
A Proofs

Proof of Proposition 1 Under these conditions, V (·)
is never evaluated in the recursive evaluation of Y(Z =
z,A = a) by equation (1) for any V ∈ {Z \A}.

Proof of Proposition 2 By generalized consistency,
A(z) = a implies Y(z,a) = Y(z), and by causal ir-
relevance Y(z,a) = Y(a).

Proof of Proposition 3 We will show that condi-
tions (i), (ii), (iii) require that Z(a) = Z(b) for all
Z ∈ X ∪Y. It follows that if there exists Z ∈ X ∪Y
such that Z(a) 6= Z(b), there is no single value of εV
that leads to X(a) = x and to Y(b) = y, and the events
must be contradictory.

Let C1 be all variables that are causally relevant
to Z in both X ∪A and Y ∪B, let C2 be all variables
that are causally relevant to Z in {X ∪A} \ {Y ∪ B},
and that are causally relevant to Z given Y ∪ B, and
let C3 be all variables that are causally relevant to Z in
{Y ∪B} \ {X ∪A} and that are causally relevant to Z
given X ∪A.

We note that condition (i) specifies that C1(a) = C1(b).
Then, condition (ii) requires that C2(a) = C2(b); other-
wise there would be a contradiction between X(a) = x
and Y(b) = y ∧C2(b) = c2. In other words, there are
no values of εV that lead to X(a) = x that do not lead to
Y(b) = y ∧C2(b) = C2(a). For an analogous reason,
condition (iii) requires that C3(a) = C3(b),

We next note that by construction, no variable
D 6= Z in {X ∪Y ∪A ∪B} \ {C1 ∪ C2 ∪ C3} is
causally relevant to Z given C1 ∪C2 ∪C3.

Under conditions (i), (ii), (iii), by consistency
Z(a) = Z(c1, c2, c3,a,x\{z}). By causal irrel-
evance of all variables D 6= Z in A ∪ X not in
C1 ∪ C2 ∪ C3 given C1 ∪ C2 ∪ C3 we have
Z(c1, c2, c3,a,x\{z}) = Z(c1, c2, c3). For the
same reasons, Z(b) = Z(c1, c2, c3,b,y\{z}) =
Z(c1, c2, c3). This yields Z(a) = Z(b), completing the
proof. This recursive definition of contradiction between
events must resolve because each recursive call expands
the number of variables specified in one of the events, and
there are a finite number of variables in the graph.

Proof of Proposition 5 Each event in the partition
either directly specifies Y(a1) = y, or specifies an event
that implies Y(a1) = y by Proposition 2, so we know
the disjunction of these events is a subset of Y(a1) = y.

Now we show that all sets are disjoint. Event (13)
and all events of the form of (14) are pairwise disjoint,
as each requires a different event under the intervention
Z = z1. These events are all disjoint from event (12),
as the former each specifies a value of z′ for which
A(z′) = a, and the latter specifies that no such z′ can
exist.

Finally, we show that the events are exhaustive.
In addition to the requirement that Y(a1) = y specified
above, a disjunction of the partition set events requires
that A(z1) take a value in a1, · · · ,aN, which is
tautological. It also requires that ∀z′

(
A(z′) 6= a1

)
or

∃z′
(
A(z′) = a1

)
, which is likewise tautological. No

other requirements are present.

Proof of Proposition 6 Ex ∧ Y (b) 6= y =⇒
ψb(Ex) ∧ Y (b) 6= y. Therefore P (Ex, Y (b) 6= y) ≤
P (ψb(Ex), Y (b) 6= y).

P (Ex) = P (Ex,Y(b) = y) + P (Ex,Y(b) 6= y),
which, in combination with the preceding, yields
P (Ex,Y(b) = y) ≥ P (Ex)−P (ψb(Ex),Y(b) 6= y).

By construction, Ex =⇒ X(a) = x, yielding
the first bound. A symmetric argument yields the
second.

Proof of Proposition 7 The inclusion-exclusion for-
mula states that

∑N
i=1 P (Ei) = P (∪Ni=1Ei) +∑

i<j P (Ei ∩ Ej). Under the conditions of the Propo-
sition,

∑
i<j P (Ei ∩ Ej) ≤ k − 1, as any set of val-

ues of εV may imply at most k − 1 of the events in
{Ei∩Ej | i < j}, and the set of all possible values of εV
has measure 1. Noting that P (∪Ni=1Ei) ≤ 1 by definition,
we have P (∪Ni=1Ei) +

∑
i<j P (Ei ∩ Ej) ≤ k.

Proof of Corollary 2 Ã is causally irrelevant to Y
given A, so the lower bounds follow directly from Propo-
sitions 2 and 4. The upper bounds follow because,
by the same reasoning, P (Y(ã) 6= y, Â(ã) = â) ≤
P (Y(a) 6= y).

Proof of Corollary 4 Proposition 3 tells us that if
Z is a generalized instrument for A with respect to
Y, two events of the form A(z) = a ∧Y(a) = y and
A(z′) = a′ ∧ Y(z′) = y′ are contradictory if
¬
(
(z = z′ ∧ a 6= a′) ∨ (a = a′ ∧ y 6= y′)

)
. Therefore

Φ(S) provides the size of the largest subset of events
that are mutually compatible. The result then follows
immediately from Proposition 7.



B Equivalence Class Completeness

In this appendix we introduce an assumption we call
equivalence class completeness. Following [1], we say
two values in the domain of εV are in the same equiva-
lence class if they will produce the same results through
equation (1) for every variable under every intervention.

Assumption 1 (Equivalence Class Completeness). Every
equivalence class of εV is non-empty in the domain of
εV.

We note that this assumption precludes the possibility
of vacuous edges (edges that reflect no causal influence)
in the graph. In the case of a vacuous edge X → V ,
for example, there will be no values of εV that produce
V = v for some setting of X = x and V = v′ for another
setting of X = x′, because V is not a function of X .
This would mean that the equivalence class of values of
εV that lead to V = v under intervention X = x and
V = v′ under intervention X = x′ is empty, violating the
assumption.

For the same reason, this assumption precludes the possi-
bility of context-specific exclusion restrictions. If there
is an edge X → V such that for some level of the other
parents of V , denoted by Y = y, V is not a function
of X , then there will exist no value of εV that leads to
V = v under intervention X = x,Y = y but to V = v′

under intervention X = x′,Y = y.

We now show that under this assumption, the criteria
in Propositions 2 and 3 for cross-world implication and
event contradiction respectively are necessary as well as
sufficient. It follows that unless there exists background
knowledge that the equivalence class completeness as-
sumption is violated, due for example to deterministic
causal relationships, all implications and contradictions
relevant for deriving bounds and inequality constraints
can be obtained using these criteria.
Proposition 8. Under the equivalence class complete-
ness assumption, Z is causally irrelevant to Y given A if
and only if:

A(z) = a ∧Y(z) = y =⇒ Y(a) = y.

Proof. Sufficiency is given by proposition 2. We demon-
strate necessity as follows. Assume Z is not causally
irrelevant to Y given A, i.e. there is a path from Z to Y
not through A. Then by equivalence class completeness,
there must be values of εV for which Y is a function of Z
when A is exogenously set and Z does not take the value
z under no intervention. Therefore, there will exist values
of εV such that Y(a, z) 6= Y(a). By generalized consis-
tency A(z) = a ∧Y(z) = y =⇒ Y(a, z) = y, which
contradicts A(z) = a∧Y(z) = y =⇒ Y(a) = y.

Proposition 9. Under the equivalence class complete-
ness assumption, two events X(a) = x and Y(b) = y
are contradictory if and only if there exists Z ∈ X ∪Y
such that Z(a) 6= Z(b), and all of the following hold:

(i) Variables in the subsets of both X ∪A and Y ∪B
causally relevant for Z are set to the same values in
x,a, and y,b.

(ii) Let C ∈ {X ∪A} \ {Y ∪B} be any variable that
is causally relevant to Z in X ∪ A and causally
relevant to Z given Y ∪B, with C set to c in x,a.
Then X(a) = x and Y(b) = y ∧ C(b) = c′ are
contradictory when c 6= c′.

(iii) Let C ∈ {Y ∪B} \ {X ∪A} be any variable that
is causally relevant to Z in Y ∪ B and causally
relevant to Z given X ∪A, with C set to c in y,b.
Then Y(b) = y and X(a) = x ∧ C(a) = c′ are
contradictory when c 6= c′.

Proof. Sufficiency is given by Proposition 3. To see
the necessity of condition (i), we note that if variables
causally relevant in X ∪ A and in Y ∪ B took differ-
ent values in x,a and y,b, then if Z(x,a) 6= Z(y,b),
there must be an equivalence class that leads to these two
results under their respective interventions. By the equiva-
lence class completeness assumption it will be non-empty.
Therefore there exists a value of εV that leads to both
events, and they are not contradictory.

We now demonstrate the necessity of condition (ii). If
(ii) does not hold, there must be a variable D that is
causally relevant to Z in X ∪A and given Y ∪ B that
can take different values under equivalence classes of
εV that lead to X(a) = a and Y(b) = y under their
respective interventions. Because D is causally relevant
given both the remainder of X ∪ A, and given all of
Y ∪ B, and can for single value of εV take different
values under the relevant interventions, it is possible for
that value of εV to yield different values of Z under the
two interventions. By equivalence class completeness, an
εV leading to this result must exist, leading to a lack of
contradiction between the two events. Condition (iii) is
necessary by an analogous argument.

C Redundant Lower Bounds

We present results that establish the redundance of lower
bounds induced by certain events E1 and E2 through
Corollary 3.

We first observe that the event chosen for E1 in Proposi-
tion 6 should be compatible with the event Y(b) = y. If
it is not, ψb(E1) ∧Y(b) 6= y is equivalent to ψb(E1).



Because E1 =⇒ ψb(E1), by Proposition 4 any such E1

will induce a negative lower bound, which is of course
uninformative. An analogous argument can be made for
E2.

We next consider a proposition that explains why we did
not need to consider the bound induced by E1 , A(z̄) =
ā to obtain sharp bounds in Section 3.
Proposition 10. Let E1 imply X(a) = a and let
Y(b) 6= y imply ψb(E1). Then the event E2 ,
Y(b) = y induces, through Proposition 6, a weakly bet-
ter bound than does E1. An analogous claim holds for
E2.

Proof. P (ψb(E1),Y(b) 6= y) = P (Y(b) 6= y), as
Y(b) 6= y =⇒ ψb(E1) by assumption.

The lower bound induced byE1, given by Proposition 6 as
P (E1)− P (ψb(E1),Y(b) 6= b), can now be expressed
as P (Y(b) = y)− P (¬E1).

We now note ψa(Y(b) = b)) ∧X(a) 6= x =⇒ ¬E1,
as E1 =⇒ X(a) = x by construction. Therefore
P (¬E1) ≥ P (ψa(Y(b) = b) ∧ X(a) 6= x), and the
bound induced by E2 , Y(b) = y, given by Proposition
6 as P (Y(b) = y) − P (ψa(Y(b) = b)) ∧X(a) 6= x),
must be better than that induced by E1.

In the binary IV case described in Section 3, every event
under intervention Z = z is compatible with the event
A(z̄) = ā. This means that in particular ψz(A(z̄) = ā) is
implied by ¬

(
A(z) = a ∧ Y (z) = y

)
. The lower bound

on event (4) induced by E1 , A(z̄) = ā is therefore
redundant given the bound induced by E2 , A(z) =
a ∧ Y (z) = y.

Next, we identify an additional condition under which
bounds induced by particular valid choices of E1 and E2

are irrelevant. This condition does not appear in the IV
model.
Proposition 11. If two candidates for events E1 (E2),
under Proposition 6 are each compatible with the same
events under B = b (A = a), the candidate event with
larger density will induce a better bound.

Proof. The bound in Proposition 6 is expressed as the
density of E1 (E2) less a function of the events com-
patible with E1 (E2). If the two candidate events are
compatible with the same set of events, the negative quan-
tity in the bound will be the same. The bound with the
larger positive quantity – the density of E1 (E2) – must
be larger.

Proposition 12. Under the equivalence class complete-
ness assumption, an event Y(a) = y∧X(a) = x is com-
patible with the same events under intervention A = a′

as is X(a) = x if and only if Y, and all descendants of Y
in X to which Y is causally relevant given the remainder
of X, have at least one causally relevant ancestor in A
that takes different values in a than in a′.

Proof. If an event does not contradict Y(a) = y ∧
X(a) = x, it will not contradict the less restrictive event
X(a) = x.

We consider an event compatible with X(a) = x. By
Proposition 9, if it is to contradict X(a) = x∧Y(a) = y
under the equivalence class completeness assumption,
then there must be a variable Z satisfying the conditions
of that proposition. This Z cannot be in Y, or any of its
descendants in X to which it is causally relevant given
the remainder of X, by the condition that they each have
a causally relevant ancestor in A that differs between a
and a′. If it is any variable to which Y is not causally
relevant, then the causally relevant ancestors are the same
in X(a) = x ∧Y(a) = y as in X(a) = x, so the event
must also be compatible with X(a) = x ∧Y(a) = y if
it is compatible with X(a) = x.

Finally, we demonstrate the necessity of these conditions.
If they failed to hold, some variable in Y ∪X in Y or
to which Y is causally relevant given the remainder of
X would have no causally relevant ancestor in A that
differed under the two interventions. We call such a vari-
able Z, and say it takes value z. Then we construct the
event X′(a′) = x′ ∧ Y′(a′) = y′ ∧ Z(a′) 6= z, with
X′,Y′ denoting X \ {Z},Y \ {Z}. This event contra-
dicts Y(a) = y ∧ X(a) = x but does not contradict
X(a) = x by Proposition 9.

We note that because the bounds derived by Corollary
3 do not make use of any additional implications that
may result from violations of the equivalence class com-
pleteness assumption, these results lead directly to the
following Corollary:

Corollary 5. Let the event Ẽ , Y(a) = y ∧X(a) = x
be compatible with the same events under A = a′ as
X(a) = x by Proposition 12, and be a valid candidate
for E1 (E2). Then by Proposition 11, any event X(a) =
x ∧W(a) = yw, with W ⊂ Y, that is also a valid
candidate for E1 (E2) will induce a better bound through
Corollary 3 than Ẽ.

D Numerical Examples of Bound Width

In this section, we provide numerical examples of bounds
in two models. These examples demonstrate that bounds
tend to be most informative when the instrument and
treatment are highly correlated. It is our hope that they
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Figure 4: The Inclusive Frontdoor Model

will provide some intuition about when these bounds will
be of use.

Consider the causal model described by the graph in
Fig. 4. Suppose all variables are binary and we are
interested in the probability P (Y (A1 = 1, A2 = 1) = 1).
If we observe the following probabilities,

P (A1 = 1, A2 = 1, Y = 1) = .01

P (A1 = 1, A2 = 1, Y = 0) = .08,

we can use Corollary 1 to obtain the bounds

.01 ≤ P (Y (A1 = 1, A2 = 1) = 1) ≤ .92.

These bounds are quite wide, and unlikely to be informa-
tive. Now suppose that we observe the following condi-
tional probability

P (A2 = 1 | A1 = 1) = .1. (23)

Noting that P (A1(a2) = a1, Y (a2) = y) is identified
as P (a1,a2,y)

P (a2|a1) , we can now use Corollary 2 to obtain the
bounds

.1 ≤ P (Y (A1 = 1, A2 = 1) = 1) ≤ .2.

These bounds are much tighter, and exclude .5, which
may be important in some cases. If instead we observe
the conditional probability

P (A2 = 1 | A1 = 1) = .5, (24)

then Corollary 2 yields the much less informative bounds

.02 ≤ P (Y (A1 = 1, A2 = 1) = 1) ≤ .84.

In this example A2 is used as a generalized instrument
for A1, as discussed in Section 4. The tightness of the
bounds therefore depends on the relationship between the
two, as demonstrated by the differences in bounds under
the conditional probabilities (23) and (24).

We now consider the IV Model with Covariates, depicted
in Fig. 3 (a), and discussed in Section 6. To build an
understanding of the utility of our bounds, we randomly
generated distributions from the model. These distribu-
tions were generated by sampling the parameter for each
observed binary random variable, conditional on each
setting of its parents, from a symmetric Beta distribution,
with parameters equal to 1. The unobserved variable U
was assumed to have cardinality 16, to allow for every pos-
sible equivalence class [1], and its distribution was drawn

Figure 5: Each point represents a randomly generated
distribution in the IV model with covariates, depicted
in Fig. 3 (a). This plot shows informally that correlation
between the generalized instrumentZ and the treatmentA
is associated with tighter bounds on the ACE, E[Y (A =
1) − Y (A = 0)]. The histograms show the marginal
distributions of correlation and bound width.

from a symmetric Dirichlet distribution with parameters
equal to 0.1.

We then calculated the correlation between A and Z, as
well as bounds on the ACE, E[Y (A = 1)− Y (A = 0)],
for each distribution. The results are presented in Fig. 5.

We observe that, as expected, greater correlation between
the generalized instrument and the treatment is associated
with tighter bounds. This pattern persisted across simula-
tions for additional models, and across various approaches
to sampling distributions from the model.

The marginal distributions of correlation and bound width,
shown as histograms in Fig. 5 seem to be sensitive to the
approach used to sample distributions from the model.
For distributions sampled as described above, and used
to generate Fig. 5, the mean width of bounds on the ACE
was 0.77, with a standard deviation of 0.12. In 4% of the
distributions, the bounds excluded 0. We find that these
values are also sensitive to changes in how distributions
were sampled.



E Bounds on P (Y (ā) = ȳ) in the IV Model
With Covariates

The remainder of this section is a LaTeX friendly printout
of the steps taken by our implementation of the algorithm
described in this work when applied to bounding P (ȳ(ā))
in the IV model with covariates, as described in Section
6.

To begin, we partition ȳ(ā) as described in Proposition 5:

ȳ(ā) ∧ a(z̄) ∧ a(z)

ā(z̄) ∧ ȳ(z̄)

(a(z̄) ∧ (ā(z) ∧ ȳ(z))).

As before, no lower bound is provided for the first event
in the partition, and the second has an identified density.
We now consider the last event in the partition a(z̄) ∧
(ā(z) ∧ ȳ(z)).

The following events imply a(z̄) and can therefore be
used as E1 events in Corollary 3:

a(z̄) ∧ ȳ(z̄)

a(z̄) ∧ y(z̄)

a(z̄) ∧ c̄(z̄)
a(z̄) ∧ c(z̄)

a(z̄) ∧ ȳ(z̄) ∧ c̄(z̄)
a(z̄) ∧ ȳ(z̄) ∧ c(z̄)
a(z̄) ∧ y(z̄) ∧ c̄(z̄)
a(z̄) ∧ y(z̄) ∧ c(z̄).

Likewise, the following events imply ā(z)∧ ȳ(z) and can
therefore be used as E2 events in Corollary 3:

ā(z) ∧ ȳ(z)

ā(z) ∧ ȳ(z) ∧ c̄(z)
ā(z) ∧ ȳ(z) ∧ c(z)

By Proposition 10, a(z̄), which implies a(z̄), and there-
fore would be a candidate for use as an E1 event, is
redundant.

We now iterate through each potential event for E1and
E2, examining the resulting bound.

The event a(z̄) ∧ ȳ(z̄) is compatible with ȳ(z) ∨ (ā(z) ∧
y(z)). Therefore to compute the bound induced by using
it as an E1 event, we must subtract from its density the
portion of this compatible event that does not entail the
negation of ā(z) ∧ ȳ(z). This portion is (a(z) ∧ ȳ(z)) ∨
(ā(z)∧ y(z)), yielding the bound Pz̄(a, ȳ)−

(
Pz(a, ȳ) +

Pz(ā, y)
)
.

The event a(z̄)∧ y(z̄) is compatible with (ā(z)∧ ȳ(z))∨
y(z). Therefore to compute the bound induced by using

it as an E1 event, we must subtract from its density the
portion of this compatible event that does not entail the
negation of ā(z)∧ ȳ(z). This portion is y(z), yielding the
bound Pz̄(a, y)− Pz(y).

The event a(z̄)∧ c̄(z̄) is compatible with (a(z)∧ c̄(z))∨
c(z). Therefore to compute the bound induced by using
it as an E1 event, we must subtract from its density the
portion of this compatible event that does not entail the
negation of ā(z) ∧ ȳ(z). This portion is (a(z) ∧ y(z) ∧
c̄(z))∨ (a(z)∧ ȳ(z))∨ (y(z)∧ c(z)), yielding the bound
Pz̄(a, c̄)−

(
Pz(a, y, c̄) + Pz(a, ȳ) + Pz(y, c)

)
.

The event a(z̄) ∧ c(z̄) is compatible with c̄(z) ∨ (a(z) ∧
c(z)). Therefore to compute the bound induced by using
it as an E1 event, we must subtract from its density the
portion of this compatible event that does not entail the
negation of ā(z) ∧ ȳ(z). This portion is (y(z) ∧ c̄(z)) ∨
(a(z) ∧ ȳ(z) ∧ c̄(z)) ∨ (a(z) ∧ c(z)), yielding the bound
Pz̄(a, c)−

(
Pz(y, c̄) + Pz(a, ȳ, c̄) + Pz(a, c)

)
.

The event a(z̄) ∧ ȳ(z̄) ∧ c̄(z̄) is compatible with (ā(z) ∧
y(z)∧c(z))∨(a(z)∧ ȳ(z)∧ c̄(z))∨(ȳ(z)∧c(z)). There-
fore to compute the bound induced by using it as an E1

event, we must subtract from its density the portion of
this compatible event that does not entail the negation of
ā(z)∧ ȳ(z). This portion is (ā(z)∧y(z)∧c(z))∨(a(z)∧
ȳ(z)), yielding the bound Pz̄(a, ȳ, c̄) −

(
Pz(ā, y, c) +

Pz(a, ȳ)
)
.

The event a(z̄) ∧ ȳ(z̄) ∧ c(z̄) is compatible with (ȳ(z) ∧
c̄(z))∨(ā(z)∧y(z)∧ c̄(z))∨(a(z)∧ ȳ(z)∧c(z)). There-
fore to compute the bound induced by using it as an E1

event, we must subtract from its density the portion of
this compatible event that does not entail the negation of
ā(z)∧ ȳ(z). This portion is (ā(z)∧y(z)∧ c̄(z))∨(a(z)∧
ȳ(z)), yielding the bound Pz̄(a, ȳ, c) −

(
Pz(ā, y, c̄) +

Pz(a, ȳ)
)
.

The event a(z̄) ∧ y(z̄) ∧ c̄(z̄) is compatible with (a(z) ∧
y(z)∧ c̄(z))∨(ā(z)∧ ȳ(z)∧c(z))∨(y(z)∧c(z)). There-
fore to compute the bound induced by using it as an E1

event, we must subtract from its density the portion of
this compatible event that does not entail the negation of
ā(z)∧ ȳ(z). This portion is (a(z)∧y(z)∧ c̄(z))∨(y(z)∧
c(z)), yielding the bound Pz̄(a, y, c̄) −

(
Pz(a, y, c̄) +

Pz(y, c)
)
.

The event a(z̄) ∧ y(z̄) ∧ c(z̄) is compatible with (y(z) ∧
c̄(z))∨(ā(z)∧ ȳ(z)∧ c̄(z))∨(a(z)∧y(z)∧c(z)). There-
fore to compute the bound induced by using it as an E1

event, we must subtract from its density the portion of
this compatible event that does not entail the negation
of ā(z) ∧ ȳ(z). This portion is (y(z) ∧ c̄(z)) ∨ (a(z) ∧
y(z)∧c(z)), yielding the bound Pz̄(a, y, c)−

(
Pz(y, c̄)+

Pz(a, y, c)
)
.



The event ā(z) ∧ ȳ(z)is compatible with ȳ(z̄) ∨ (a(z̄) ∧
y(z̄)). Therefore to compute the bound induced by using
it as an E2 event, we must subtract from its density the
portion of this compatible event that does not entail the
negation of a(z̄). This portion is (ā(z̄) ∧ ȳ(z̄)), yielding
the bound Pz(ā, ȳ)− Pz̄(ā, ȳ).

The event ā(z) ∧ ȳ(z) ∧ c̄(z)is compatible with (ȳ(z̄) ∧
c(z̄))∨(a(z̄)∧y(z̄)∧c(z̄))∨(ā(z̄)∧ ȳ(z̄)∧ c̄(z̄)). There-
fore to compute the bound induced by using it as an E2

event, we must subtract from its density the portion of
this compatible event that does not entail the negation of
a(z̄). This portion is (ā(z̄) ∧ ȳ(z̄)), yielding the bound
Pz(ā, ȳ, c̄)− Pz̄(ā, ȳ).

The event ā(z) ∧ ȳ(z) ∧ c(z)is compatible with (ā(z̄) ∧
ȳ(z̄)∧c(z̄))∨(a(z̄)∧y(z̄)∧ c̄(z̄))∨(ȳ(z̄)∧ c̄(z̄)). There-
fore to compute the bound induced by using it as an E2

event, we must subtract from its density the portion of
this compatible event that does not entail the negation of
a(z̄). This portion is (ā(z̄) ∧ ȳ(z̄)), yielding the bound
Pz(ā, ȳ, c)− Pz̄(ā, ȳ).

This concludes the derivation of the bounds presented for
the IV model with covariates in Section 6.
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