
Probabilistic Safety for Bayesian Neural Networks

Matthew Wicker∗
University of Oxford

Luca Laurenti∗
University of Oxford

Andrea Patane∗
University of Oxford

Marta Kwiatkowska
University of Oxford

Abstract

We study probabilistic safety for Bayesian
Neural Networks (BNNs) under adversarial in-
put perturbations. Given a compact set of in-
put points, T ⊆ Rm, we study the probabil-
ity w.r.t. the BNN posterior that all the points
in T are mapped to the same region S in the
output space. In particular, this can be used
to evaluate the probability that a network sam-
pled from the BNN is vulnerable to adversarial
attacks. We rely on relaxation techniques from
non-convex optimization to develop a method
for computing a lower bound on probabilis-
tic safety for BNNs, deriving explicit proce-
dures for the case of interval and linear func-
tion propagation techniques. We apply our
methods to BNNs trained on a regression task,
airborne collision avoidance, and MNIST, em-
pirically showing that our approach allows one
to certify probabilistic safety of BNNs with
millions of parameters.

1 INTRODUCTION

Although Neural Networks (NNs) have recently
achieved state-of-the-art performance [14], they are sus-
ceptible to several vulnerabilities [3], with adversarial
examples being one of the most prominent among them
[28]. Since adversarial examples are arguably intuitively
related to uncertainty [17], Bayesian Neural Networks
(BNNs), i.e. NNs with a probability distribution placed
over their weights and biases [24], have recently been
proposed as a potentially more robust learning paradigm
[6]. While retaining the advantages intrinsic to deep
learning (e.g. representation learning), BNNs also enable
principled evaluation of model uncertainty, which can

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

∗ Equal Contributions.

be taken into account at prediction time to enable safe
decision making.

Many techniques have been proposed for the evaluation
of the robustness of BNNs, including generalisation of
NN gradient-based adversarial attacks to BNN posterior
distribution [19], statistical verification techniques for
adversarial settings [7], as well as pointwise (i.e. for a
specific test point x∗) uncertainty evaluation techniques
[27]. However, to the best of our knowledge, methods
that formally (i.e., with certified bounds) give guarantees
on the behaviour of BNNs against adversarial input per-
turbations in probabilistic settings are missing.

In this paper we aim at analysing probabilistic safety for
BNNs. Given a BNN, a set T ⊆ Rm in the input space,
and a set S ⊆ Rnc in the output space, probabilistic
safety is defined as the probability that for all x ∈ T the
prediction of the BNN is in S. In adversarial settings,
the input region T is built around the neighborhood of a
given test point x∗, while the output region S is defined
around the BNN prediction on x∗, so that probabilistic
safety translates into computing the probability that ad-
versarial perturbations of x∗ cause small variations in the
BNN output. Note that probabilistic safety represents a
probabilistic variant of the notion of safety commonly
used to certify deterministic NNs [26].

Unfortunately, computation of probabilistic safety for a
BNN over a compact set T and for an output region S is
not trivial, as it involves computing the probability that
a deterministic NN sampled from the BNN posterior is
safe (i.e., all the points in a given set are mapped by the
network to a given output set), which is known to be NP-
complete [16]. Nevertheless, we derive a method for the
computation of a certified lower bound for probabilistic
safety. In particular, we show that the computation of
probabilistic safety for BNNs is equivalent to computing
the measure, w.r.t. BNN posterior, of the set of weights
for which the resulting deterministic NN is safe, i.e., ro-
bust to adversarial perturbations. We compute a subset

of such weights, Ĥ , and build on relaxation techniques
from non-linear optimisation to check whether, given a
compact set T and a safe output region S, all the net-
works instantiated by weights in Ĥ are safe. We provide
lower bounds for the case of Interval Bound Propagation
(IBP) and Linear Bound Propagation (LBP) for BNNs
trained with variational inference (VI) [5]. However, we
note that the derived bounds can be extended to other ap-
proximate Bayesian inference techniques.

We experimentally investigate the behaviour of our
method on a regression task, the VCAS dataset and the
MNIST dataset, for a range of properties and different
BNN architectures, and applying bounds obtained both
via IBP and LBP. We show that our method allows one to
compute non-trivial, certified lower bounds on the proba-
bilistic safety of BNNs with millions of weights in a few
minutes.

In summary, this paper makes the following main contri-
butions.1

• We propose a framework based on relaxation tech-
niques from non-convex optimisation for the anal-
ysis of probabilistic safety for BNNs with general
activation functions and multiple hidden layers.

• We derive explicit procedures based on IBP and
LBP for the computation of the set of weights
for which the corresponding NN sampled from the
BNN posterior distribution is safe.

• On various datasets we show that our algorithm can
efficiently verify multi-layer BNNs with millions of
parameters in a few minutes.

Related Work. Most existing certification methods are
designed for deterministic neural networks (see e.g.,
[16]) and cannot be used for verification of Bayesian
models against probabilistic properties. In particular, in
[30, 32, 13] Interval Bound Propagation (IBP) and Lin-
ear Bound Propagation (LBP) approaches have been em-
ployed for certification of deterministic neural networks.
However, these methods cannot be used for BNNs be-
cause they all assume that the weights of the networks
are deterministic, i.e fixed to a given value, while in the
Bayesian setting we need to certify the BNN for a con-
tinuous range of values for weights that are not fixed, but
distributed according to the BNN posterior. We extend
IBP and LBP to BNNs in Section 4.1.

Bayesian uncertainty estimates have been shown to em-
pirically flag adversarial examples in [25, 27]. How-

1An implementation to reproduce all the experiments can
be found at: https://github.com/matthewwicker/
ProbabilisticSafetyforBNNs.

ever, these approaches only consider pointwise uncer-
tainty estimates, that is, specific to a particular test point.
In contrast, probabilistic safety aims at computing the
uncertainty for compact subspaces of input points, thus
taking into account worst-case adversarial perturbations
of the input point when considering its neighbourhood.
A probabilistic property analogous to that considered in
this paper has been studied for BNNs in [7, 23]. How-
ever, the solution methods presented in [7, 23] are sta-
tistical, with confidence bounds, and in practice cannot
give certified guarantees for the computed values, which
are important for safety-critical applications. Our ap-
proach, instead building on non-linear optimisation re-
laxation techniques, computes a certified lower bound.

Methods to compute probabilistic adversarial measures
of robustness in Bayesian learning settings have been
explored for Gaussian Processes (GPs), both for regres-
sion [8] and classification tasks [27, 4]. However, the
vast majority of inference methods employed for BNNs
do not have a Gaussian approximate distribution in la-
tent/function space, even if they assume a Guassian
distribution in the weight space [5]. Hence, certifica-
tion techniques for GPs cannot be directly employed for
BNNs. In fact, because of the non-linearity of the BNN
structure, even in this case the distribution of the BNN is
not Gaussian in function space. Though methods to ap-
proximate BNN inference with GP-based inference have
been proposed [10], the guarantees obtained in this way
would apply to the approximation and not the actual
BNN, and would not provide error bounds. In contrast,
our method is specifically tailored to take into account
the non-linear nature of BNNs and can be directly ap-
plied to a range of approximate Bayesian inference tech-
niques.

2 BAYESIAN NEURAL NETWORKS
(BNNs)

In this section we review BNNs. We write fw(x) =
[fw1 (x), . . . , fwnc

(x)] to denote a BNN with nc output
units and an unspecified number of hidden layers, where
w is the weight vector random variable. Given a distri-
bution over w and w ∈ Rnw , a weight vector sampled
from the distribution of w, we denote with fw(x) the
corresponding deterministic neural network with weights
fixed to w. Let D = {(xi, yi), i ∈ {1, ..., ND}} be the
training set. In Bayesian settings, we assume a prior dis-
tribution over the weights, i.e. w ∼ p(w), so that learn-
ing amounts to computing the posterior distribution over
the weights, p(w|D), via the application of Bayes rule.
Unfortunately, because of the non-linearity introduced
by the neural network architecture, the computation of
the posterior cannot be done analytically [20].

https://github.com/matthewwicker/ProbabilisticSafetyforBNNs
https://github.com/matthewwicker/ProbabilisticSafetyforBNNs

In this work we focus on Gaussian Variational Inference
(VI) approximations via Bayes by Backprop [5]. In par-
ticular, VI proceed by finding a suitable Gaussian ap-
proximating distribution q(w) = N (w|µ,Σ) for the pos-
terior distribution, i.e. such that q(w) ≈ p(w|D). The
core idea is that the mean and covariance of q(w) are it-
eratively optimized by minimizing a divergence measure
between q(w) and p(w|D). In particular, in Section 4 we
give explicit bounds for BNN certification for variational
inference; however, we remark that the techniques de-
veloped in this paper also extend to other classes of dis-
tributions and approximate inference methods, such as
Hamiltonian Monte Carlo [24] or dropout [12], with the
caveat that in those cases the integral in Eqn. (2) (Section
4) will not be Gaussian and will need to be computed by
means of Monte Carlo sampling techniques.

3 PROBLEM FORMULATION

A BNN is a stochastic process whose randomness comes
from the weight distribution. Therefore, in order to study
robustness, its probabilistic nature should be considered.
In this paper we focus on probabilistic safety, which is a
widely employed measure to characterize the robustness
of stochastic models [1, 18], and also represents a prob-
abilistic generalization of the notion of safety commonly
used to guarantee the robustness of deterministic neural
networks against adversarial examples [26]. In particu-
lar, probabilistic safety for BNNs is defined as follows.

Definition 1. Let fw be a BNN, D a dataset, T ⊂ Rm

a compact set of input points, and S ⊆ Rnc a safe set.
Then, probabilistic safety is defined as

Psafe(T, S) := Probw∼w(∀x ∈ T, fw(x) ∈ S|D). (1)

Psafe(T, S) is the probability that for all input points in
T the output of the BNN belongs to a given output set
S. Note that the probabilistic behaviour in Psafe(T, S)
is uniquely determined from the distribution over the
weights random variable w. In particular, no distribution
is assumed in the input space. Hence, Psafe(T, S) repre-
sents a probabilistic measure of robustness. We make the
following assumption on S.

Assumption 1. We assume that S is described by nS
linear constraints on the values of the final layer of the
BNN, that is,

S = {y ∈ Rnc |CSy+dS ≥ 0, CS ∈ RnS×nc , dS ∈ RnS}

We stress that, as discussed in [13], this assumption en-
compasses most properties of interest for the verification
of neural networks. We refer to CSy + dS ≥ 0 as the
safety specification associated to the safe set S. Below,

in Example 1, we illustrate the notion of probabilistic
safety on an example.
Example 1. We consider a regression task where we
learn a BNN from noisy data centred around the function
y = x3, as illustrated in Figure 1. We let T = [−ε, ε]
and S = [−δ, δ], with ε = 0.2 and δ = 5 be two inter-
vals. Then, we aim at computing Psafe(T, S), that is, the
probability that for all x ∈ [−ε, ε], fw(x) ∈ [−δ, δ].

Figure 1: Left: 50 points sampled uniformly from [−4, 4] and
their corresponding outputs according to y = x3 + N (0, 5).
Right: For T = [−ε, ε] and S = [−δ, δ], with ε = 0.2 and
δ = 5, we visualize the property Psafe(T, S). The red dot and
bar depicts the mean and the standard deviation of the BNN
prediction in x∗ = 0.

Probabilistic safety can be used in a regression setting
to formally account for the uncertainty in the learned
model. For instance, it can be employed in a model-
based reinforcement learning scenario to ensure the
safety of the learned model under uncertain environ-
ments [2]. In a classification problem, Psafe(T, S) could
be used to evaluate the uncertainty around the model
predictions in adversarial settings [11]. We remark that
probabilistic safety is also related to other adversarial ro-
bustness measures in the literature [9, 4]. In particular, it
is straightforward to show (see Proposition 4 in the Sup-
plementary Material in [31]) that

Psafe(T, S) ≤ inf
x∈T

Probw∼w(fw(x) ∈ S).

Moreover, if for i ∈ {1, ..., nc} and a ∈ R>0 we assume
that S = {y ∈ Rnc | yi > a}, then it holds that

aPsafe(T, S) ≤ inf
x∈T

Ew∼w[fwi (x)].

Approach Outline Probabilistic safety, Psafe(T, S), is
not trivial to compute for a given compact set T in the
input space and safe set S that satisfies Assumption 1. In
fact, already in the case of deterministic neural networks,
safety has been shown to pose an NP-complete prob-
lem [32]. Therefore, in Section 4 we derive a method
for lower-bounding (i.e., for the worst-case analysis) of
Psafe(T, S), which can be used for certification of the
probabilistic safety of BNNs. We first show that the com-
putation of Psafe(T, S) is equivalent to computing the

maximal set of weights H such that the corresponding
deterministic neural network is safe, i.e., H = {w ∈
Rnw |∀x ∈ T, fw(x) ∈ S}. The computation of H is
unfortunately itself not straightforward. Instead, in Sec-
tion 5, we design a method to compute a subset of safe
weights Ĥ ⊆ H , and discuss how Ĥ can be used to com-
pute a certified lower bound to Psafe(T, S). Our method
(detailed in Algorithm 1) works by sampling weights w
from the posterior BNN distribution and iteratively build-
ing safe weight regions, in the form of disjoint hyper-
rectangles, around the sampled weights. This requires a
subroutine that, given Ĥ , checks whether it constitutes a
safe set of weights or not, that is, verifies if the statement
Ĥ ⊆ H is true. In Section 4.1, we derive two alter-
native approaches for the solution of this problem, one
based on Interval Bound Propagation (IBP) (introduced
in Section 4.1.1) and the other on Linear Bound Propaga-
tion (LBP) (introduced in Section 4.1.2). These work by
propagating the input region T and the weight rectangle
Ĥ through the neural network, in the form of intervals
(in the case of IBP) and lines (in the case of LBP) and
checking whether the resulting output region is a subset
of S, thus deciding if Ĥ is a safe set of weights or not.

4 BOUNDS FOR PROBABILISTIC
SAFETY

We show that the computation of Psafe(T, S) reduces to
computing the maximal set of weights for which the cor-
responding deterministic neural network is safe. To for-
malize this concept, consider the following definition.
Definition 2. We say that H ⊆ Rnw is the maximal safe
set of weights from T to S, or simply the maximal safe set
of weights, iff H = {w ∈ Rnw | ∀x ∈ T, fw(x) ∈ S}.
Furthermore, we say that Ĥ is a safe set of weights from
T to S, or simply a safe set of weights, iff Ĥ ⊆ H.

If Ĥ is a safe set of weights, then Definition 2 implies
that for any w ∈ Ĥ the corresponding neural network
is safe, i.e., ∀x ∈ T, fw(x) ∈ S. Then, a trivial con-
sequence of the definition of probabilistic safety is the
following proposition.
Proposition 1. Let H be the maximal safe set of weights
from T to S. Assume that w ∼ q(w). Then, it holds that∫

H

q(w)dw = Psafe(T, S). (2)

Proposition 1 simply translates the safety property from
the function space to an integral computation on the
weight space. As a consequence of Proposition 1, in
the case of q(w) = N (w|µ,Σ) with diagonal covari-
ance, i.e., of posterior distribution computed by diagonal
Gaussian VI, we obtain the following corollary.

Corollary 1. Assume that Σ, the covariance matrix of
the posterior distribution of the weights, is diagonal with
diagonal elements Σ1, ...,Σnw

. Let Ĥ1, ..., ĤM be M
safe sets of weights such that, for i ∈ {1, ..,M}, Ĥi =
[li1, u

i
1] × ... × [linw

, uinw
] and Ĥi ∩ Ĥj = ∅ for i 6= j.

Then, it holds that

Psafe(T, S) ≥
M∑
i=1

nw∏
j=1

1

2

(
erf

(
µj − lij√

2Σj

)
− erf

(
µj − uij√

2Σj

))
.

Proposition 1 and Corollary 1 guarantee that the compu-
tation of Psafe is equivalent to the characterization of H ,
the maximal safe set of weights, and a lower bound for
Psafe can be computed by considering the union of M
safe sets of weights. In what follows, in Section 4.1, we
derive a framework to efficiently check if a given set of
weights is safe. Then, in Section 5 we present a method
to generate safe sets of weights, which will be integrated
in an algorithm for the computation of Psafe(S, T) by
making use of Proposition 1.

4.1 SAFETY COMPUTATION

In this subsection we derive schemes for checking
whether a given hyper-rectangle, Ĥ , in the weight space
is such that Ĥ ⊆ H , that is, for S = {y ∈ Rnc |CSy +
dS ≥ 0, CS ∈ RnS×nc , dS ∈ RnS}, we want to check
whether CSf

w(x) + dS ≥ 0, ∀x ∈ T, ∀w ∈ Ĥ. This
is equivalent to check:

min
w∈Ĥ,x∈T

CSf
w(x) + dS ≥ 0. (3)

In the following we show how IBP (Section 4.1.1) and
LBP (Section 4.1.2) can be used to find a lower bound
on the solution of the problem posed by Equation (3).
The basic principles behind the two methods are depicted
in Figure 2 for an illustrative one-dimensional case (IBP
shown in plots (a)–(c), LBP in plots (d)–(f)). Given a
bounding box in the input of each BNN layer (plot (a),
as for a deterministic NN), and an interval in the weight
space, Ĥ (plot (b), which is due to the fact that the
BNN has probabilistic weights), IBP propagates the two
bounding boxes, as detailed in Section 4.1.1, to obtain a
bounding box on the network output (plot (c)). The pro-
cess is then iterated for each layer. In LBP, instead, the
linear function that bounds the input at each layer (plot
(d)) is combined with the weight space interval Ĥ (plot
(e)) to obtain a linear bound on the layer output (plot (f))
as detailed in Section 4.1.2. Intuitively, as LBP allows
for a linear bound, it mimics more closely the behaviour
of the network, thus giving better bounds, albeit at an in-
creased computational cost. This is further investigated
in the experiments in Section 6.

Interval in Input Space Interval in Weight Space Interval Bound Propagation

(a) (b) (c)

Linear Bound from Input Interval Interval in Weight Space

(d) (e) (f)

Linear Bound Propagation

Figure 2: Example of IBP (first row) and LBP (second row) for BNNs. For IBP we consider an interval in the input space (a)
together with an interval in the weight space (b). The two intervals are combined to obtain an interval in the output, which is
guaranteed to contain the network output (c). In the LBP case, the input bound and the weight interval are combined to obtain
linear bounds that contain the network output at any layer (d)-(e)-(f). In the last column we show the application of Algorithm 1 for
the computation of the property illustrated in Example 1. We consider different values of the parameters required by the algorithm
for both IBP and LBP. Notice that LBP tends to give tighter bounds (i.e. higher values) compared to IBP.

Before discussing IBP and LBP in detail, we first intro-
duce common notation for the rest of the section. We
consider fully-connected networks of the form:2

z(0) = x (4)

ζ
(k+1)
i =

nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i i = 0, . . . , nk+1 (5)

z
(k)
i = σ(ζ

(k)
i) i = 0, . . . , nk (6)

for k = 1, . . . ,K, where K is the number of hidden
layers, σ(·) is a pointwise activation function, W (k) ∈
Rnk×nk−1 and b(k) ∈ Rnk are the matrix of weights
and vector of biases that correspond to the kth layer of
the network and nk is the number of neurons in the kth
hidden layer. We write W (k)

i: for the vector comprising
the elements from the ith row of W (k), and similarly
W

(k)
:j for that comprising the elements from the jth col-

umn. ζ(K+1) represents the final output of the network
(or the logit in the case of classification networks), that
is, ζ(K+1) = fw(x). We write W (k),L and W (k),U for
the lower and upper bound induced by Ĥ for W (k) and
b(k),L and b(k),U for those of b(k), for k = 0, . . . ,K.
Notice that z(0), ζ(k+1)

i and z
(k)
i are all functions of

the input point x and of the combined vector of weights
w = [W (0), b(0), . . . ,W (K), b(K)]. We omit the explicit
dependency for simplicity of notation. Finally, we re-
mark that, as both the weights and the input vary in a
given set, Equation (5) defines a quadratic form.

4.1.1 Interval Bound Propagation

IBP has already been employed for fast certification of
deterministic neural networks [13]. For a deterministic

2CNNs can be considered by applying the approach of [32].

network, the idea is to propagate the input box around x,
i.e., T = [xL, xU],3 through the first layer, so as to find
values z(1),L and z(1),U such that z(1) ∈ [z(1),L, z(1),U],
and then iteratively propagate the bound through each
consecutive layer for k = 1, . . . ,K. The final box con-
straint in the output layer can then be used to check for
the property of interest [13]. The only adjustment needed
in our setting (that is, for the bounding of Equation (3)) is
that at each layer we also need to propagate the interval
on the weight matrix [W (k),L,W (k),U] and that on the
bias vector [b(k),L, b(k),U]. This can be done by notic-
ing that the minimum and maximum of each term of the
bi-linear form of Equation (5), that is, of each monomial
W

(k)
ij z

(k)
j , lies in one of the four corners of the interval

[W
(k),L
ij ,W

(k),U
ij] × [z

(k),L
j , z

(k),U
j], and by adding the

minimum and maximum values respectively attained by
b
(k)
i . As in the deterministic case, interval propagation

through the activation function proceeds by observing
that generally employed activation functions are mono-
tonic, which permits the application of Equation (6) to
the bounding interval. This is summarised in the follow-
ing proposition.

Proposition 2. Let fw(x) be the network defined by the
set of Equations (4)–(6), let for k = 0, . . . ,K:

t
(k),L
ij = min{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,

W
(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j }

t
(k),U
ij = max{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,

W
(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j }

3In the general case, in which T is not a box already, we
first compute a bounding box R = [xL, xU] such that T ⊂ R,
and propagate R with IBP, which yields a worst-case analysis.

where i = 1, . . . , nk+1, j = 1, . . . , nk, and z(k),L =
σ(ζ(k),L), z(k),U = σ(ζ(k),U) and:

ζ(k+1),L =
∑
j

t
(k),L
:j + b(k),L

ζ(k+1),U =
∑
j

t
(k),U
:j + b(k),U .

Then we have that ∀x ∈ T and ∀w ∈ Ĥ:

fw(x) = ζ(K+1) ∈
[
ζ(K+1),L, ζ(K+1),U

]
.

The proposition above, whose proof is in the Supplemen-
tary Material (found in [31]), yields a bounding box for
the output of the neural network in T and Ĥ . This can be
used directly to find a lower bound for Equation (3), and
hence checking whether Ĥ is a safe set of weights. As
noticed in [13] and discussed in the Supplementary Ma-
terial, for BNNs a slightly improved IBP bound can be
obtained by eliding the last layer with the linear formula
of the safety specification of set S.

4.1.2 Linear Bound Propagation

We now discuss how LBP can be used to lower-bound the
solution of Equation (3), as an alternative to IBP. In LBP,
instead of propagating bounding boxes, one finds lower
and upper Linear Bounding Functions (LBFs) for each
layer and then propagates them through the network. As
the bounding function has an extra degree of freedom
w.r.t. the bounding boxes obtained through IBP, LBP
usually yields tighter bounds, though at an increased
computational cost. Since in deterministic networks non-
linearity comes only from the activation functions, LBFs
in the deterministic case are computed by bounding the
activation functions, and propagating the bounds through
the affine function that defines each layer.

Similarly, in our setting, given T in the input space and
Ĥ for the first layer in the weight space, we start with
the observation that LBFs can be obtained and propa-
gated through commonly employed activation functions
for Equation (6), as discussed in [32].
Lemma 1. Let fw(x) be defined by Equations (4)–
(6). For each hidden layer k = 1, . . . ,K, consider a
bounding box in the pre-activation function, i.e. such that
ζ
(k)
i ∈ [ζ

(k),L
i , ζ

(k),U
i] for i = 1, . . . , nk. Then there ex-

ist coefficients α(k),L
i , β(k),L

i , α(k),U
i and β(k),U

i of lower
and upper LBFs on the activation function such that for
all ζ(k)i ∈ [ζ

(k),L
i , ζ

(k),U
i] it holds that:

α
(k),L
i ζ

(k)
i + β

(k),L
i ≤ σ(ζ

(k)
i) ≤ α(k),U

i ζ
(k)
i + β

(k),U
i .

The lower and upper LBFs can thus be minimised and
maximised to propagate the bounds of ζ(k) in order to

compute a bounding interval [z(k),L, z(k),U] for z(k) =
σ(ζ(k)). Then, LBFs for the monomials of the bi-linear
form of Equation (5) can be derived using McCormick’s
inequalities [22]:

W
(k)
ij z

(k)
j ≥W (k),L

ij z
(k)
j +W

(k)
ij z

(k),L
j −W (k),L

ij z
(k),L
j

(7)

W
(k)
ij z

(k)
j ≤W (k),U

ij z
(k)
j +W

(k)
ij z

(k),L
j −W (k),U

ij z
(k),L
j

(8)

for every i = 1, . . . , nk, j = 1, . . . , nk−1 and k =
1, . . . ,K. The bounds of Equations (7)–(8) can thus be
used in Equation (5) to obtain LBFs on the pre-activation
function of the following layer, i.e. ζ(k+1). The final lin-
ear bound can be obtained by iterating the application
of Lemma 1 and Equations (7)–(8) through every layer.
This is summarised in the following proposition, which
is proved in the Supplementary Material (see [31]) along
with an explicit construction of the LBFs.

Proposition 3. Let fw(x) be the network defined by the
set of Equations (4)–(6). Then for every k = 0, . . . ,K
there exist lower and upper LBFs on the pre-activation
function of the form:

ζ
(k+1)
i ≥ µ(k+1),L

i · x+

k−1∑
l=0

〈ν(l,k+1),L
i ,W (l)〉+

ν
(k,k+1),L
i ·W (k)

i: + λ
(k+1),L
i for i = 1, . . . , nk+1

ζ
(k+1)
i ≤ µ(k+1),U

i · x+

k−1∑
l=0

〈ν(l,k+1),U
i ,W (l)〉+

ν
(k−1,k+1),U
i ·W (k)

i: + λ
(k+1),U
i for i = 1, . . . , nk+1

where 〈·, ·〉 is the Frobenius product between matrices, ·
is the dot product between vectors, and the explicit for-
mulas for the LBF coefficients, i.e., µ(k+1),L

i , ν(l,k+1),L
i ,

λ
(k+1),L
i , µ(k+1),U

i , ν(l,k+1),U
i , are given in the Supple-

mentary Material [31].

Now let ζ(k),Li and ζ(k),Ui respectively be the minimum
and the maximum of the right-hand side of the two equa-
tions above; then we have that ∀x ∈ T and ∀w ∈ Ĥ:

fw(x) = ζ(K+1) ∈
[
ζ(K+1),L, ζ(K+1),U

]
.

Again, while the lower and upper bounds on fw(x) com-
puted by Proposition 3 can be directly used to check
whether Ĥ is a safe set of weights, an improved bound
can be obtained by directly considering the linear con-
straint form of S when computing the LBFs. This is fur-
ther described in the Supplementary Material [31].

Algorithm 1 Probabilistic Safety for BNNs
Input: T – compact input region, S – safe set, CS , dS – output
constraints, fw – BNN, w ∼ N (·|µ,Σ) – weight posterior, Σ
assumed to be diagonal, N – number of samples, γ – weight
margin.
Output: Safe lower bound on Psafe(T, S).
1: Ĥ ← ∅ {Ĥ is the set of safe weights}
2: for i← 0 to N do
3: w′ ∼ N (·|µ,Σ)
4: [wL, wU]← [w′ − γdiag(Σ), w′ + γdiag(Σ)]
5: yL, yU ← Method(f, T, [wL, wU]) {IBP/LBP}
6: if CheckProperty(CS , dS , yL, yU) then
7: H ← Ĥ

⋃
{[wL, wU]}

8: end if
9: end for

10: Ĥ ← MergeOverlappingRectangles(Ĥ)
11: p← 0.0

12: if Ĥ 6= ∅ then
13: for [wL, wU] ∈ Ĥ do

14: p← p+
∏nw
i=1

1
2

(
erf
(µi−wL

i√
2Σi

)
− erf

(µi−wU
i√

2Σi

))
15: end for
16: end if
17: return p

5 ALGORITHM

In Algorithm 1 we illustrate our framework for lower-
bounding of Psafe(T, S) under the simplifying assump-
tion that Σ is diagonal. The computational complexity
of this algorithm for both IBP and LBP is discussed in
the Supplementary Material [31]. In lines 1–10 the al-
gorithm computes Ĥ , which is a safe set weights whose
union is a subset of H , the maximal safe set of weights
(see Definition 1). In general, H is not a connected set.
Hence, we build Ĥ as a union of hyper-rectangles (line
7), each of which is safe. Each candidate safe hyper-
rectangle is generated as follows: we sample a weight
realisation, w, from the weights posterior (line 3) and
expand each of its dimensions by a value computed by
multiplying the variance of each weight with a propor-
tional factor γ, which we refer to as the weight margin
(line 4). The trade-off is that greater values of γ will yield
larger regions, and hence potentially a larger safe region
Ĥ , though the chances that a wide interval [wL, wU]
will fail the certification test of line 6 are higher. This
process is repeated N times to generate multiple safe
weight rectangles in disconnected regions of the weight
space. Empirically, we found this heuristic strategy to
yield good candidate sets.4 In line 4–7 we check if the
given hyper-rectangle is safe by using either IBP or LBP,
and by checking the safety specification (line 6) as de-
tailed in the Supplementary Material. All safe rectangles

4Note that the algorithm output is a lower bound of
Psafe(T, S) independently of the heuristic used for building Ĥ .

are added to Ĥ in line 7. In line 10 we merge overlapping
rectangles generated in the main algorithm loop, to guar-
antee that Ĥ is a set of non-overlapping hyper-rectangles
of weights (as for Corollary 1). This is done simply by
iterating over the previously computed safe rectangles,
and by merging them iteratively over each dimension. Fi-
nally, in lines 12–15, by employing Corollary 1, we com-
pute a lower bound for Psafe(S, T). The following theo-
rem, which is a straightforward consequence of Proposi-
tion 1, 2, 3 and Corollary 1, guarantees that Algorithm 1
returns a certified lower bound for Psafe(S, T).

Theorem 1. Let p be as computed by Algorithm 1. Then,
it holds that

p ≤ Psafe(S, T).

In the general case, when a non-Gaussian distribution or
full covariance matrix is employed (e.g. with SWAG [21]
or HMC) the only modifications to make to the algorithm
are in line 4, where an estimation of the weight variance
can be used, and in line 14, which needs to be computed
with Monte Carlo techniques. In this case, the weights
sampled during integration can be utilised in line 3 of Al-
gorithm 1. We expect that different posterior approxima-
tion methods with non-diagonal distributions will yield
different probabilistic safety profiles, but stress that our
method and its computational complexity is independent
of the inference method used.

Example 2. Lower bounds for the property discussed
in Example 1 are depicted in Figure 2 (rightmost plots).
We analyse the influence of parameters involved in Algo-
rithm 1 (the number of samplesN and the weight margin
γ), and the use of either IBP or LBP. As expected, we ob-
tain higher values (that is, a tighter bound) as the num-
ber of samples increases, as this implies a better chance
of finding a safe weight interval, and we observe similar
behaviour for γ. Notice also that the bounds provided
by LBP (bottom row) are always slightly more tight than
those provided by IBP (top row).

6 EXPERIMENTAL RESULTS

We explore the empirical performance of our framework.
We begin with an extended analysis of the regression set-
ting introduced in Example 1. We then turn our atten-
tion to an airborne collision avoidance scenario (VCAS)
[16, 29]. Finally, we explore the scalability of our ap-
proach on the MNIST dataset, and show that we compute
non-trivial lower bounds on probabilistic safety even for
networks with over 1M parameters.

Regression Task In Figure 3 we explore the regression
problem introduced in Example 1. We train a BNN with
128 hidden neurons for 10 epochs. We check the per-

Figure 3: Probabilistic safety for the regression task on var-
ious input regions. Each box in the plot represents a safety
specification and is colored with the lower bound returned by
our method on the probability that the specification is met. The
purple region represents 2 standard deviations about the mean
of the BNN.

formance of our methodology on this BNN under dif-
ferent properties by considering many input regions T
and output sets S. In particular, we extend the property
in Example 1 to multiple intervals along the x−axis for
different values of ε and δ and use LBP for the certifi-
cation of safe weights regions. Namely, we explore four
different property specifications for the combination of
ε ∈ {0.1, 0.25} and δ ∈ {2, 6}, where every box in the
plot represents both an input (range along the x axis) and
output region (range along the y axis) and is colored ac-
cordingly with the lower bound obtained (which hence
represents a lower bound on the probability that the sam-
ples from the BNN will remain inside that box for each
specific range of x-axis values). Naturally, we obtain
higher values in regions in which the BNN is flat. Also
the bounds decreases as soon as ε or δ increases as these
imply a tighter property specification.

Airborne Collision Avoidance We empirically evalu-
ate probabilistic safety for the vertical collision avoid-
ance system dataset (VCAS) [15]. The task of the orig-
inal NN is to take as input the information about the
geometric layout (heading, location, and speed) of the
ownship and intruder, and return a warning if the own-
ship’s current heading puts it on course for a near midair
collision (NMAC). There are four input variables de-
scribing the scenario (Figure 4) and nine possible ad-
visories corresponding to nine output dimensions. Each
output is assigned a real-valued reward. The maximum
reward advisory indicates the safest warning given the
current intruder geometry. The three most prominent ad-
visories are clear of conflict (COC), descend at a rate
≥ 1500 ft/min (DES1500), and climb at a rate ≥ 1500
ft/min (CLI1500). We train a BNN with one hidden layer

Method Property Psafe Time (s) Num. Samples

IBP

φ1 0.9739 136 10500
φ2 0.9701 117 9000
φ3 0.9999 26 2000
φ4 0.9999 26 2000

LBP

φ1 0.9798 723 10500
φ2 0.9867 628 9000
φ3 0.9999 139 2000
φ4 0.9999 148 2000

Table 1: VCAS probabilistic safety. We see that, though
LBP is 5 times slower than IBP, it gives slightly tighter lower
bounds, similarly to the observations in Figure 2.

with 512 hidden neurons that focuses on the situation in
which the ownship’s previous warning was COC, where
we would like to predict if the intruder has moved into
a position which requires action. This scenario is repre-
sented by roughly 5 million entries in the VCAS dataset
and training our BNN with VI results in test accuracy
of 91%. We use probabilistic safety to evaluate whether
the network is robust to four properties, referred to as
φ1, φ2, φ3 and φ4, which comprise a probabilistic ex-
tension of those considered for NNs in [16, 29]. Prop-
erties φ1 and φ2 test the consistency of DES1500 and
CLI1500 advisories: given a region in the input space,
φ1 and φ2 ensure that the output is constrained such that
DES1500 and CLI1500 are the maximal advisories for
all points in the region, respectively. On the other hand,
φ3 and φ4 test that, given a hyper-rectangle in the input
space, no point in the hyper-rectangle causes DES1500
or CLI1500 to be the maximal advisory. The properties
we test are depicted in the centre and right plot of Fig-
ure 4. In Table 1 we report the results of the verification
of the above properties, along with their computational
times and the number of weights sampled for the veri-
fication. Our implementation of Algorithm 1 with both
LBP and IBP is able to compute a lower bound for prob-
abilistic safety with these properties in a few hundreds of
seconds.5 Notice that, also in this case, LBP gives tighter
bounds than IBP, though it takes around 5 times longer to
run, which is a similar trade-off to what is observed for
deterministic NNs [32].

Image Classification on MNIST We train several
BNNs on MNIST to study how our method scales
with the number of neurons, considering networks that
are hundreds of times larger than those for the VCAS
dataset. For this analysis we consider image classifica-
tion with the MNIST dataset. In order to model manip-
ulations of an image we use the l∞-norm ε-ball around

5Note that in the case of φ1 and φ2 the input set T is com-
posed of three disjoint boxes. Our framework can be used on
such sets by computing probabilistic safety on each box and
then combining the results together via the union bound.

Figure 4: VCAS encounter geometry and properties under consideration. Left: Taken from [15], a visualization of the encounter
geometry and the four variables that describe it (distance τ , ownship heading ḣown, intruder heading ḣint, and vertical separation h).
Center: Visualization of ground truth labels (in color); red boxes indicate hyper-rectangles that make up the input areas for property
φ1 (red boxes in the blue area) and φ2 (red boxes in the green area). Right: Hyper-rectangle for visualization of properties φ3 and
φ4: we ensure that DES1500 is not predicted in the green striped box and CLI1500 is not predicted in the blue striped box.

test points. For all manipulations of magnitude up to ε,
we would like to check that the classification remains the
same as that given by the (argmax of the) posterior pre-
dictive distribution. This can be done by first taking the
classification according to the posterior on the test point
x∗. Let i be the predicted class index, then we create a
nC × nC matrix, CS , where the ith column is populated
with ones and the diagonal is populated with negative
ones, save for the ith entry which is set to one. Finally,
ensuring that all entries of the vectors given by CSf

w(x)
for all x ∈ T are positive indicates that the classification
does not change.

Evaluation. Using IBP, we are able to certify that the
probabilistic safety of more than half of the tested 100
images is greater than 0.9 in the case of a 2 hidden layer
BNN with 256 nodes per layer. In Figure 5, we com-
pare the lower bounds obtained with our approach with
an empirical estimate obtained by sampling 500 poste-
rior weights from the BNN posterior, so as to evaluate
the tightness of the bounds obtained in practice. The re-
sults are given for the average over the same 100 images
employed for the results reported in Figure 5. For 1 layer
BNNs we use ε = 0.025 and for 2 layer BNNs we use
ε = 0.001. Notice that tight bounds can be obtained even
for BNNs with almost a million of parameters, in partic-
ular, for a two-layer BNN with 512 neurons per layer, we
have that our bound is within 5% of the empirical results.

7 CONCLUSION

We considered probabilistic safety for BNNs, a worst-
case probabilistic adversarial robustness measure, which
can be used to certify a BNN against adversarial pertur-
bations. We developed an algorithmic framework for the
computation of probabilistic safety based on techniques
from non-convex optimization, which computes a certi-
fied lower bound of the measure. On experiments on var-
ious datasets we showed that our methods allows one to

Figure 5: Performance of our framework on BNN architec-
tures with varying numbers of neurons. The height of each bar
represents the mean of the probabilistic safety value computed
on 100 test set images.

certify BNNs with general activation functions, multiple
layers, and millions of parameters.

Acknowledgements This project was funded by the
EU’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie (grant agreement
No. 722022), the ERC under the European Union’s Hori-
zon 2020 research and innovation programme (grant
agreement No. 834115) and the EPSRC Programme
Grant on Mobile Autonomy (EP/M019918/1).

References
[1] Abate, A., Prandini, M., Lygeros, J., and Sastry, S.

(2008). Probabilistic reachability and safety for con-
trolled discrete time stochastic hybrid systems. Auto-
matica, 44(11):2724–2734.

[2] Berkenkamp, F., Turchetta, M., Schoellig, A., and
Krause, A. (2017). Safe model-based reinforcement
learning with stability guarantees. In NeurIPS.

[3] Biggio, B. and Roli, F. (2018). Wild patterns: Ten
years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331.

[4] Blaas, A., Laurenti, L., Patane, A., Cardelli, L.,
Kwiatkowska, M., and Roberts, S. (2020). Adversar-
ial robustness guarantees for classification with gaus-
sian processes. AISTATS.

[5] Blundell, C., Cornebise, J., Kavukcuoglu, K., and
Wierstra, D. (2015). Weight uncertainty in neural net-
works. ICML.

[6] Carbone, G., Wicker, M., Laurenti, L., Patane, A.,
Bortolussi, L., and Sanguinetti, G. (2020). Robust-
ness of Bayesian neural networks to gradient-based
attacks. arXiv preprint arXiv:2002.04359.

[7] Cardelli, L., Kwiatkowska, M., Laurenti, L., Pao-
letti, N., Patane, A., and Wicker, M. (2019). Statis-
tical guarantees for the robustness of Bayesian neural
networks. IJCAI.

[8] Cardelli, L., Kwiatkowska, M., Laurenti, L., and
Patane, A. (2018). Robustness guarantees for
Bayesian inference with Gaussian processes. In AAAI.

[9] Dvijotham, K., Garnelo, M., Fawzi, A., and Kohli,
P. (2018). Verification of deep probabilistic models.
arXiv preprint arXiv:1812.02795.

[10] Emtiyaz Khan, M., Immer, A., Abedi, E., and Ko-
rzepa, M. (2019). Approximate inference turns deep
networks into Gaussian processes. NeurIPS.

[11] Gal, Y. (2016). Uncertainty in deep learning. PhD
thesis, University of Cambridge.

[12] Gal, Y. and Ghahramani, Z. (2016). Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In ICML, pages 1050–1059.

[13] Gowal, S., Dvijotham, K., Stanforth, R., Bunel,
R., Qin, C., Uesato, J., Arandjelovic, R., Mann, T.,
and Kohli, P. (2018). On the effectiveness of interval
bound propagation for training verifiably robust mod-
els. SecML 2018.

[14] He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV.

[15] Julian, K. D. and Kochenderfer, M. J. (2019). Guar-
anteeing safety for neural network-based aircraft col-
lision avoidance systems. DASC.

[16] Katz, G., Barrett, C., Dill, D. L., Julian, K., and
Kochenderfer, M. J. (2017). Reluplex: An efficient
SMT solver for verifying deep neural networks. In
CAV.

[17] Kendall, A. and Gal, Y. (2017). What uncertainties
do we need in Bayesian deep learning for computer
vision? In NeurIPS.

[18] Laurenti, L., Lahijanian, M., Abate, A., Cardelli,
L., and Kwiatkowska, M. (2020). Formal and efficient

synthesis for continuous-time linear stochastic hybrid
processes. IEEE Transactions on Automatic Control.

[19] Liu, X., Li, Y., Wu, C., and Hsieh, C.-J. (2019).
Adv-bnn: Improved adversarial defense through ro-
bust Bayesian neural network. ICLR.

[20] MacKay, D. J. (1992). A practical Bayesian frame-
work for backpropagation networks. Neural compu-
tation, 4(3):448–472.

[21] Maddox, W. J., Izmailov, P., Garipov, T., Vetrov,
D. P., and Wilson, A. G. (2019). A simple base-
line for Bayesian uncertainty in deep learning. In
Advances in Neural Information Processing Systems,
pages 13132–13143.

[22] McCormick, G. P. (1976). Computability of global
solutions to factorable nonconvex programs: Part i
convex underestimating problems. Mathematical pro-
gramming, pages 147–175.

[23] Michelmore, R., Wicker, M., Laurenti, L., Cardelli,
L., Gal, Y., and Kwiatkowska, M. (2019). Uncertainty
quantification with statistical guarantees in end-to-end
autonomous driving control. ICRA.

[24] Neal, R. M. (2012). Bayesian learning for neural
networks. Springer Science & Business Media.

[25] Rawat, A., Wistuba, M., and Nicolae, M.-I. (2017).
Adversarial phenomenon in the eyes of Bayesian deep
learning. arXiv preprint arXiv:1711.08244.

[26] Ruan, W., Huang, X., and Kwiatkowska, M.
(2018). Reachability analysis of deep neural networks
with provable guarantees. IJCAI.

[27] Smith, L. and Gal, Y. (2018). Understanding mea-
sures of uncertainty for adversarial example detection.

[28] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I., and Fergus, R. (2014). In-
triguing properties of neural networks. ICLR.

[29] Wang, S., Pei, K., Whitehouse, J., Yang, J., and
Jana, S. (2018). Formal security analysis of neural
networks using symbolic intervals. In USENIX Secu-
rity 18.

[30] Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh,
C.-J., Boning, D., Dhillon, I. S., and Daniel, L.
(2018). Towards fast computation of certified robust-
ness for relu networks. ICML.

[31] Wicker, M., Laurenti, L., Patane, A., and
Kwiatkowska, M. (2020). Probabilistic safety for
Bayesian neural networks. arXiv:2004.10281.

[32] Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-
J., and Daniel, L. (2018). Efficient neural network
robustness certification with general activation func-
tions. In NeurIPS, pages 4939–4948.

	INTRODUCTION
	BAYESIAN NEURAL NETWORKS (BNNs)
	PROBLEM FORMULATION
	BOUNDS FOR PROBABILISTIC SAFETY
	SAFETY COMPUTATION
	Interval Bound Propagation
	Linear Bound Propagation

	ALGORITHM
	EXPERIMENTAL RESULTS
	CONCLUSION

