixed noise setup for varying (A) autocorrelation strength a (B)
number of variables N (C) sample size T and (D) maximum time lag τmax. All remaining setup parameters indicated
in the top right. Errorbars show std. errors or the 90% range (for runtime). The insets show ANOVA statistics.



Figure S4: Numerical experiments with linear Gaussian setup for varying autocorrelation a and T = 200 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for N = 2, 3, 5, 10
(top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S5: Numerical experiments with linear Gaussian setup for varying autocorrelation a and T = 500 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for N = 2, 3, 5, 10
(top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S6: Numerical experiments with linear Gaussian setup for varying autocorrelation a and T = 1000 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for N = 2, 3, 5, 10
(top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S7: Numerical experiments with linear Gaussian setup for varying number of variables N and T = 200 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S8: Numerical experiments with linear Gaussian setup for varying number of variables N and T = 500 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S9: Numerical experiments with linear Gaussian setup for varying number of variablesN and T = 1000 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S10: Numerical experiments with linear Gaussian setup for varying sample size T for N = 5 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S11: Numerical experiments with linear Gaussian setup for varying sample size T for N = 10 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S12: Numerical experiments with linear Gaussian setup for varying sample size T for N = 20 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S13: Numerical experiments with linear Gaussian setup for varying maximum time lag τmax and T = 200 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S14: Numerical experiments with linear Gaussian setup for varying maximum time lag τmax and T = 500 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S15: Numerical experiments with linear Gaussian setup for varying maximum time lag τmax and T = 1000 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S16: Numerical experiments with linear mixed noise setup for varying autocorrelation a and T = 200 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for N = 2, 3, 5, 10
(top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S17: Numerical experiments with linear mixed noise setup for varying autocorrelation a and T = 500 . The left
(right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for N = 2, 3, 5, 10
(top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S18: Numerical experiments with linear mixed noise setup for varying autocorrelation a and T = 1000
. The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for
N = 2, 3, 5, 10 (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S19: Numerical experiments with linear mixed noise setup for varying number of variables N and T = 200 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S20: Numerical experiments with linear mixed noise setup for varying number of variables N and T = 500 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S21: Numerical experiments with linear mixed noise setup for varying number of variables N and T = 1000 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S22: Numerical experiments with linear mixed noise setup for varying sample size T for N = 5 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S23: Numerical experiments with linear mixed noise setup for varying sample size T for N = 10 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S24: Numerical experiments with linear mixed noise setup for varying sample size T for N = 20 . The
left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S25: Numerical experiments with linear mixed noise setup for varying maximum time lag τmax and T = 200 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S26: Numerical experiments with linear mixed noise setup for varying maximum time lag τmax and T = 500 .
The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for increasing
autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of each panel.



Figure S27: Numerical experiments with linear mixed noise setup for varying maximum time lag τmax and T = 1000
. The left (right) column shows results for significance level α = 0.01 (α = 0.05). The rows depict results for
increasing autocorrelations a (top to bottom). All model and method parameters are indicated in the upper right of
each panel.
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