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Abstract

Prediction intervals are a machine- and human-
interpretable way to represent predictive uncer-
tainty in a regression analysis. In this paper,
we present a method for generating prediction
intervals along with point estimates from an en-
semble of neural networks. We propose a multi-
objective loss function fusing quality measures
related to prediction intervals and point esti-
mates, and a penalty function, which enforces
semantic integrity of the results and stabilizes
the training process of the neural networks. The
ensembled prediction intervals are aggregated
as a split normal mixture accounting for pos-
sible multimodality and asymmetricity of the
posterior predictive distribution, and resulting
in prediction intervals that capture aleatoric and
epistemic uncertainty. Our results show that
both our quality-driven loss function and our ag-
gregation method contribute to well-calibrated
prediction intervals and point estimates.

1 INTRODUCTION

Quantifying predictive uncertainty of machine learning
models is crucial in applications, e.g., mission-critical sys-
tems, where it is essential to know when the model is not
able to provide accurate predictions. In decision support
systems, providing the human with an additional informa-
tion about the uncertainty of a prediction may decrease
the response time and increase the accuracy of an action.
It can also positively contribute in building trust and un-
derstanding towards the machine learning system and its
correct facilitation. In this work, we focus on the quan-
tification of predictive uncertainty for the regression task,
specifically in the form of prediction intervals which have
probabilistic interpretation and which are interpretable
for both humans and machines.
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Figure 1: A toy example demonstrating our method for
generating PIs from a split normal mixture of quality-
driven deep ensembles. The final PIs are accounting for
aleatoric and epistemic uncertainty. The synthetic dataset
is a sinusoid with Gaussian noise and sparsified samples.
The magnitude of Gaussian noise and sparsification is
increasing with distance from the center (x = 0).

Prediction interval (PI) is an estimate representing predic-
tive uncertainty in the form of two values between which
a future observation will fall with a certain probability.
Well-calibrated/high-quality prediction intervals are as
narrow as possible while attaining the desired coverage
probability.

While neural networks (NNs) are powerful function ap-
proximators, they are poor at representing predictive un-
certainty. Previously, methods adopting a Bayesian ap-
proach in the context of neural networks (e.g., Graves,
2011; Blundell et al., 2015; Hernandez-Lobato and
Adams, 2015; Krueger et al., 2017; Louizos and Welling,
2017; Pawlowski et al., 2017; Wu et al., 2019; Izmailov
et al., 2019) represented the state-of-the-art for providing



predictive uncertainty estimates. See Yao et al. (2019)
for an overview. Recently, a number of non-Bayesian yet
probabilistic approaches provide competitive predictive
uncertainty estimates (Lakshminarayanan et al., 2017;
Pearce et al., 2018; Tagasovska and Lopez-Paz, 2019). In
this paper, we focus on and extend the latter branch of
research.

Our work builds on the findings of Pearce et al. (2018)
which is inspired by works of Khosravi et al. (2011) and
Lakshminarayanan et al. (2017). Pearce et al. (2018)
presented a method based on aggregating ensembled PIs
from a set of NNs optimized with respect to a so-called
quality-driven loss function (see Section 2.4).

Although the aforementioned work has achieved promis-
ing results of well-calibrated PIs, it has several limitations
that need to be addressed. In our continuation, we primar-
ily address three main limitations of the state-of-the-art
method: (1) The inability to generate point estimates, (2)
the theoretically weakly justified method for aggregation
of ensembled PIs, and (3) the fragile training process.
With this in mind, the main contributions of this work can
be summarized as follows:

• We retrofit the quality-driven loss function:

– With a point estimate loss (particularly MSE or
mean squared error) to be able to draw point
estimates and PIs from the same generative dis-
tribution.

– With a penalty function adding a constraint and
thus enforcing the integrity of the results, i.e.
avoiding crossing of PI boundaries or point es-
timates out of PI bounds, and consequently sta-
bilizing/strengthening the training process.

• We propose a new aggregation method for ensem-
bles of PIs with point estimates. It is fitting a split
normal mixture (Wallis, 2014) providing tighter and
theoretically well-founded aggregates of PIs.

• We propose an analytical approach to parameter ini-
tialization for the parameter fitting process of a split
normal probability density function, thus increasing
the success of fitting and accelerating it compared to
random initialization.

In addition to the above, we provide important insights
and guidelines for hyper-parameter search contributing to
reproducibility and reliable model fitting, and we suggest
directions for future research.

2 BACKGROUND

In this section, we formally introduce the predictive uncer-
tainty and prediction intervals, we consider methods for
quantifying predictive uncertainty in NNs, especially in
the form of prediction intervals, and we provide insights
into the work of Pearce et al. (2018) which we build on.

2.1 Predictive Uncertainty

The sources of predictive uncertainty can be categorized
into aleatoric and epistemic uncertainty (Kiureghian and
Ditlevsen, 2009).

The aleatoric or aleatory or data uncertainty is also known
as the irreducible uncertainty, i.e. it can not be reduced
either through model or data. It arises from an inherent
and irreducible data noise. The aleatoric uncertainty can
be captured by learning the conditional distribution be-
tween the target and the input variables. The aleatoric
uncertainty can further be characterized as homoskedastic
(homoscedastic) if the irreducible noise is constant across
random variables or as heteroskedastic (heteroscedastic)
if contrary.

In contrast to aleatoric uncertainty, the epistemic uncer-
tainty is reducible, and it can be further decomposed into
model uncertainty and distributional uncertainty. Model
uncertainty can be caused by model bias or parameter
uncertainty due to insufficient data. Distributional uncer-
tainty can be caused by the mismatch between training
and test set (Malinin and Gales, 2018), and it is often
described as a part of the model uncertainty.

Generally, the aim is to reduce epistemic uncertainties.
However, constraints emerging from model or data usu-
ally do not allow it.

Please note that predictive uncertainty is a broad concept,
and the literature is inconsistent in the terminology. We
follow the taxonomy found in (Kiureghian and Ditlevsen,
2009; Pearce et al., 2018; Malinin and Gales, 2018).

2.2 Prediction Intervals

Given an input x(i), a prediction interval [ŷ(i)
L , ŷ

(i)
U ] of a

sample i captures the future observation (target variable)
y(i) with the probability equal or greater than γ ∈ [0, 1]
(eq. 1). The value of γ is commonly set to 0.95 or 0.99.
Common in the literature is an alternative notation with
α.

Pr
(
ŷ

(i)
L ≤ y

(i) ≤ ŷ(i)
U

)
≥ γ = (1− α) (1)

Given n samples, the quality of the generated prediction
intervals is assessed by measuring the prediction interval



coverage probability (PICP)

PICP =
c

n

where

c =

n∑
i=1

ki (2)

for

ki =

{
1 if ŷ(i)

L ≤ y(i) ≤ ŷ(i)
U ,

0 otherwise,
(3)

and by measuring the mean prediction interval width
(MPIW)

MPIW =
1

n

n∑
i=1

ŷ
(i)
U − ŷ

(i)
L

or its normalized version NMPIW

NMPIW =
MPIW

r
(4)

where r = max(y)−min(y). Please note that MPIW as-
sumes ŷ(i)

U ≥ ŷ
(i)
L , i.e. no crossing of PI bounds. Ignoring

this fact can lead to misleading results.

It is desired to achieve PICP ≥ γ while having MPIW
as small as possible.

2.3 Related Work

Following is a concise exploration of methods based
on NNs capable of quantifying predictive uncertainty in
a regression analysis. Methods adopting the Bayesian
approach (such as BNN or Bayesian neural networks)
are a prominent group (Graves, 2011; Blundell et al.,
2015; Hernandez-Lobato and Adams, 2015; Krueger et al.,
2017; Louizos and Welling, 2017; Pawlowski et al., 2017;
Wu et al., 2019; Izmailov et al., 2019; etc.) and repre-
sented for long the state-of-the-art to estimate predictive
uncertainty. We explore alternative non-Bayesian yet
probabilistic methods representing competitive and possi-
bly a state-of-the-art alternative.

Interpreting Monte Carlo dropout (MC-dropout) at test
time as approximate Bayesian inference (Gal and Ghahra-
mani, 2016) has been a widely used method to quantify
predictive uncertainty, mainly due to its scalability and
simplicity. Interpretation of MC-dropout as an ensem-
ble model combination motivated consecutive research
on ensemble-based methods which have been shown to
be superior in generating predictive uncertainty to MC-
dropout or even Bayesian methods (Lakshminarayanan
et al., 2017). Recently, it has been shown that deep en-
sembles with random initialization may explore different
modes in function space, and therefore perform well in ex-
ploring model uncertainty. That is in contrast to subspace

sampling methods (e.g. MC-dropout, weight averaging)
which may generate a set of diverse functions but still
in the vicinity of the starting point and thus generating
insufficiently diverse predictions (Fort et al., 2019). Also
recently, the robustness of uncertainty quantification meth-
ods under dataset shift was investigated, and although all
compared methods have been deceptible to increasing
dataset shifts, deep ensembles have shown the greatest
robustness (Ovadia et al., 2019).

More recently, an alternative line of work employs a loss
function to optimize for generating specifically predic-
tion intervals. A method based on quantile regression
is utilizing the so-called pinball loss function (Koenker,
2005) to optimize a single NN for the desired PIs and
so-called Orthonormal Certificates to account for epis-
temic uncertainty (Tagasovska and Lopez-Paz, 2019). A
method called LUBE (Khosravi et al., 2011) constructs
prediction intervals using quality-driven loss function uti-
lizing quality metrics PICP and NMPIW. LUBE applies
simulated annealing for training a NN with respect to
the quality-driven loss function. Inspired by Khosravi
et al. (2011) and Lakshminarayanan et al. (2017), a
slightly modified quality-driven loss function optimized
for gradient descent was proposed (Pearce et al., 2018)
and extended with ensembles to account for epistemic
uncertainty. Although presenting favorable results, both
methods deliver only prediction intervals without point
estimates.

2.4 Quality-Driven Ensembles by
Pearce et al. (2018)

Our work builds on (Pearce et al., 2018) henceforth
referred to as the original quality-driven ensembles or
shortly original QDE (in results annotated as SEM-QD).
First, the quality-driven loss function is described (anno-
tated as QD). Second, the aggregation method is described
(annotated as SEM).

2.4.1 Loss Function

Parameters of each NN in an ensemble of size m are
optimized with respect to the loss function LQD (eq. 5).
The loss function operates on mini-batches of size n.

LQD = LMPIW + λ
n

α(1− α)
LPICP (5)

LMPIW defined in eq. (6) is optimizing the width of the
PIs capturing an observation. Due to variables c and ki
from eq. (2) and (3), LMPIW only includes those samples
for which the observation is inside the PI.

LMPIW =
1

c

n∑
i=1

(ŷ
(i)
U − ŷ

(i)
L ) · ki (6)



LPICP defined in eq. (7) is optimizing the coverage prob-
ability of the PIs penalizing only if the PICP is below the
desired γ.

LPICP = max(0, (1− α)− PICP )2 (7)

Expanded, we get

LQD =
1

c

n∑
i=1

(ŷ
(i)
U − ŷ

(i)
L ) · ki

+ λ
n

α(1− α)
max(0, (1− α)− PICP )2.

The hyper-parameter (Lagrangian) λ controls the impor-
tance of LPICP with respect to LMPIW . The intuition
behind the fraction n

α(1−α) is that it should reflect the
confidence of LPICP with respect to n and α.

2.4.2 Aggregation Method

Given an ensemble of m NN models fitted with respect
to LQD (5), we acquire prediction intervals [ŷ(ij)

L , ŷ
(ij)
U ]

for sample i ∈ {1 . . n} and model j ∈ {1 . . m}.
The following calculations are taken to acquire the final
predictions intervals [ỹ(i)

L , ỹ
(i)
U ] that should account also

for the epistemic uncertainty.

µ
(i)
L =

1

m

m∑
j=1

ŷ
(ij)
L ,

µ
(i)
U =

1

m

m∑
j=1

ŷ
(ij)
U ,

σ
(i)
L

2
=

1

m− 1

m∑
j=1

(
ŷ

(ij)
L − µ(i)

L

)2

σ
(i)
U

2
=

1

m− 1

m∑
j=1

(
ŷ

(ij)
U − µ(i)

U

)2

These quantities are then combined to generate the final
PIs. In the paper (Pearce et al., 2018), the aggregation is
done as follows:

ỹ
(i)
L = µ

(i)
L − 1.96 · σ(i)

L , (8)

ỹ
(i)
U = µ

(i)
U + 1.96 · σ(i)

U . (9)

The actual implementation differs in using a standard
error of the mean (SEM) σ(i)

ȳL (10) and σ(i)
ȳU (11) instead

of in the paper presented standard deviation σ(i)
L (8) and

σ
(i)
U (9) respectively; notice the introduction of the scalar

1/
√
m in both equations.

ỹ
(i)
L = µ

(i)
L − 1.96 · σ(i)

L ·
1√
m

(10)

ỹ
(i)
U = µ

(i)
U + 1.96 · σ(i)

U ·
1√
m

(11)

Aggregating PIs using the latter equations (10) and (11)
results in narrower PIs. Both aggregation methods lack
any theoretical justification: The lower and upper PI
boundaries are aggregated independently, i.e. without
mutual consideration, and we consider this as a flaw of
the method. In fact, under a simple assumption of nor-
mal posterior distribution that is correctly captured by m
NN models but with shifted PIs with correct γ coverage
probability (PICP), it can be shown that both original
aggregation methods in the above equations yield PIs re-
sulting in PICP greater than γ, and thus greater MPIW. In
the results, the latter aggregation function (eq. 10 and 11)
was evaluated (annotated as SEM).

3 METHOD

In this section, we describe our method annotated as SNM-
QD+ that provides a point prediction along with predic-
tion interval as output. First, an ensemble of neural net-
work models is trained with an extended quality-driven
loss function annotated as QD+ (eq. 12). Second, the re-
sults from each model in the ensemble are aggregated to
provide a final result (incorporating the epistemic uncer-
tainty) by a fitting split normal density functions (Wallis,
2014) from each NN’s point estimate and PI, and aggre-
gating them into a split normal mixture (annotated as
SNM) from which the final PI of coverage probability γ
is calculated.

3.1 Quality-Driven Loss Function

By having a single model for prediction intervals and
point estimates, we achieve a coherency of the results and
so avoid the case of two disjoint models learning different
function approximations for prediction intervals and point
estimates. In other words, providing prediction intervals
and point estimates as a result of two disjoint models may
not capture the predictive uncertainty of the point estimate
model.

We therefore propose a new loss function

LQD+ = (1− λ1)(1− λ2) · LMPIW

+ λ1(1− λ2) · LPICP
+ λ2 · LMSE

+ ξ · LP

(12)

where point estimates ŷ(i) are optimized by

LMSE =
1

n

n∑
i=1

(
ŷ(i) − y(i)

)2

(13)



Figure 2: An example illustrating split normal PDFs
(dashed) fitted from an ensemble (m = 5) of PIs and
point estimates, and subsequently aggregated into a split
normal mixture (black) from which the final PI is calcu-
lated.

and the penalty function

LP =
1

n

n∑
i=1

[
max(0, ŷ

(i)
L − ŷ

(i)) + max(0, ŷ(i) − ŷ(i)
U )
]

(14)
is adding a constraint to enforce their integrity.

We retrofit a slightly simplified version of the loss func-
tion by Pearce et al. (2018). We introduce an auxiliary
loss LMSE driving the point estimates, the mean squared
error (MSE) in our particular use case. However, our
empirical results showed rather difficult training process
(exhibited already by the original loss function LQD)
and issues with the integrity of the generated output, i.e.
interval crossing and point estimates out of PI bounds.
Therefore a constraint violation penalty function LP was
added which mitigated both issues significantly.

The hyper-parameter λ1 ∈ (0, 1) controls the mutual
influence between losses LMPIW (eq. 6) and LPICP
(eq. 7). The hyper-parameter λ2 ∈ (0, 1) controls the
influence of the LMSE (eq. 13) in relation to the afore-
mentioned LMPIW and LPICP . The hyper-parameter ξ
of the penalty function LP (eq. 14) controls the degree of
penalization in case the constraint is violated.

3.2 Split Normal Aggregation Method

The prediction intervals and point estimates retrieved from
the ensemble need to be aggregated into a final predic-
tion interval, capturing both the aleatoric and epistemic
uncertainty, and a final point estimate.

To this end, we assume that the posterior predictive dis-

tribution from a single model is a split normal distribu-
tion (Wallis, 2014). The split normal distribution or two-
piece normal distribution is a result of joining halves of
normal distributions with the same mode but different
variances. The split normal probability density function
(PDF) is defined as

fSN (x;µ, σ1, σ2) =

A exp
(
− (x−µ)2

2σ2
1

)
if x < µ,

A exp
(
− (x−µ)2

2σ2
2

)
otherwise,

where A =
√

2/π (σ1 + σ2)
−1.

Given the lower and upper PI bounds [ŷ(ij)
L , ŷ

(ij)
U ] and the

point estimates ŷ(ij) from an ensemble, we can fit parame-
ters of a split normal distribution for each ensemble result
by optimizing the loss

LSN = [FSN (ŷ
(ij)
L ; ·)− α/2]2

+ [FSN (ŷ
(ij)
U ; ·)− (1− α/2)]2

(15)

where the split normal cumulative density function (CDF)
is defined as

FSN (x;µ, σ1, σ2) =


σ1+erf

(
x−µ√
2σ1

)
σ1

σ1+σ2
if x < µ,

σ1+erf
(
x−µ√
2σ2

)
σ2

σ1+σ2
otherwise.

Through a gradient descent (GD) optimization of eq. (15)
we estimate the parameters σ(ij)

1 and σ(ij)
2 with respect to

[ŷ
(ij)
L , ŷ

(ij)
U ] (variable x), ŷ(ij) (variable µ) and α.

When fitting the parameters σ(ij)
1 and σ(ij)

2 with eq. (15)
as the objective, initialization of (σ(ij)

1 , σ
(ij)
2 ) plays an

important role for finding the optimal solution. A random
initialization does not always yield the optimal solution.
Therefore, following the hypothesis that the parameters
of a split normal distribution are close to those of normal
distribution, we initialize the σ(ij)

1 and σ(ij)
2 as follows:

σ
(ij)
1 =

ŷ
(ij)
L − ŷ(ij)

√
2 erf−1(2pL − 1)

,

σ
(ij)
2 =

ŷ
(ij)
U − ŷ(ij)

√
2 erf−1(2pU − 1)

,

where pL = α/2 and pU = 1 − α/2. The above is
derived from the inverse CDF (quantile function) of a
normal distribution:

F−1
N (p) = µ+ σ

√
2 erf−1(2p− 1)

with p ∈ (0, 1).

In our experiments, this has been proven as superior com-
pared to random initialization.



As a result of the above steps, we acquire an ensemble
of m split normal PDFs {fSN (x; .)}mj=1 (for a single
sample i) from which we create a mixture PDF

f (i)(x) =
1

m

m∑
j=1

fSN

(
x; θ(ij)

)
.

See Figure 2 for illustration. The final PIs [ỹ
(i)
L , ỹ

(i)
U ]

are calculated from the mixture distribution f (i)(x) by
numerically solving

ỹ
(i)
L = F−1(i)

(α/2) and ỹ
(i)
U = F−1(i)

(1− α/2)

where F−1(i)
(p) is the inverse CDF of the mixture

f (i)(x).

The final point estimates are calculated as an equally
weighted combination (mean) of point estimates from an
ensemble.

ỹ(i) =
1

m

m∑
j=1

ŷ(ij)

4 EXPERIMENTS

Our proposed loss function QD+ (Section 3.1) and aggre-
gation method SNM (Section 3.2) are compared with the
original QDE (Pearce et al., 2018), specifically with the
loss function QD (Section 2.4.1) and aggregation method
SEM (Section 2.4.2). We also compare against an ensem-
ble of NNs optimizing the parametrization of a normal
distribution (Lakshminarayanan et al., 2017), referred as
a mean-variance estimator (MVE). Additionally, we com-
pare point estimates generated by our method SNM-QD+
with an ensemble of NNs optimizing MSE (eq. 13) for
point estimates solely.

We follow a similar experimental setup initially set by
Hernandez-Lobato and Adams (2015) and also followed
in related works (Gal and Ghahramani, 2016; Lakshmi-
narayanan et al., 2017; Pearce et al., 2018; Tagasovska
and Lopez-Paz, 2019).

4.1 Datasets

Ten open-access benchmark datasets from the UCI dataset
repository are used (Dua and Graff, 2017). For each
dataset we have created 20 shuffled versions across which
we have evaluated the methods, i.e. 20 trials. Exceptions
are the Year dataset with 1 trial (without shuffling) and the
Protein dataset with 5 trials. The datasets are standardized
(to zero mean and unit variance) based on the training set.
The input of evaluation measures is standardized based on
the full dataset for comparability across different trials.

4.2 Hyper-Parameters

We optimize for 95% prediction intervals, i.e. α = 0.05.

To not add any competitive advantage to our method, we
keep the NN sizes identical across different models. Note
that this may be a disadvantage for our model, given the
complexity of the loss function QD+. This potentially
sub-optimal setting should be kept in mind as our compar-
ison’s objective is feasibility when compared to models
specialized either to generate point estimates or PIs (and
not both at the same time).

The ensemble size is m = 5. The size of mini-batches is
n = 100 (n = 1000 for the Year dataset). All NNs have
2 hidden layers with 50 units (100 units for Protein and
Year datasets) and ReLU activation functions.

For the hyper-parameter search (HPS), we do not follow
the legacy of Hernandez-Lobato and Adams (2015). The
HPS is performed only on a single concrete shuffled ver-
sion of a dataset with excluded 10% test set, i.e. training
set remains. Given the training set, the hyper-parameters
are validated on 5 shuffled 90% and 10% splits (i.e. 81%
and 9% of the complete dataset) for training and valida-
tion, respectively. This deviates opposed to the originally
suggested single 80% and 20% split (i.e. 72% and 18%
of the complete dataset) without cross-validation. The
change of the hyper-parameter search setup was motivated
by the difficulty to find good HPs using the original setup,
especially in smaller datasets (such as Boston, Concrete,
Energy, Wine and Yacht).

A random HPS was performed on the following hyper-
parameters (depending on the model): learning rate, decay
rate, λ1, λ2, epochs. ξ is set to 10 for all experiments.
The remaining settings are consistent with those of Pearce
et al. (2018).

The applied heuristic for selecting the best hyper-
parameters was as follows: If mean PICP is equal to
γ± 0.01, then HPs with the lowest MPIW and MSE were
selected. Alternatively, also heuristic considering mean
and standard deviation of PICP proved good results. If
neither of the criteria were fulfilled, the best achieved
PICP was selected. Also, the training process on the
validation set was analyzed for steady convergence and
overfitting. Note that the loss cannot be used to select
HPs because λ1, λ2 and ξ scale parts of the loss function;
hence the loss is associated with particular values of λ1,
λ2 and ξ.

Due to a smaller number of HPS trials (max. 300), we did
not always find well-performing HPs. Therefore, some ex-
periments (QD+ for the datasets Energy, Kin8nm, Naval,
Protein and Year) were manually fine-tuned. Adjusting
hyper-parameters (λ1 and λ2, learning rate, decay rate



Table 1: Ultimately, PIs are compared between SNM-QD+, SEM-QD and MVE, and point estimates are compared
between SNM-QD+, MSE and MVE in Table 2. Additionally, aggregation methods are compared in SNM-QD+ vs.
SEM-QD+. All methods are ensembles of 2-layer NNs. The values stand for mean ± standard error of the mean. The
best results (with standard error of the mean taken in consideration) are shown in bold.

Dataset PICP MPIW
SNM-QD+ SEM-QD+ SEM-QD MVE SNM-QD+ SEM-QD+ SEM-QD MVE

Boston 0.95± 0.01 0.97± 0.01 0.95± 0.01 0.88± 0.01 1.58± 0.06 1.82± 0.07 1.52± 0.06 0.89± 0.01
Concrete 0.94± 0.01 0.96± 0.01 0.97± 0.00 0.96± 0.00 0.99± 0.04 1.14± 0.05 1.36± 0.02 1.14± 0.02
Energy 0.99± 0.00 0.99± 0.00 0.99± 0.01 0.98± 0.01 0.29± 0.01 0.33± 0.02 0.48± 0.03 0.16± 0.00
Kin8nm 0.97± 0.00 0.98± 0.00 0.99± 0.00 0.97± 0.00 1.07± 0.01 1.21± 0.01 1.29± 0.01 1.04± 0.01
Naval 1.00± 0.00 0.00± 0.00 0.99± 0.00 1.00± 0.00 0.09± 0.00 0.00± 0.00 0.36± 0.02 0.05± 0.00
Power 0.95± 0.00 0.96± 0.00 0.96± 0.00 0.96± 0.00 0.80± 0.00 0.85± 0.00 0.87± 0.00 0.87± 0.01
Protein 0.95± 0.00 0.97± 0.00 0.95± 0.00 0.98± 0.00 2.12± 0.01 2.31± 0.01 2.24± 0.01 2.82± 0.10
Wine 0.94± 0.01 0.95± 0.01 0.92± 0.01 0.94± 0.00 2.62± 0.06 2.92± 0.07 2.06± 0.03 2.94± 0.02
Yacht 0.94± 0.01 0.96± 0.01 1.00± 0.00 0.99± 0.00 0.12± 0.00 0.13± 0.00 0.25± 0.02 0.40± 0.04
Year 0.94± NA 0.96± NA 0.95± NA 0.96± NA 2.34± NA 2.54± NA 2.29± NA 2.75± NA

Table 2: Extension of Table 1 evaluating point estimates
of SNM-QD+, MSE and MVE.

Dataset MSE
MSE SNM-QD+ MVE

Boston 0.112± 0.013 0.115± 0.013 0.127± 0.019
Concrete 0.056± 0.003 0.053± 0.003 0.077± 0.004
Energy 0.001± 0.000 0.001± 0.000 0.001± 0.000
Kin8nm 0.060± 0.001 0.059± 0.001 0.062± 0.001
Naval 4.8e-5± 0.000 1.3e-4± 0.000 1.2e-4± 0.000
Power 0.042± 0.001 0.050± 0.001 0.048± 0.001
Protein 0.310± 0.002 0.361± 0.004 0.445± 0.023
Wine 0.597± 0.015 0.616± 0.018 0.621± 0.015
Yacht 0.002± 0.000 0.001± 0.000 0.003± 0.000
Year 0.637± NA 0.636± NA 0.639± NA

and number of epochs) has proven to be intuitive by an-
alyzing PICP, MPIW and MSE on a validation set. We
resorted to manual fine-tuning only if a model was consid-
erably under-performing compared to the original QDE
or compared to MVE. There was no attempt to optimize
to the model’s full potential.

4.3 Evaluation

The input of evaluation measures is standardized based
on the full dataset for comparability across different trials.
The following measures are used to assess and compare
models (QD+, QD and MVE) and aggregation methods
(SNM and SEM): PICP, MPIW and mean squared error
(MSE).

4.4 Results

Tables 1 and 2 show the results of comparing the two
models QD+ and QD, combined with the aggregation
methods SNM and SEM. We have also included a model
that generates only point estimates (denoted MSE), and
MVE generating both PIs and point estimates. Consider
SNM-QD+ vs. SEM-QD for a comparison between our

method and the original QDE method (Pearce et al., 2018),
respectively. SNM-QD+ vs. SEM-QD+ gives a compari-
son between our split normal aggregation method and the
original aggregation method, respectively. SNM-QD+ vs.
MVE provides a comparison of methods generating both
PIs and point estimates. Finally, Table 2 shows the evalua-
tion of the point estimates between SNM-QD+, MSE and
MVE. The best results (with standard error of the mean
taken in consideration) are presented using bold font. Sup-
plement A provides the evaluation of non-aggregated PIs.

Overall, the results demonstrate that a complex multi-
objective quality-driven loss function (QD+) can deliver
well-calibrated PIs when the split normal mixture (SNM)
is employed as the aggregation method. The proposed
method SNM-QD+ performs best with respect to PIs and
competitively with respect to point estimates. We argue
that the quality of the point estimates can be improved
by increasing the capacity of NNs or by hyper-parameter
fine-tuning.

The results clearly show that the split normal aggrega-
tion method (SNM) yields well-calibrated PIs, while the
original aggregation method (SEM) generally tends to
generate wider PIs. Contrary to SEM, SNM aggregation
method does not treat PI boundaries independently. It
fits flexible enough (asymmetric) distributions within a
versatile mixture distribution that is, as the results show, a
sufficient approximation of the posterior predictive distri-
bution. Note that the SNM aggregation method is not nec-
essarily tied to the QD+ loss, but can be applied in other
situations as well. A potential drawback of SNM is the ap-
parent computational overhead of fitting the split normal
mixture when the number of samples is large. However,
this learning task is parallelizable and distributable; hence
the wall-clock time spent on the task is negligible.

The training process of QD+ is, contrary to the original
QD, quite robust. To give a particular example with the



Protein dataset, training 2-layer NNs with the original
QDE required approximately one retry per run due to
interval crossing or high loss value (stuck in local mini-
mum). No retries were required when using QD+. Details
are given in Supplement B. Furthermore, the original
QD is sensitive to parameter initialization. Overall, the
penalty function LP (eq. 14) in QD+ results in significant
improvements of the stability of the training process and
strengthens the integrity of the output (mitigates the un-
desired interval crossing and point estimates out of the
PI bounds). Supplement C provides a sensitivity analysis
together with an ablation study clearly demonstrating the
importance of the penalty function.

Since we compare our results with Pearce et al. (2018)
and Lakshminarayanan et al. (2017), our work is
also comparable with Bayesian approach by Hernandez-
Lobato and Adams (2015), and partly also with
Tagasovska and Lopez-Paz (2019).

4.5 Implementation

Our implementation is shared1 and results fully repro-
ducible. To embrace reproducibility, we use the Python
package Sacred (Greff et al., 2017). PyTorch (Paszke
et al., 2019) is used as the main NN framework and the
fitting of a split normal mixture is implemented using
JAX (Bradbury et al., 2018).

5 CONCLUSIONS

The main finding of this paper is that models deliver-
ing point estimates together with prediction intervals are
competitive to models providing only one or the other.
Motivated by the results of the quality-driven deep en-
sembles (Pearce et al., 2018) as an alternative to Bayesian
methods, we endeavored to address the three key limita-
tions: (1) The inability to generate point estimates; (2)
the weakly justified method for aggregation of prediction
interval ensembles; (3) the fragile training process.

We propose a new quality-driven loss function generating
both prediction intervals and point estimates, and we dra-
matically increase the robustness of the training process
by integrating a penalty function.

A unique and well-founded method fitting a split normal
mixture as the aggregate of ensembled neural network out-
put generates well-calibrated prediction intervals account-
ing for aleatoric and epistemic uncertainty. Moreover, an
analytical approach for initializing parameters of a split
normal probability density function is proposed that leads
to acceleration and dramatically increased success of the
fitting process.

1https://github.com/tarik/pi-snm-qde

With this work, we extend the practitioners toolset for
quantifying predictive uncertainty in the regression task.

6 FUTURE WORK

We end the paper with the following suggestions for future
research or possible improvements:

• We have shown that a single model architecture can
be used to generate both point estimates and predic-
tion intervals. We therefore envision a two-step learn-
ing process, where one first optimizes the model to
generate point estimates and consequently learns to
generate prediction intervals. To avoid catastrophic
forgetting, it seems appropriate to treat this as a trans-
fer learning problem. The key benefit of this opera-
tion is that it will allow us to reuse (pre-trained) NN
models that currently only generate point estimates.

• It seems reasonable to use the NMPIW measure (eq.
4) in place of MPIW in the definition of the loss func-
tion LMPIW (eq. 6). While it is already relatively
intuitive to find HPs manually, and the HPS can
be automated efficiently, we hypothesise that using
NMPIW may lead to better-scaled hyper-parameters
and possibly also to smaller variations across differ-
ent datasets. The current work uses MPIW to ease
the comparison between QD and QD+.

• The current approach learns to output a reasonable PI
that is later used to fit a split normal PDF. This could
alternatively be simplified so that the output of the
neural network was the parameterization of the split
normal PDF (or a mixture of split normal PDFs) di-
rectly. This approach is relevant for use-cases where
a full predictive distribution is needed and would re-
quire a training objective defined for such situations
instead of QD+. Again, the implemented approach
was chosen to extend the non-Bayesian branch of re-
search and ease comparison with the work of Pearce
et al. (2018).
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SUPPLEMENTARY MATERIAL

A Additional Results

Related to Table 1, Table A shows the evaluation of non-
aggregated PIs (not accounting for epistemic uncertainty)
for the QD+ and QD models.

Table A: Evaluation of non-aggregated PIs (2-layer NNs).

Dataset PICP MPIW
QD+ QD QD+ QD

Boston 0.85± 0.01 0.88± 0.01 1.22± 0.04 1.12± 0.02
Concrete 0.86± 0.01 0.89± 0.00 0.79± 0.03 1.03± 0.01
Energy 0.90± 0.01 0.93± 0.00 0.21± 0.01 0.27± 0.01
Kin8nm 0.91± 0.00 0.92± 0.00 0.95± 0.01 1.01± 0.01
Naval 0.98± 0.00 0.94± 0.00 0.08± 0.00 0.25± 0.00
Power 0.94± 0.00 0.93± 0.00 0.79± 0.00 0.75± 0.00
Protein 0.93± 0.00 0.93± 0.00 2.03± 0.01 2.11± 0.01
Wine 0.91± 0.00 0.91± 0.00 2.31± 0.03 1.81± 0.01
Yacht 0.76± 0.01 0.89± 0.01 0.07± 0.00 0.15± 0.01
Year 0.93± 0.00 0.93± 0.00 2.27± 0.00 2.07± 0.02

In Table B, we show the reproduced results of the original
QDE method following the exact experimental setting as
implemented in Pearce et al. (2018). These results are
included to offer a comparison between the 1-layer and
2-layer models (Table B and Table 1, respectively). It also
serves as a verification of our re-implementation of the
method by Pearce et al. (2018).

Table B: Original QDE with 1-layer NNs as a reference.

Dataset PICP MPIW
SEM-QD QD SEM-QD QD

Boston 0.90± 0.01 0.80± 0.01 1.01± 0.01 0.81± 0.01
Concrete 0.92± 0.01 0.84± 0.00 1.01± 0.01 0.83± 0.00
Energy 0.97± 0.00 0.91± 0.00 0.45± 0.01 0.38± 0.01
Kin8nm 0.96± 0.00 0.89± 0.00 1.24± 0.00 1.02± 0.00
Naval 0.99± 0.00 0.96± 0.00 0.25± 0.02 0.17± 0.00
Power 0.95± 0.00 0.94± 0.00 0.85± 0.00 0.81± 0.00
Protein 0.95± 0.00 0.94± 0.00 2.26± 0.00 2.17± 0.00
Wine 0.93± 0.01 0.91± 0.00 2.31± 0.02 2.04± 0.01
Yacht 0.95± 0.01 0.86± 0.01 0.15± 0.00 0.10± 0.00
Year 0.95± NA 0.93± 0.00 2.41± NA 2.22± 0.01

Table C considers a simple baseline with point estimates
constructed as the mean of PIs from SEM-QD (annotated
SEM-QD*). This simple baseline is underperforming
compared to the results in Table 2.

B Robustness

The robustness of training process of QD+ vs. the fragility
of training process of QD is shown in Table D. The con-
tribution of the penalty function LP to the robustness is
shown in Figure A of the following section.

Table C: Extension of Table 2 provides a simple baseline
with point estimates constructed as the mean of PIs from
SEM-QD (annotated SEM-QD*). Also, the sizes |D| and
input dimensions d of the datasets are presented.

Dataset MSE
Name |D| d SEM-QD*

Boston 506 13 0.209± 0.030
Concrete 1030 8 0.102± 0.005
Energy 768 8 0.028± 0.008
Kin8nm 8192 8 0.067± 0.001
Naval 11934 16 0.012± 0.001
Power 9568 4 0.054± 0.001
Protein 45730 9 0.666± 0.004
Wine 1599 11 0.804± 0.021
Yacht 308 6 0.003± 0.001
Year 515345 90 0.686± NA

Table D: Extension of Tables 1 and 2 showing the number
of failed/repeated training attempts of QD+ and QD. The
targeted model count equals to an ensemble size m times
number of trials t.

Dataset Failures/Retries Target Model Count
QD+ QD m · t

Boston 0 3 5 · 20
Concrete 0 2 5 · 20
Energy 0 22 5 · 20
Kin8nm 0 2 5 · 20
Naval 0 10 5 · 20
Power 0 6 5 · 20
Protein 0 22 5 · 5
Wine 0 29 5 · 20
Yacht 0 33 5 · 20
Year 0 18 5 · 1

C Sensitivity Analysis

Figure A provides a sensitivity analysis with respect to
hyper-parameters λ1, λ2 and ξ. It visualizes the mea-
sures PICP, NMPIW and MSE in relation to changing
hyper-parameters of the QD+ model. The analysis was
performed on the Yacht dataset. The sensitivity analy-
sis is also an ablation study since the border values, i.e.
λ1, λ2 ∈ {0, 1} and ξ = 0, disable certain parts of the
LQD+ loss function (eq. 12).

Figure Aa would guide us to choose λ1 around 0.975 and
λ2 around 0.05. Leaving out the penalty function from
the loss function (i.e. ξ = 0) leads to a non-converging
training process for λ2 below approx. 0.7 and more noisy
measures in the remaining hyper-parameter space (Figure
Ab). It demonstrates the critical importance of the penalty
function LP (eq. 14), thus, supporting the claims about
the robustness together with the evidence in Table D.



(a) ξ = 10 (b) ξ = 0

Figure A: Sensitivity analysis of QD+ on Yacht dataset with respect to hyper-parameters λ1 and λ2 with (a) and without
(b) an active penalty function LP . Gray color stands for a failed training process, i.e. high loss or outputs violating the
semantic integrity (PI crossing or point estimates outside the PI bounds).
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