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Abstract

High-dimensional generative models have
many applications including image compres-
sion, multimedia generation, anomaly detection
and data completion. State-of-the-art estimators
for natural images are autoregressive, decom-
posing the joint distribution over pixels into a
product of conditionals parameterized by a deep
neural network, e.g. a convolutional neural net-
work such as the PixelCNN. However, PixelC-
NNs only model a single decomposition of the
joint, and only a single generation order is effi-
cient. For tasks such as image completion, these
models are unable to use much of the observed
context. To generate data in arbitrary orders,
we introduce LMCONV: a simple modification
to the standard 2D convolution that allows ar-
bitrary masks to be applied to the weights at
each location in the image. Using LMCONV,
we learn an ensemble of distribution estima-
tors that share parameters but differ in gener-
ation order, achieving improved performance
on whole-image density estimation (2.89 bpd
on unconditional CIFAR10), as well as globally
coherent image completions. Our code is avail-
able at https://ajayjain.github.io/lmconv.

1 INTRODUCTION

Learning generative models of high-dimensional data
such as images is a holy grail of machine learning with
pervasive applications. Significant progress on this prob-
lem would naturally lead to a wide range of applications,
including multimedia generation, compression, proba-
bilistic time series forecasting, representation learning,
and missing data completion. Many generative modeling
frameworks have been proposed. Current state-of-the-
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Figure 1: The ideal autoregressive joint distribution de-
composition and sampling order are task-dependent. We
learn to generate images under multiple orderings with the
same parameters via locally masked convolutions (top),
enabling global coherence for image completion (bottom).

art models for high-dimensional image data include (a)
autoregressive models (Bengio and Bengio, 2000; Efros
and Leung, 1999), (b) normalizing flow density estima-
tors (Rezende and Mohamed, 2015), (c) generative ad-
versarial networks (GANs) (Goodfellow et al., 2014), (d)
latent variable models such as the VAE (Kingma and
Welling, 2014; Rezende et al., 2014) and (e) energy-
based models e.g. Hinton (2002); LeCun et al. (2006);
Du and Mordatch (2019); Song and Ermon (2019). While
GANs, VAEs and EBMs have had great success in high-
dimensional image generation, exact likelihoods are gen-
erally intractable. Likelihood estimation is key for many
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practical applications from uncertainty estimation, robust-
ness, reliability and safety perspectives. In contrast, au-
toregressive and flow models estimate exact likelihoods
and can be used for uncertainty estimation, though still
have room for improved generation quality. In this work,
our focus is on autoregressive models.

Given n variables, one can generate n! autoregressive de-
compositions of the joint likelihood, each corresponding
to a forward sampling order, and more if we assume con-
ditional independence. Early autoregressive texture syn-
thesis (Popat and Picard, 1993; Efros and Leung, 1999)
work could support multiple orders. However, recent
CNN-based autoregressive models for images (van den
Oord et al., 2016b,a; Salimans et al., 2017) capture only
one of these orders (typically left-to-right raster scan, Fig.
2) for practical computational efficiency. Training and
testing with a single order will not support all scenarios.
Consider the image completion task in first row of Fig-
ure 1. If the top half of the image is missing, a raster scan
generation order from left-to-right and top-to-bottom does
not allow the model to condition on the context given in
the observed bottom half of the image as the required
conditionals are not estimated by the model.

In this work, we propose a scalable, yet simple modi-
fication to convolutional autoregressive models to esti-
mate more accurate likelihoods with a minor change in
computation during training. Our goal is to support arbi-
trary orders in a scalable manner, allowing more precise
likelihoods by averaging over several graphical models
corresponding to orders (a form of Bayesian model aver-
aging). Some past works have supported arbitrary orders
in autoregressive models by learning separate parameters
for each model (Frey, 1998), or by masking the input im-
age to hide successor variables (Larochelle and Murray,
2011). A more efficient approach is to estimate densi-
ties in parallel across dimensions by masking network
weights (Germain et al., 2015) differently for each or-
der. However, all these methods are still computationally
inefficient and difficult to scale beyond fully-connected
networks to convolutional architectures.

In this work, we perform order-agnostic distribution es-
timation for natural images with state-of-the-art convo-
lutional architectures. We propose to support arbitrary
orderings by introducing masking at the level of features,
rather than on inputs or weights. We show how an autore-
gressive CNN can support and learn multiple orders, with
a single set of weights, via locally masked convolutions
that efficiently apply location-specific masks to patches
of each feature map. These local convolutions can be
efficiently implemented purely via matrix multiplication
by incorporating masking at the level of the im2col and
col2im separation of convolution (Jia et al., 2014).
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Figure 2: The three pixel generation orders and corre-
sponding local masks that we consider in this work.

Arbitrary orders allow us to customize the traversal based
on the needs of the task, which we evaluate in experi-
ments. For instance, consider the examples shown in
Fig. 1. The flexibility allows us to select the sampling or-
der that exposes the maximum possible context for image
completion, choose orderings that eliminate blind-spots
(unobservable pixels) in image generation, and ensemble
across multiple orderings using the same network weights.
Note that such a model is able to support these image com-
pletions without training on any inpainting masks.

In experiments, we show that our approach can be effi-
ciently implemented and is flexible without sacrificing
the overall distribution estimation performance. By in-
troducing order-agnostic training via LMCONV, we sig-
nificantly outperform PixelCNN++ on the unconditional
CIFAR10 dataset, achieving code lengths of 2.89 bits per
dimension. We show that the model can generalize to
some novel orders. Finally, we significantly outperform
raster-scan baselines on conditional likelihoods relevant
to image completion by customizing the generation order.

2 BACKGROUND

Deep autoregressive models estimate high-dimensional
data distributions using samples from the joint distribu-
tion over D-dimensions pdata(x1, . . . ,xD). In this set-
ting, we wish to approximate the joint with a paramet-
ric model pθ(x1, . . . ,xD) by minimizing KL-divergence
DKL(pdata||pθ), or equivalently by maximizing the log-
likelihood of the samples. As a general modeling princi-
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Figure 3: (a) A graphical model where the final, unobserved variables x3, x4 can be efficiently completed via forward
sampling conditioned on the observed variables x1, x2. (b) When x4 is observed, we sample x1, x2, and x3 in the
second graphical model using the same parameters. (c) LMCONV defines the model with masks at each filter location.

ple, we can divide high-dimensional variables into many
low-dimensional parts such as single dimensions, and cap-
ture dependencies between dimensions with a directed
graphical model. Following the notation of (Kingma et al.,
2019), these autoregressive (AR) models represent the
joint distribution as a product of conditionals,

pθ(x) = pθ(x1, . . . , xD)

= pθ(xπ(1))

D∏
i=2

pθ
(
xπ(i) | Pa(xπ(i))

)
(1)

where π : [D]→ [D] is a permutation defining an order
over the dimensions, Pa(xπ(i)) = xπ(1), . . . ,xπ(i−1) de-
fines the parents of xπ(i) in the graphical model, and θ is a
parameter vector. As any joint can be decomposed in this
manner according to the product rule, this factorization
provides the foundation for many models including ours.
The primary challenge in autoregressive models is defin-
ing a sufficiently expressive family for the conditionals
where parameter estimation is efficient. Deep autoregres-
sive models parameterize the conditionals with a neural
network that is provided the context Pa(xπ(i)).

Decomposition (1) converts the joint modeling problem
into a sequence modeling problem. Forward (ancestral)
sampling draws root variable xπ(1) first, then samples
the remaining dimensions in order xπ(2), . . . , xπ(D) from
their respective conditionals. Given a particular autore-
gressive decomposition of the joint, forward sampling
supports a single data generation order. The joint model
density for an observed variable can be computed exactly
by evaluating each conditional, allowing density estima-
tion and maximum likelihood parameter estimation,

L(θ) = Ex∼pdata

D∑
i=1

log pθ
(
xπ(i) | xπ(1), . . . , xπ(i−1)

)
θ∗ = argθ maxL(θ) (2)

With some choices of network architecture, the condi-
tionals can be computed in parallel by masking weights
(Germain et al., 2015; van den Oord et al., 2016b). In
the PixelCNN model family, masked convolutions are

causal: the features output by a masked convolution can
only depend on features earlier in the order.

While the choice of order is arbitrary, temporal and se-
quential data modalities have a natural ordering from the
first dimension in the sequence to the last. For spatial data
such as images, a natural ordering is not clear. For com-
putational reasons, a raster scan order is generally used
where the top left pixel is modeled unconditionally and
generation proceeds in row-major fashion across each row
from left to right, depicted in Figure 1, second column.

3 IMAGE COMPLETION WITH
MAXIMUM RECEPTIVE FIELD

For estimating the distribution of 2D images, a raster
scan ordering is perhaps as good of an order as any other
choice. That said, the raster scan order has necessitated
architectural innovations to allow the neural network to
access information far back in the sequence such as two-
dimensional PixelRNNs (van den Oord et al., 2016b), two-
stream shift-based convolutional architectures (van den
Oord et al., 2016a), and self-attention combined with con-
volution (Chen et al., 2018). These structures significantly
improve test-set likelihoods and sample quality, but marry
network architectures to the raster scan order.

Fixing a particular order is limiting for missing data com-
pletion tasks. Letting π(i) = i denote the raster scan or-
der, PixelRNN and PixelCNN architectures can complete
only the bottom part of the image via forward sampling:
given observations x1, . . . , xd, raster scan autoregressive
models sequentially sample,

x̂i ∼ pθ(xi | x1, . . . , xd, x̂d+1, . . . , x̂i−1). (3)

If all dimensions other than xi are observed, ideally we
would sample x̂i using maximum conditioning context,

x̂i ∼ pθ(xi | x<i, x>i). (4)

Unfortunately, the raster scan model only predicts distribu-
tions of the form pθ(xi | x<i), and ignores observations
x>i during completion. In the worst case, a model with



a raster scan generation order cannot observe any of the
context for an inpainting task where the top half of the
image is unknown (Figure 1, PixelCNN++). This leads
to image completions that do not respect global struc-
ture. Small numbers of dimensions could be sampled by
computing the posterior, e.g. for i = 1,

pθ(x̂1 | x>1) =
pθ(x̂1, x>1)∑
x′
1
pθ(x′1, x>1)

, (5)

but this is expensive as each summand requires neural
network evaluation, and becomes intractable when several
dimensions are unknown. Instead of approximating the
posterior, we estimate parameters θ that achieve high
likelihood with multiple autoregressive decompositions,

LOA(θ) = Ex∼pdataEπ∼pπ log pθ (x1, . . . , xD;π)

θ∗ = argθ maxLOA(θ) (6)

with pπ denoting a uniform distribution over several order-
ings. The joint distribution under π factorizes according
to (1). The resulting conditionals are all parameterized by
the same neural network. By choosing order prior pπ that
supports a π such that π(D) = i, we can use the network
with such an ordering to query (4) directly.

During optimization with stochastic gradient descent, we
make single-sample estimates of the inner expectation in
(6) according to order-agnostic training (Uria et al., 2014;
Germain et al., 2015), using a single order per batch.

For a test-time task where {xi : i ∈ Tobs} are observed,
we select a π that the model was trained with such that

{π(1), . . . , π(|Tobs|)} = Tobs,

i.e. the first |Tobs| dimensions in the generation order are
the observed dimensions, then sample according to the
rest of the order so that the model posterior over each
unknown dimension is conditioned either on observed or
previously sampled dimensions.

4 LOCAL MASKING

In this section, we develop locally masked convolutions
(LMCONV): a modification to the standard convolution
operator that allows control over generation order and
parallel computation of conditionals for evaluating like-
lihood. In the first convolutional layer of a neural net-
work, Cout filters of size k × k are applied to the input
image with spatial invariance: the same parameters are
used at all locations in a sliding window. Each filter has
k2 ∗ Cin parameters. For images with discretized inten-
sities, convolutional autoregressive networks transform
a spatial H ×W , multi-channel image into a tensor of
log-probabilities that define the conditional distributions
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Figure 4: A comparison of standard weight masked con-
volutions and the proposed locally masked convolution.

of (1). These log-probabilities take the form of anH×W
image, with channel count equal to the number of color
channels times the number of bins per color channel. The
output log-probabilities at coordinate i, j in the output
define the distribution pθ(xi,j | Pa(p(xi,j)). Critically,
this distribution must not depend on observations of suc-
cessors in the Bayesian network, or the product of condi-
tionals will not define a valid distribution due to cyclicity.

NADE (Larochelle and Murray, 2011) circumvents the
problem by masking the input image, though requires
independent forward passes to compute each factor of the
autoregressive decomposition (1). Instead, the PixelCNN
model family controls information flow through the net-
work by setting certain weights of the convolution filters
to zero, similar to how MADE (Germain et al., 2015)
masks the weight matrices in fully-connected layers. We
depict masked convolutions for the first convolutional
layer in Figure 4. As a single mask is applied to the
Cin × k× k parameter tensor defining each convolutional
filter, the same masking pattern is applied at all locations
in the image. Sharing the masking pattern constrains the
possible orders, and leads to blind spots which the output
distribution is unable to observe.

In practice, convolutions are implemented through general
matrix multiplication (GEMM) due to widely available,
heavily optimized and parallelized implementations of the
operation on GPU and CPU. To use matrix multiplication,
the input to a layer is rearranged in memory via the im2col
algorithm, which extracts Cin × k × k patches from the
Cin ×H ×W input at each location that a convolutional
filter will be applied. Assuming padding and a stride
of 1 is used, the rearrangement yields matrix X with
Cin∗k2 rows andH∗W columns. To perform convolution,
the framework left-multiplies weight matrixW , storing
Y = WX , adds a bias, and finally rearranges Y into a
spatial format via the col2im algorithm.

We exploit this data rearrangement to arbitrarily mask
the input to the convolutional filter at each location it is



Algorithm 1 LMCONV: Locally masked 2D convolution
1: Input: image x, weightsW , bias b, generation order
π. x is B × Cin ×H ×W dimensional and W is
Cout × Cin ∗ k1 ∗ k2 dimensional

2: Create mask matrixM with Algorithm 2
3: Extract patches: X = im2col(pad(x), k1, k2)
4: Mask patches: X =M�X
5: Perform convolution via batch MM: Y =WX + b
6: Assemble patches: y = col2im(Y )
7: return y

applied. The inputs to the convolution at each location, i.e.
the input patches, form columns of X . For a given gen-
eration order, we construct mask matrixM of the same
dimensions as X and set X = M� X prior to matrix
multiplication. In particular, our locally masked convolu-
tion masks patches of the input to each layer, rather than
masking weights and rather than masking the initial input
to the network. LMCONV combines the flexibility of
NADE and the parallelizability of MADE and PixelCNN.
The LMCONV algorithm is summarized in Algorithm 1,
and mask construction is detailed in Algorithm 2.

We implement two versions of the layer with the PyTorch
machine learning framework (Paszke et al., 2019). The
first is an implementation that uses autodifferentiation to
compute gradients. As only the forward pass is defined by
the user, the implementation is under 20 lines of Python.

However, reverse-mode autodifferentiation incurs signif-
icant memory overheads during backpropagation as the
output of nearly every operation during the forward pass
must be stored until gradient computation (Griewank and
Walther, 2000; Jain et al., 2020). Data rearrangement with
im2col is memory intensive as features patches overlap
and are duplicated. We implement a custom, memory ef-
ficient backward pass that only stores the input, the mask
and the output of the layer during the forward pass and
recomputes the im2col operation during the backward
pass. Recomputing the im2col operation achieves 2.7×
memory savings at a 1.3× slowdown.

Using locally masked convolutions, we can experiment
with many different image generation orders. In this
work, we consider three classes of orderings: raster scan,
implemented in baseline PixelCNNs, an S-curve order
that traverses rows in alternating directions, and a Hilbert
space-filling curve order that generates nearby pixels in
the image consecutively. Alternate orderings provide
several benefits. Nearby pixels in an image are highly
correlated. By generating these pixels close in a Hilbert
curve order, we might expect information to propagate
from the most important, nearby observations for each
dimension and reduce the vanishing gradient problem.

Algorithm 2 Create input mask matrix
1: Input: Generation order π(·), constants Cin, k1, k2,

dilation d, is this the first layer?
2: Start with an empty set of generated coordinates
3: InitializeM as k1 ∗ k2 ×H ∗W zero matrix
4: for i from 1 to H ∗W do
5: Let (r, c) be coordinates of dimension π(i)
6: for offsets ∆r,∆c in k1 × k2 kernel do
7: if (r+ d∆r, c+ d∆c) has been generated then
8: Allow output location (r, c) to access features

at (r + d∆r, c+ d∆c) in previous layer: set
Mk2∆r+∆c,Wr+c = 1

9: end if
10: end for
11: Add (r, c) to generated coordinates
12: end for
13: if not the first layer then
14: Allow previous layer features to be observed at all

locations: set center row bk1∗k22 c ofM to 1
15: end if
16: Repeat rows ofM, Cin times
17: return binary mask matrixM

If the image is considered a graph with nodes for each
pixel and edges connecting adjacent pixels, a convolu-
tional autoregressive model using an order defined by a
Hamiltonian path over the image graph will also suffer
no blind spot in a D layer network. To see this, note
that the features corresponding to dimension xπ(i) in the
Hamiltonian path order will always be able to observe the
previous layer’s features corresponding to xπ(i−1). After
at least D layers of depth, the features for xπ(i) will in-
corporate information from all i− 1 previous dimensions.
In practice, information propagates with fewer required
layers in these architectures as multiple neighbors are ob-
served in each layer. Finally, we select multiple orderings
at inference and average the resulting joint distributions
to compute better likelihood estimates.

5 ARCHITECTURE

We use a network architecture similar to PixelCNN++
(Salimans et al., 2017), the best-in-class density estimator
in the fully convolutional autoregressive PixelCNN model
family. Convolution operations are masked according to
Algorithm 1. While our locally masked convolutions can
benefit from self-attention mechanisms used in later work,
we choose a fully convolutional architecture for simplicity
and to study the benefit of local masking in isolation of
other architectural innovations. We make three modifica-
tions to the PixelCNN++ architecture that simplify it and
allow for arbitrary generation orders. Gated PixelCNN



Table 1: Average negative log likelihood of binarized and
grayscale MNIST digits under our model. Lower is better.

BINARIZED MNIST, 28x28 NLL (nats)

DARN (Intractable) (Gregor et al., 2014) ≈84.13
NADE (Uria et al., 2014) 88.33
EoNADE 2hl (128 orders) (Uria et al., 2014) 85.10
EoNADE-5 2hl (128 orders) (Raiko et al., 2014) 84.68
MADE 2hl (32 orders) Germain et al. (2015) 86.64
PixelCNN (van den Oord et al., 2016b) 81.30
PixelRNN (van den Oord et al., 2016b) 79.20
Ours, S-curve (1 order) 78.47
Ours, S-curve (8 orders) 77.58

GRAYSCALE MNIST, 28x28 NLL (bpd)

Spatial PixelCNN (Akoury and Nguyen, 2017) 0.88
PixelCNN++ (1 stream) 0.77
Ours, S-curve (1 order) 0.68
Ours, S-curve (8 orders) 0.65

uses a two-stream architecture composed of two network
stacks with bk2 c × 1 and bk2 c × k convolutions to enforce
the raster scan order. In the horizontal stream, Gated Pix-
elCNN applies non-square convolutions and feature map
shifts or pads to extract information within the same row,
to the left of the current dimension. In the vertical stream,
Gated PixelCNN extracts information from above. Skip
connections between streams allow information to propa-
gate. PixelCNN++ uses a similar architecture based on
a U-Net (Ronneberger et al., 2015) with approximately
54M parameters. We replace the two streams with a sim-
ple, single stream with the same depth, using LMCONV
to maintain the autoregressive property. Masks for these
convolutions are computed and cached at the beginning of
training. Due to the regularizing effect of order-agnostic
training, we do not use dropout.

Second, we use dilated convolutions (Yu and Koltun,
2015) at regular intervals in the model rather than down-
sampling the feature map. Downsampling precludes many
orders, as the operation aggregates information from con-
tiguous squares of pixels together without a mask. Dilated
convolutions expand the receptive field without limiting
the order, as local masks can be customized to hide or
reveal specific features accessed by the filter.

Finally, we normalize the feature map across the channel
dimension (Li et al., 2019). Normalization allows masks
to have varying numbers of ones at each spatial location
by rescaling features to the same scale.

As in PixelCNN++, our model represents each conditional
with a mixture of 10 discretized logistic distributions that
imposes a distribution over binned pixel intensities. For

Table 2: Average negative log likelihood of CIFAR10
images under our model. Lower is better.

CIFAR10, 32x32 NLL (bpd)

Uniform Distribution 8.00
Multivariate Gaussian (van den Oord et al., 2016b) 4.70
Attention-based
Image Transformer (Parmar et al., 2018) 2.90
PixelSNAIL (Chen et al., 2018) 2.85
Sparse Transformer (Child et al., 2019) 2.80
Convolutional
PixelCNN (1 stream) (van den Oord et al., 2016b) 3.14
Gated PixelCNN (2 stream) (van den Oord et al., 2016a) 3.03
PixelCNN++ (1 stream) 2.99
PixelCNN++ (2 stream) (Salimans et al., 2017) 2.92
Ours, S-curve (1 stream, 1 order) 2.91
Ours, S-curve (1 stream, 8 orders) 2.89

the binarized MNIST dataset (Salakhutdinov and Murray,
2008), we instead use a softmax over two logits. We train
with 8 variants of an S-curve (zig-zag) order that traverses
each row of the image in alternating directions so that
consecutively generated pixels are adjacent, and so that
locally masked CNNs with sufficient depth can achieve
the maximum allowed receptive field.

Across all quantitative experiments, we use a model with
approximately 46M parameters, trained with the Adam
optimizer with a learning rate of 2 ∗ 10−4 decayed by a
factor of 1 − 5 ∗ 10−6 per iteration with clipped gradi-
ents. For CelebA-HQ qualitative results, we increase filter
count and train a model with 184M parameters. More
details are provided in the appendix.

6 EXPERIMENTS

To evaluate the benefits of our approach, we study three
scientific questions: (1) do locally masked autoregressive
ensembles estimate more accurate likelihoods on image
datasets than single-order models?, (2) can the model
generalize to novel orders? and (3) how important is
order selection for image completion?

We estimate the distribution of three image datasets:
28×28 grayscale and binary (Salakhutdinov and Murray,
2008) MNIST digits, 32×32 8-bit color CIFAR10 natural
images, and high-resolution CelebA-HQ 5-bit color face
photographs (Karras et al., 2018). Unlike classification,
density estimation remains challenging on these datasets.
We train the CelebA-HQ models at 256×256 resolution
to compare with prior density estimation work, and at a
bilinearly downsampled 64×64 resolution.

Our locally masked model achieves better likelihoods
than PixelCNN++ by using multiple generation orders.
We then show that the model can generalize to generation



Table 3: Average conditional negative log likelihood for
Top, Left and Bottom half image completion.

BINARIZED MNIST 28x28 (nats) T L B

Ours (adversarial order) 41.76 39.83 43.35
Ours (1 max context order) 34.99 32.47 36.57
Ours (2 max context orders) 34.82 32.25 36.36

CIFAR10 32x32 (bpd) T L B

PixelCNN++, 1 stream 3.07 3.10 3.05
PixelCNN++, 2 stream 2.97 2.98 2.93
Ours (1 stream, adversarial order) 2.93 2.98 3.05
Ours (1 stream, 1 max context order) 2.77 2.83 2.89
Ours (1 stream, 2 max context orders) 2.76 2.82 2.88

orders that it has not been trained with. Finally, for im-
age completion, we achieve the best results over strong
baselines by using orders that expose all observed pixels.

6.1 WHOLE-IMAGE DENSITY ESTIMATION

Tractable generative models are generally evaluated via
the average negative log likelihood (NLL) of test data.
For interpretability, many papers normalize base 2 NLL
by the number of dimensions. By normalizing, we can
measure bits per dimension (bpd), or a lower-bound for
the expected number of bits needed per pixel to losslessly
compress images using a Huffman code with p(x) esti-
mated by our model. Better estimates of the distribution
should result in higher compression rates. Tables 1 and 2
show likelihoods for our model and prior models.

On binarized MNIST (Table 1), our locally masked Pix-
elCNN achieves significantly higher likelihoods (lower
NLL) than baselines, including neural autoregressive mod-
els NADE, EoNADE, and MADE that average across
large numbers of orderings. This is due to architectural ad-
vantages of our CNN and increased model capacity. Our
model also outperforms the standard PixelCNN, which
suffers from a blind spot problem due to sharing the same
mask at all locations. Likelihood is further improved by
using ensemble averaging across 8 orders that share pa-
rameters. These results are also observed on grayscale
MNIST where each pixel has one of 256 intensity levels.

On CIFAR10, we achieve 2.89 bpd test set likelihood
when averaging the joint probability of 8 graphical mod-
els, each defined by an S-curve generation order. Our
results outperform the state-of-the-art convolutional au-
toregressive model, PixelCNN++. We significantly out-
perform a 1 stream architectural variant of PixelCNN++
that has the same number of parameters as our model and
uses a similar architecture, differing only in that it uses a
single raster scan order. By introducing order-agnostic en-
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Figure 5: CIFAR10 image completions using our locally-
masked convolutions with a specialized ordering.

semble averaging to convolutional autoregressive models,
we combined the best of fully-connected density estima-
tors that average over orders, and the inductive biases
of CNNs. These results could further improve with self-
attention mechanisms and additional capacity, which have
been observed to improve the performance of singe-order
estimation, marking an opportunity for future research.

Our model is also scalable to high resolution distribution
estimation. On the CelebA-HQ 256x256 dataset at 5-bit
color depth, our model achieves 0.74 bpd with a single S-
curve order, outperforming Glow (Kingma and Dhariwal,
2018), an exact likelihood normalizing flow. In compari-
son, the state-of-the-art model, SPN (Menick and Kalch-
brenner, 2019), achieves 0.61 bpd by using self-attention
and a specialized architecture for high resolutions.

6.2 GENERALIZATION TO NOVEL ORDERS

Ideally, an order-agnostic model would be able to generate
images in orders that it has not been trained with. To
understand generalization to novel orders, we evaluate
the test-set likelihood of a CIFAR10 model that achieves
2.93 bpd with a single S-curve order and 2.91 bpd with
8 S-curve orders under a raster scan decomposition. The
model achieves 3.75 bpd with 1 raster scan order (28%
increase) and 3.67 bpd with 8 raster scan orders (26%
increase). While the novel order degrades compression
rate, the model was trained with 8 fixed orders of the same
S-curve type, which are fairly different from a raster scan.

To study generalization to more similar orders, we trained



Figure 6: Completions of 64× 64 px CelebA-HQ images at 5-bit color depth. Up to 2 samples are shown to the right of
each half-obscured face provided to the model. Missing pixels are generated along an S-curve that first traverses the
observed region. Additional samples and ground truth completions are provided in the appendix.

a model on Binarized MNIST with 7 S-curves for 120
epochs. On the test set, the model has 0.144 bpd using
each train order. Testing with the held out (8th) S-curve,
the model achieves 0.151 bpd, only 5% higher.

6.3 IMAGE COMPLETION

To quantitatively assess whether control over generation
order improves image completions, we measure the aver-
age conditional negative log likelihood of hidden regions
of held-out test images on the MNIST and CIFAR10
datasets, measured in bits per dimension. We compute
the NLL of the top half, left half, and bottom half of the
image conditioned on the remainder of the image. The
hidden region is set to zero in the model input, as well as
hidden via masks used in each model.

Table 3 shows average NLL on binary MNIST and CI-
FAR10. Top half inpainting is challenging for PixelCNN
baselines that use a raster scan order, as model conditional
pθ(xi|x<i) does not condition on observed pixels that lie
below xi in the image. Similarly, our architecture under
an adversarial order, a single S-shaped curve from the
top left to bottom left of the image, achieves 2.93 bpd
on CIFAR in the T setting. In contrast, using the same
parameters, when we decomposes the joint favorably for
maximum context with an S-curve generation order from
the bottom left to the top left of the image, we achieve
2.77 bpd. Averaging over two maximum context orders
further improves log likelihood to 2.76 bpd. A similar
trend is observed for the other completion tasks, L and B.

6.4 QUALITATIVE RESULTS

Figure 1 shows completions of MNIST and CelebA-HQ
64×64 images. PixelCNN++ produces MNIST digits that
are inconsistent with the observed context. With a poor

choice of order, our model only respects some attributes
of the input image, but not overall facial structure. The
model distributions over each missing pixel should condi-
tion on the entire observed region. This is accomplished
when the missing region is generated last via a maximum
context order. With this order, completions by our model
are consistent with the given context.

Figures 5 and 6 show completions of held-out CIFAR10
32×32 and CelebA-HQ 64×64 images for four different
missing regions. The masked input to the model (Obs),
our sampled completion (Ours) and the ground truth im-
age (GT) are shown. Missing image regions are generated
in a maximum context order. While samples have some
artifacts such as blurring due to long sequence lengths, im-
ages are globally coherent, with matching colors and ob-
ject structure (CIFAR10) or facial structure (CelebA-HQ).
Across datasets and image masks, our model effectively
uses available context to generate coherent samples.

7 RELATED WORK

Autoregressive models are a popular choice to estimate
the joint distribution of high-dimensional, multivariate
data in deep learning. Frey (1998) proposes logistic au-
toregressive Bayesian networks where each conditional is
learned through logistic regression, capturing first-order
dependencies between variables. While different orders
had similar performance, averaging densities from 10 dif-
ferently ordered models achieved small improvements in
likelihood. Bengio and Bengio (2000) extend this idea,
using artificial neural networks to capture conditionals
with some parameter sharing. Larochelle and Murray
(2011) propose the neural autoregressive distribution es-
timator (NADE) for binary and discrete data, reducing
the complexity of density estimation from quadratic in
the number of dimensions to linear. Uria et al. (2013) ex-



tend NADE to real-valued vectors (RNADE), expressing
conditionals as mixture density networks. The autoregres-
sive approach is desirable due to the lack of conditional
independence assumptions, easy training via maximum
likelihood, tractable density, and tractable, though sequen-
tial, forward sampling directly from the conditionals.

These works all use a single, arbitrary order per estimated
model. However, it is possible to use the same parameters
to define a family of differently ordered autoregressive
Bayesian networks. Uria et al. (2014) propose EoNADE,
an ensemble of input-masked NADE models trained with
an order-agnostic training procedure that achieve higher
likelihoods when averaged and allows forward sampling
of arbitrary regions. Each iteration, EoNADE chooses
a random prefix of an ordering π(1), . . . , π(d), sample
a training example x and maximize the likelihood of xd
under their model. ConvNADE (Uria et al., 2016) adapts
EoNADE with a convolutional architecture and condi-
tions the model on the input mask defining the order. Still,
NADE, EoNADE and ConvNADE are serial: only a sin-
gle conditional is trained at a time, and density estimation
requires D passes. Germain et al. (2015) propose an
order-agnostic MADE that masks the weights of a fully
connected autoencoder to estimate densities with a sin-
gle forward pass by computing conditionals in parallel.
While MADE supports multiple orders, it is limited by
a fully-connected architecture. Our Locally Masked Pix-
elCNN can be seen as a generalization of MADE that
supports convolutional inductive bias.

Other deep autoregressive models use recurrent, convo-
lutional or self-attention architectures. In language mod-
eling, autoregressive recurrent neural networks (RNNs)
predict a distribution over the next token in a sequence
conditioned on a recurrently updated representation of the
previous words (Mikolov et al., 2010). van den Oord et al.
(2016b) extend this idea to images, proposing a multi-
dimensional, sequential PixelRNN for image generation
and discrete distribution estimation, and a parallelizable
PixelCNN. Subsequent works capture correlations be-
tween pixels in an image with convolutional architectures
inspired by the PixelCNN (van den Oord et al., 2016a;
Salimans et al., 2017; Menick and Kalchbrenner, 2019;
Reed et al., 2017), often improving the ability of the net-
work to capture long-range dependencies. The PixelCNN
family can generate entire high-fidelity images and, un-
til recently, achieved state-of-the-art test set likelihood
among tractable, likelihood-based generative models. Pix-
elCNNs have also been used as a prior for latent vari-
ables (van den Oord et al., 2017), and can be sampled
in parallel using fixed-point methods (Song et al., 2020;
Wiggers and Hoogeboom, 2020). While convolutions
process information locally in an image, self-attention
mechanisms have been used to gain global receptive field

(Chen et al., 2018; Parmar et al., 2018; Child et al., 2019)
for improved statistical performance.

Normalizing flows (Rezende and Mohamed, 2015) are
parametric density estimators that give exact expressions
for likelihood using the change-of-variables formula by
transforming samples from a simple prior with learned,
invertible functions. If tractable densities are not required,
other families are possible. Implicit generative models
such as GANs (Goodfellow et al., 2014) have been applied
to high resolution image generation (Karras et al., 2018)
and inpainting (Pathak et al., 2016). Nonparametric ap-
proaches have also been successful for inpainting (Efros
and Leung, 1999; Hays and Efros, 2007; Barnes et al.,
2009). Partial convolutions (Liu et al., 2018) improve
CNN inpainting quality by rescaling filter responses that
access missing pixels, but are not causal unlike LM-
CONV. Latent-variable models like the VAE (Kingma
and Welling, 2014; Rezende et al., 2014) jointly learn a
generative model for data x given latent z and an approx-
imation for the posterior over z. Other latent-variable
models are based on Markov chains (Bengio et al., 2014;
Sohl-Dickstein et al., 2015; Nijkamp et al., 2019).

8 CONCLUSION

In this work, we proposed an efficient, scalable and easy
to implement approach for supporting arbitrary autore-
gressive orderings within convolutional networks. To do
so, we propose locally masked convolutions that allow ar-
bitrary orderings by masking features at each layer while
simultaneously sharing filter weights. This formulation
can be efficiently implemented purely via matrix multipli-
cation. Our work is a synthesis of prior lines of inquiry
in autoregressive models. Locally Masked PixelCNNs
support parallel estimation, convolutional inductive bi-
ases, and control over order, all with one simple layer.
Foundational work in this area each supported some of
these, but with incompatible architectures. As an addi-
tional benefit, arbitrary orderings allow image completion
with diverse regions. We achieve globally coherent image
completions by choosing a favorable order at test time,
without specifically training the model to inpaint.
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J. Červený. Generalized Hilbert space-filling curve, Oct 2019.
X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel. Pixel-

SNAIL: An improved autoregressive generative model. 2018.
R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long

sequences with sparse transformers. arXiv, 2019.
Y. Du and I. Mordatch. Implicit generation and modeling with

energy based models. NeurIPS, 2019.
A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In ICCV, 1999.
B. J. Frey. Graphical models for machine learning and digital

communication. MIT Press, 1998.
M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE:

Masked autoencoder for distribution estimation. In ICML,
pages 881–889, 2015.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
Adversarial Nets. In NIPS, 2014.

K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra.
Deep autoregressive networks. In ICML, volume 32, 2014.

A. Griewank and A. Walther. Algorithm 799: revolve. ACM
TOMS, 2000.

J. Hays and A. A. Efros. Scene completion using millions of
photographs. ACM TOG (SIGGRAPH), 26(3), 2007.

G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8), 2002.

P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, K. Keutzer,
I. Stoica, and J. E. Gonzalez. Checkmate: Breaking the
memory wall with optimal tensor rematerialization. 2020.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM, 2014.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive grow-
ing of GANs for improved quality, stability, and variation. In
ICLR, 2018.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

D. P. Kingma and M. Welling. Auto-Encoding Variational
Bayes. In ICLR, volume 1, 2014.

D. P. Kingma, M. Welling, et al. An introduction to variational
autoencoders. Foundations and Trends in Machine Learning,
12(4):307–392, 2019.

H. Larochelle and I. Murray. The neural autoregressive distribu-
tion estimator. In AISTATS, pages 29–37, 2011.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A
tutorial on energy-based learning. 2006.

B. Li, F. Wu, K. Q. Weinberger, and S. Belongie. Positional
normalization. In NeurIPS, 2019.

G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catan-
zaro. Image inpainting for irregular holes using partial con-
volutions. In ECCV, 2018.

J. Menick and N. Kalchbrenner. Generating high fidelity images

with subscale pixel networks and multidimensional upscaling.
In ICLR, 2019.

T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khu-
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A APPENDIX
A.1 ORDER VISUALIZATION
Figure 2 shows three image generation orders and corre-
sponding local masks used by the first LMCONV layer
in the autoregressive generator. On the left, we show the
raster scan, S-curve and Hilbert curve orders over the
pixels of a small 8×8 image. On the right, we show the
corresponding, local 3×3 binary masks applied to image
patches in the first layer. Masks applied to zero-pad pixels
are colored green as their value is arbitrary. The center
pixel in each image patch is masked out (set to 0), so that
the network cannot include ground truth information in
the representation of its context. The raster scan masks
are the same for all image patches, so weights can be
masked rather than image patches. However, other orders
require diverse masks to respect the autoregressive prop-
erty of the model. Figure 7 shows the 8 variants of the
S-curve generation order used for order-agnostic training.

Figure 7: Eight variants of the S-curve generation order.

A.2 MASK CONDITIONING
Uria et al. (2016) propose a convolutional neural autore-
gressive distribution estimator (ConvNADE) that can be

Algorithm 3 LMCONV with mask conditioning
1: Input: image x, weights WX ,WM, bias b, gen-

eration order π. x is B × Cin ×H ×W , WX is
Cout × Cin ∗ k1 ∗ k2, andWM is Cout × k1 ∗ k2.

2: Create mask matrixM with Algorithm 2
3: Extract patches: X = im2col(pad(x), k1, k2)
4: Mask patches: X =M�X
5: Perform convolution: Y =WXX+WMM1:Cin + b
6: Assemble patches: y = col2im(Y )
7: return y

trained with different masks on the input image. Con-
vNADE concatenates the mask with the image, allowing
the model to distinguish between a zero-valued pixel and
a zero-valued mask. Locally masked convolutions can
also condition upon the mask in each layer. Algorithm 3
is an adaptation of Algorithm 1 that supports mask condi-
tioning, with modifications shown in green. Algorithm 3
applies a learned weight matrixWM to the first Cin rows
of the mask matrix as the mask is repeated k1 ∗ k2 times
by Algorithm 2. Equivalently, the maskM1:Cin can be
concatenated with X after masking.

We evaluate mask conditioning on the Binarized MNIST
dataset with 8 S-curve orders. After training for 60 epochs
(not converged for the purposes of comparison), the model
without mask conditioning achieves a test NLL of 77.85
nats, while the mask conditioned model achieves a compa-
rable test NLL of 77.94 nats. However, mask conditioning
could improve generalization to novel orders.

A.3 EXPERIMENTAL SETUP

We tune hyperparameters such as the learning rate and
batch size as well as the network architecture (Section 5)
on the Grayscale MNIST dataset, and train models with
the exact same architecture and hyperparameters on Bi-
narized MNIST, CIFAR and CelebA-HQ. We used a
batch size of 32 images, learning rate 2 × 10−4, and
gradient clipping to norm 2 × 106. The exception is
that we use batch size 5 on CelebA-HQ to save memory
and 2-way softmax output instead of logistics for binary
data. CelebA-HQ (Karras et al., 2018) contains 30,000
256× 256 8-bit color celebrity photos. For experiments,
we use the same CelebA-HQ data splits as Glow (Kingma
and Dhariwal, 2018), with 27,000 training images and
3,000 validation images at reduced 5-bit color depth.

We trained the 1 stream baseline and our model for about
the same number of epochs. Longer training improves
performance, perhaps because order-agnostic training and
dropout regularize, so epoch count was determined by
time limitations. Most models are trained with 4 V100 or
Quadro RTX 6000 GPUs. We train our CIFAR10 model



Figure 8: Unconditionally generating MNIST digits with
two Hilbert curve orders, starting at the top or bottom left.

for 2.6M steps (1644 epochs) with order-agnostic training
over 8 precomputed S-curve variants, then average model
parameters from the last 45 epochs of training. Early
in our experimental process, we compared Hilbert curve
generation orders against the S-curve, visualized for small
images in Figure 2, but did not see improved results.

For qualitative results, we train the 184M parameter
64× 64 CelebA-HQ model for 375K iterations at batch
size 32. Inspired by Progressive GAN (Karras et al.,
2018), we train the model at a reduced 32 × 32 resolu-
tion for the first 242K iterations. As the architecture is
fully convolutional, it is straightforward to increase image
resolution during training.

A.4 ADDITIONAL SAMPLES

Figure 8 shows intermediate states of the forward sam-
pling process for unconditional generation of grayscale
MNIST digits. We samples pixels along a Hilbert space-
filling curve. As Hilbert curves are defined recursively
for power-of-two sized grids, we use a generalization of
the Hilbert curve (Červený, 2019) for 28× 28 image gen-
eration. Our Locally Masked PixelCNN is optimized via
order-agnostic training with eight variants of the order.
Two variants are used for sampling digits in Fig. 8. The
top two digits are sampled beginning at the top left of the
image, and the bottom two digits are sampled beginning
at the bottom left of the image. Images are shown at
intervals of roughly 156 sampling steps. With the same
parameters, the model is able to unconditionally generate
plausible digits in multiple orders.

Figure 9 shows uncurated image completions using the
large CelebA-HQ model. Initial network input is shown
to the left of two image completions sampled from our
Locally Masked PixelCNN with an S-curve variant that
generates missing pixels last. The input images are taken

OriginalObs OursObs OursObs Obs OursOurs

Figure 9: Uncurated CelebA-HQ 64x64 completions.

from the validation set. The rightmost column contains
the original image, i.e. the ground truth image comple-
tion. Two samples with the same context vary due to
the stochasticity of the decoding process, e.g. varying in
terms of hairstyle, facial hair, attire and expression.

A.5 IMPLEMENTATION

Locally Masked Convolutions are simple to implement
using the basic linear algebra subprograms exposed in
machine learning frameworks, including matrix multipli-
cation. It also requires an implementation of the im2col
operation. We provide an abbreviated Python code sam-
ple implementing LMCONV using the PyTorch library
in Figure 10. The full source including gradient compu-
tation, parameter initialization and mask conditioning is
available at https://ajayjain.github.io/lmconv.

https://ajayjain.github.io/lmconv


import math

import torch
import torch.nn as nn
import torch.nn.functional as F

class _locally_masked_conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, x, mask, weight, bias=None, dilation=1, padding=1):

# Save values for backward pass
ctx.save_for_backward(x, mask, weight)
ctx.dilation, ctx.padding = dilation, padding
ctx.H, ctx.W = x.size(2), x.size(3)
ctx.output_shape = (x.shape[2], x.shape[3])
out_channels, in_channels, k1, k2 = weight.shape

# Step 1: Unfold (im2col)
x = F.unfold(x, (k1, k2), dilation=dilation, padding=padding)

# Step 2: Mask x. Avoid repeating mask in_channels times by reshaping x
x_channels_batched = x.view(x.size(0) * in_channels,

x.size(1) // in_channels, x.size(2))
x = torch.mul(x_channels_batched, mask).view(x.shape)

# Step 3: Perform convolution via matrix multiplication and addition
weight_matrix = weight.view(out_channels, -1)
x = weight_matrix.matmul(x)
if bias is not None:

x = x + bias.unsqueeze(0).unsqueeze(2)

# Step 4: Restore shape
return x.view(x.size(0), x.size(1), *ctx.output_shape)

@staticmethod
def backward(ctx, grad_output):

x, mask, weight, mask_weight = ctx.saved_tensors
...
if ctx.needs_input_grad[2]:

# Recompute unfold and masking to save memory
x_ = F.unfold(x, (k1, k2), dilation=ctx.dilation, padding=ctx.padding)
...

...

class locally_masked_conv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, bias):

super(locally_masked_conv2d, self).__init__()
...
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.bias = nn.Parameter(torch.Tensor(out_channels)) if bias else None
self.reset_parameters()

def reset_parameters(self):
...

def forward(self, x, mask):
return _locally_masked_conv2d.apply(x, mask, self.weight,

self.bias, self.dilation, self.padding)

Figure 10: A memory-efficient PyTorch v1.5.1 implementation of LMCONV. Gradient calculation is omitted for brevity.
See https://ajayjain.github.io/lmconv for the full implementation and training code.

https://ajayjain.github.io/lmconv

