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A EFFECTIVE HOEFFDING BOUNDS FOR UNKNOWNMDPS

We presently develop the main ideas required to prove Theorem 1. To do so, we follow the work of Tracol (2009).

Before we begin, we need to introduce some additional notation and work our way from bounds for unknown chains up
to unknownMDPs.

A.1 REGULARMARKOV CHAINS

Let C = (Q,P,R) be a Markov chain. We say C is regular if |Q| is finite and it is both aperiodic and irreducible. It will be
useful to recall the definitions of the latter two terms. A state q has period p(q) = gcd{n > 0 : PrqC [qn = q]}. TheMC C is
said to be aperiodic if p(q) = 1 for all q ∈ Q; it is irreducible ifGC = (Q,E), whereE def

= {(q, q′) ∈ Q×Q : P (q, q′) > 0},
is a strongly connected directed graph. In words, the chain is irreducible if the probability of reaching q′ from q is nonzero
for all q, q′ ∈ Q.

It is well known that, finite irreducible, and thus regular, Markov chains have a unique stationary distribution π ∈
Dist(Q) (Norris, 1998).

Doeblin’s condition. In the sequel we will state Hoeffding-like inequalities in terms of an ergodicity coefficient and its
correspondingmixing time. To be precise, we recall a classical sufficient condition for anMC to be uniformly ergodic (Meyn
and Tweedie, 1993).
Definition 8. A Markov chain C satisfies Doeblin’s condition if there exist λ ∈ R, λ > 0, a probability measure ϕ over (subsets
of)Q, and an integer t ∈ N, such that

Prq0C [qt ∈ T ] ≥ λϕ(T )

for all T ⊆ Q and all q0 ∈ Q.

Henceforth, we refer to λ as the ergodicity coefficient and to t as the mixing time.

It is classical to show that, for regular unknownMCs, Doeblin’s condition always holds (Meyn and Tweedie, 1993). We give
a proof of this claim in order to convince the reader that we can compute an ergodicity coefficient and a mixing time even
if the MC is unknown.
Lemma 2. Let C = (Q,P,R) be an unknown regular MC and pmin be a lower bound for all nonzero transition probabilities.
One can compute values λ ∈ Q, λ > 0 and t ∈ N (dependent only on pmin and |Q|) such that Prq0C [qt ∈ T ] ≥ λϕ(T ) for all
T ⊆ Q and all q0 ∈ Q.

Proof. First, since C is regular, we know it has a unique stationary distribution π. We now observe that, because of aperi-
odicity and irreducibility, we know there exists some t such that

Prq0C [qt = s] > 0



for any q0, s ∈ Q. To give one such t we need to recall some definitions.

Given a finite set N = {a1, . . . , a`} ⊆ N>0 of positive integers such that gcd(N) = 1 we write g(N) to denote the
Frobenius number: The maximal integer that cannot be obtained as a conical combination of the ai, that is as a sum

k1a1 + · · ·+ k`a`

where k1, . . . , k` ∈ N. (Since the set of numbers that is not obtainable as such a conical combination is bounded by Schur’s
theorem, g(N) indeed exists.)

Let us set
t = max

N⊆{1,2,...,|Q|}
g(N) + 1.

It should be clear that, since C is regular, we have that

∀q0, s ∈ Q : Prq0C [qt = s] ≥ ptmin > 0. (1)

Indeed, because of aperiodicity and the definition of the Frobenius number, a run prefix of length t′ andnonzero probability
exists from any state to any other state in the chain for any t′ ≥ t. To conclude, we set λ = ptmin and ϕ = π and observe
that Equation (1) implies that Prq0C [qt = s] · λ−1 ≥ 1 ≥ ϕ(s). The desired result follows.

A.2 UNICHAINMARKOV CHAINS

Let C = (Q,P,R) be a Markov chain. We say C is unichain if it contains a unique maximal (w.r.t. state-set inclusion) irre-
ducible sub-MC. In other words, the MC consists of a single recurrent class of states plus a possibly empty set of transient
states. Note that unichain Markov chains also have a unique stationary distribution since almost all runs reach the unique
maximal irreducible sub-MC (Baier and Katoen, 2008, Theorem 10.120).

From Lemma 2 and Proposition 2 in the work of Tracol (2009) we get the following.
Proposition 2. Let C = (Q,P,R) be an unknown finite unichain MC and pmin be a lower bound for all nonzero transition
probabilities. For all ε ∈ (0, 1) one can computeK0 ∈ N and α, β ∈ Q, α, β > 0 (dependent only on pmin, |Q|, and ε) such
that

Prq0C [ρ : Avgk(ρ) ≥ Eq0C [Avgk]− ε] ≥ 1− α · exp(−k · β · ε2)

for all k ≥ K0 and all q0 ∈ Q.

Proof. Tracol originally achieves this by decomposing C into its transient set of states and the regular sub-MC C′ it contains.
He then proceeds to decompose C′ into aperiodic components based on all residue classes modulo the period of states of
C′. Finally, he (essentially) uses Lemma 2 to obtain bounds for each such regular chain. Critically, to computeK0, α, β, he
uses only pmin, |Q|, the ergodicity coefficient of each regular sub-chain, as well as their mixing times.

Since C is finite and the period of C′ is bounded by |Q| we can computeK0, α, β taking all possible such decompositions
into account. This allows us the flexibility of not having to rely on more information about P than just pmin and |Q|.

A.3 FINITE-MEMORY UNICHAIN STRATEGIES FORMDPS

A strategy σ for an MDPM = (Q, q0, A, P,R) is said to be unichain if the induced MCMσ is a unichain MC. In the
sequel we will be interested in such strategies which are additionally finite-state encodable. To obtain bounds for MDPs
under finite-state unichain strategies we start by specializing our definition of induced MC.

Consider an MDPM = (Q, q0, A, P,R) and a finite-state strategy σ implemented by the stochastic Mealy machine
T = (M,m0, fu, fo). The induced MCMσ can be constructed as the product ofM and T to obtain a finite MC
(Q′, P ′, R′) as follows.

• Q′ = (Q×M ×A) ∪ (Q×M)
• P ′(〈q′,m′, a′〉|s) = fo(a

′|m, q) · P (q′|q, a′) for any s ∈ {〈q,m, a〉, 〈q,m〉} and a′ ∈ α(q) with (q, a′, q′) ∈
supp(P ) andm′ = fu(m, q, r(q, a

′, q′))
• andR′(s, 〈q′,m′, a′〉) = R(q, a, q′) for any s ∈ {〈q,m, a〉, 〈q,m〉}



For convenience, we write Prq0Mσ [·] instead of Pr〈q0,m0〉
Mσ [·].

We now argue that, for finite-state unichain strategies, the the limit of the expected averages and the expectation of the
limit of the averages coincide. That is to say, the limit can be “pushed into the expectation operator”.
Lemma 3. LetM = (Q, q0, A, P,R) be an unknown MDP and σ be a finite-state unichain strategy forM.

Eq0Mσ [MP] = lim inf
k→∞

Eq0Mσ [Avgk] = lim sup
k→∞

Eq0Mσ [Avgk] .

Proof. Our approach consists in applying Lebesgue’s dominated convergence theorem, which gives sufficient conditions
for the equivalence between the limit of the expectation of functions and the expectation of their limit. Simply stated, we
need the (pointwise) limit of theAvgk(·) functions to almost-surely exist and a (finite-expectation) bound onAvgk(ρ)
for all ρ and all k. For the second point: recall that the reward function is bounded, i.e. all rewards are in [0, 1], thus
0 ≤ Avgk(ρ) ≤ 1 for all ρ and all k. It remains to prove the limit of the average functions almost always exists.

For finite irreducible Markov chains C the ergodic theorem (Norris, 1998, Theorem 1.10.2) tells us that

Prq0C

[
ρ : lim inf

k→∞
Avgk(ρ) = lim sup

k→∞
Avgk(ρ)

]
= 1

thus the limit almost-surely exists. To conclude, we observe that the above extends to product MCs obtained from finite-
state unichain strategies and MDPs with a mean-payoff function (such asMσ) since the function is prefix-independent
and almost all runs reach the unique maximal irreducible sub-MC (Baier and Katoen, 2008, Theorem 10.120).

The final bound. The main tool used in the next section is the following result. It gives us Hoeffding-like bounds on the
convergence of the finite averages observed while following finite-state unichain strategies. Additionally, it tells us that the
expected mean-payoff value is obtained almost surely.
Lemma 4. LetM = (Q, q0, A, P,R) be an unknown MDP, pmin be a lower bound for all nonzero transition probabilities, and
σ be a finite-state unichain strategy forM.

1. For all ε ∈ (0, 1) one can computeM(ε) ∈ N (dependent only on pmin, |Q|, |A|, and the amount of memory used by σ)
such that

Prq0Mσ [ρ : ∀k ≥M(ε), Avgk(ρ) ≥ Eq0Mσ [Avgk]− ε] ≥ 1− ε.
2. It holds that Prq0Mσ [ρ : MP(ρ) ≥ Eq0Mσ [MP]] = 1.

Proof.

Item 1 Recall the bound from Proposition 2 and letK0 be the corresponding integer computed for the finite unichain
MCMσ . We observe that for all ε we can compute aK1 ≥ K0 such that

1− α · exp(−k · β · ε2) ≤ 1− 2−k

for all k ≥ K1.

The following inequality from (Berthon et al., 2017, Proof of Lemma 12), will be useful later.
∞∏
j=k

(1− 2−j) ≥ exp
(
−2−(k−2)

)
Towards a formula to computeM(ε), we derive the following bounds from the above inequality.

exp
(
−2−(k−2)

)
≥ 1− ε ⇐⇒ −2−(k−2) ≥ ln(1− ε)

⇐⇒ 2−(k−2) ≤ ln(ε)

⇐⇒ (k − 2) ≥ − log2(ln(ε))

⇐⇒ k ≥ 2− log2(ln(ε)) =⇒
∞∏
j=k

(1− 2−j) ≥ 1− ε



Let us now setM(ε)
def
= max(K1, 2− log2(ln(ε))) and denote byE` the event⋂̀

k=M(ε)

{ρ |Avgk(ρ) ≥ Eq0Mσ [Avgk]− ε} .

It follows from the above arguments that the probability measure of E` is at least
∏`
k=M(ε)(1 − 2−k). Furthermore, we

have thatE`′ ⊆ E` for all ` ≤ `′. Hence, we get (Baier and Katoen, 2008, Page 756) that

Prq0Mσ

 ⋂
`≥M(ε)

E`

 ≥ ∞∏
k=M(ε)

(1− 2−k) ≥ 1− ε

which concludes the proof.

Item 2 We will now make use of item 1 to prove item 2. Consider a sequence (εi)i∈N such that εi = 2−i. It should be
clear that, if we writeEi for the event

{ρ | ∃M ∈ N,∀k ≥M, Avgk(ρ) ≥ Eq0Mσ [Avgk]− εi} ,

we have thatEk ⊆ Ej for all j ≤ k. Furthermore, it follows from item 1 that Prq0Mσ [Ei] ≥ 1− 2−i for all i ≥ 0. Hence,
we can once more use the limit of the probabilities of theEi and conclude that

Prq0Mσ

[⋂
i∈N

Ei

]
= lim
i→∞

1− εi = 1.

The claim thus follows since⋂
i∈N

Ei = {ρ | ∀i ∈ N,∃M ∈ N,∀k ≥M, Avgk(ρ) ≥ Eq0Mσ [Avgk]− εi}

=

{
ρ

∣∣∣∣ lim inf
i∈N>0

(Avgk(ρ)− Eq0Mσ [Avgk]) ≥ 0

}
=

{
ρ

∣∣∣∣∣ lim inf
i∈N>0

Avgk(ρ) ≥ lim sup
i∈N>0

Eq0Mσ [Avgk]

}

=

{
ρ

∣∣∣∣∣MP(ρ) ≥ lim sup
i∈N>0

Eq0Mσ [Avgk]

}
by definition

and the probability measure of the last event above is, with probability 1, equivalent to the set of runs whose mean payoff
is at least the expected mean payoff by Lemma 3.

B PROOF OF THEOREM 1

Webegin by arguing that for all ε one can compute a value forL such that the sequence (P̂i)i∈N of approximate probabilistic
transition functions computed by σε are ε4 -close to the unknown function P with probability 1− ε.

B.1 EXPLORATION

Our goal in this section is to prove the following result. It is stated with respect to empirical approximations P̂i of P . Tech-
nically, such P̂i can be obtained by dividing the number of times a transition (q, a, q′) has been observed compared to the
number of times action a ∈ A(q) has been executed from q.
Proposition 3. For all ε ∈ (0, 1) one can compute L ∈ N such that the sequence (P̂i)i∈N of approximate functions computed
by σε satisfies the following

∀i ∈ N, Prq0Mσε

[
ρ :
∥∥∥P − P̂i∥∥∥

∞
≤ ε
]
≥ 1− ε.



The result is a corollary of Lemma 5. The Lemma gives us a bound on the number of |Q|-step episodes for which we need
to exercise a uniformly-random exploration strategy to obtain the desired approximations of P and R with at least some
given probability. It can be proved via a simple application of Hoeffding’s inequality.
Lemma 5. For all ε, δ ∈ (0, 1) one can compute n ∈ N (exponential in |Q| and polynomial in |A|, p−1min, ln(δ

−1), and ε−1)
such that following uniformly-random exploration strategy during n (potentially non-consecutive) episodes of |Q|-steps suffices to
collect enough information so that the empirical approximation P̂ is such that

Pr
(∥∥∥P − P̂∥∥∥

∞
≤ ε
)
≥ 1− δ.

B.2 EXPLOITATION

Wewill now build upon Proposition 3 and argue that we can also computeO large enough so as to ensure that the expected
average reward of every episode is at least Val(M) with probability 1 − ε. For a run ρ = q0 . . . qi . . . qi+L+O . . . , let
Epi denoteAvg(qi . . . qi+L+O).
Proposition 4. For all ε ∈ (0, 1) and all L ∈ N, one can computeO ∈ N such that

∀i ∈ N : Eq0Mσε [Epi] ≥ Val(M)− ε.

The proof of the above claim will have to make use of a “simulation lemma” since we are exercising an optimal strategy for
a learnt model, not the actual unknownMDP.

Robustness (a.k.a. simulation) lemma. The following result captures the intuition that some expectation-optimal
strategies for MDPs whose transition function have the same support are “robust”. That is, when used to play in another
MDP with the same support and close transition functions, they achieve near-optimal expectation. The specific lemma we
use follows from the work of Solan (2003, Theorem 6) and Chatterjee (2012, Theorem 5).
Lemma 6. Let ε ∈ (0, 1), P̂ be a probabilistic transition function and R̂ a reward function. For all memoryless deterministic
expectation-optimal strategies σ for the MDP (Q, q0, A, P̂ , R̂) we have that

|Eq0Mσ [MP]−Val(M)| ≤ ε

if supp(P ) = supp(P̂ ),
∥∥∥R− R̂∥∥∥

∞
≤ ε

4 , and ∥∥∥P − P̂∥∥∥
∞
≤ ε · pmin

24|Q|
.

It is important to note that there always exist memoryless deterministic expectation-optimal strategies (Gimbert, 2007)
which are, furthermore, also unichain Bruyère et al. (2014).

Using the robustness lemma. We now turn to the proof of the proposition. In general terms, we will give a bound on
the time we need to optimize using a strategy computed from the approximated MDP. The strategy gets us close to the
desired value according to the robustness lemma, however, we have to be able to stop the exploitation. To do the latter, we
make use of classical algorithms which give us exactmixing in (expected) bounded time even in unknownMarkov chains.

Proof of Proposition 4. Consider the i-th episode of exploration and exploitation dictated by σε. Let L be such that with
probability at least 1− ε/4 we have that

•
∥∥∥P − P̂i∥∥∥

∞
≤ η for η < pmin (see Lemma 5) so that supp(P ) = supp(P̂i) and R̂i = R, and

• such that
η ≤ ε · pmin

4 · 24|Q|

so that any unichain memoryless deterministic expectation-optimal strategy σi for (Q, q0, A, P̂i, R̂i) is (ε/4)-
optimal forM.



This means that the expectation of the error is bounded by ε/2. In symbols, we have the following.

Val(M)− Eq0Mσε [E
q0
Mσi [MP]] ≤ ε

2
(2)

We will now make use of the fact that there is a randomized algorithm which stops a finite irreducible unknown Markov
chain preciselywhen the stationary distribution is reached (See, e.g., Lovász andWinkler, 1995; Propp andWilson, 1998).
Crucially, the one from Lovász andWinkler (1995) gives a stopping time with expectation upper-bounded by a polynomial
of the maximal hitting time. Using our notation, this bound isM ′ := 6|Q|2p2|Q|

min . (Note that the cited results have been
developed for finite irreducible chains. Nevertheless, they clearly extend to finite unichain MCs and thus toMσi .)

From (Levin and Peres, 2017, Theorem 6.15) we know that for any timestep t after

M := 4ε−1M ′ =
24|Q|2p2|Q|

min

ε

we have that, for P the probabilistic transition relation ofMσi and π its stationary distribution, the following holds.

1

t

t−1∑
i=0

P i(q, q′)− π(q′) ≤ ε

4

for all q, q′ ∈ Q.

We can now chooseO′ ∈ N to be any integer large enough so that

O′

L+M +O′
≥ O′ − ε

4
.

Intuitively, this means the proportion of time we spend after having reached the stationary distribution (±ε/4) accounts
for 1 − ε/4 of the time the episode takes. Since the rewards are bounded in [0, 1], this means (See, e.g., Norris, 1998;
Puterman, 2005) that

Eq0Mσε [Epi] ≥ lim
k→∞

Eq0Mσi [Avgk]−
ε

2
.

From Lemma 3 we then have that the limit on the right-hand side can be replaced by Eq0Mσi [MP]. Together with Equa-
tion (2) we thus get

Eq0Mσε [Epi] ≥ Val(M)− ε

and since i was arbitrary, the result holds withO =M +O′.

Putting everything together. We are now ready to give a proof of the theorem.

Proof of Theorem 1. Using Proposition 4 we obtain that

lim
i→∞

Eq0Mσε [Epi] ≥ Val(M)− ε.

Observe now that σε is a finite-state unichain strategy since it randomly explores the whole end component and forgets all
it has learned infinitely often. Hence, Lemma 3 holds and we have that

lim
i→∞

Eq0Mσε [Epi] = lim
i→∞

Eq0Mσε [Avgi] = Eq0Mσε [MP] .

In turn, the latter implies that
Eq0Mσε [MP] ≥ Val(M)− ε.

Furthermore, by Lemma 4 item 2 the expectation is achieved with probability 1.



C PROOF OF PROPOSITION 1 (OPTIMALITY OF σε)

Proof of Proposition 1. Observe that taking always action a yields a mean payoff of 0.5, and b yields p. Therefore, depending
on whether p < 0.5, the former or the latter is optimal.

Let σ be a finite-memory strategy given by a Mealy machine with n states and let p = 0.25. Assume there exists a run in
Mσ

p such that during some n+1 consecutive visits of q0, action a is always chosen with probability 1. Then, during these
visits, σ has revisited q0 with the same memory state twice. Between these two visits, action a and the successor state are
always chosen deterministically with probability 1. Since the transition function on memory states of the Mealy machine
is also deterministic and because the choice of actions depends only on the memory states, σ continues looping through
these memory states while always choosing action a deterministically. Thus, this infinite suffix of the run always switches
between q0 and q1 with probability 1 and therefore this infinite suffix has probability 1. Moreover, by definition of a run,
the remaining finite prefix of the run must have positive probability. These two properties still hold if we change p to 0.75
because the probabilities of the transitions between q0 and q1 remain unchanged and because all transitions for the finite
prefix still have positive probability. Hence, we get that the complete run has positive probability inMσ

0.75. However, the
run has a suboptimal mean payoff of 0.5 while the optimum would be 0.75.

Otherwise, we get that during all n+ 1 consecutive visits of q0 on all runs inMσ
0.25, there is some positive probability of

choosing action b, bounded from below by the smallest of these positive probabilities p′ among all memory states. Conse-
quently, by the law of large numbers, that action b will be chosen almost surely at least a p′/(n + 1)-fraction of the time.
Since p = 0.25, the law of large numbers also implies that action b almost surely gives an average of 0.25 reward. Thus,
the mean payoff is almost surely at most 0.25 · p′/(n+ 1) + 0.5 · (1− p′/(n+ 1)) < 0.5, i.e. the mean payoff is almost
surely suboptimal.

D PROOF OF THEOREM 2 (CORRECTNESS OF ALGORITHM 1)

Proof of Theorem 2. First note that each PEC is contained in the single component (Q,A) ofM at the beginning of the
algorithm. Moreover, if a PEC (S′, B′) is contained in a component (S,B) ∈ M during the algorithm, then the graph
GS′,B′,T for the PEC is a subset of the graph GS,B,T for the component (S,B). Since GS′,B′,T is strongly connected,
the states S′ of the PEC are also strongly connected in GS,B,T . Therefore, they all belong to a common SCC and hence
the algorithm adds a component containing the PEC intoM ′. Inductively, it follows that each PEC is contained in one
component ofM after the algorithm finishes.

SinceM stayed unchanged after the last iteration, for each component (S,B) ∈M the graphGS,B,T is strongly connected,
and because B = BS , it follows that (S,B) is a PEC. Moreover, since every MPEC has an upper bound inM which is
itself a PEC, by maximality this upper bound has to be the MPEC and thus every MPEC is contained inM . Furthermore,
consider a PEC (S,B) ∈M . BecauseM partitions the states of theMDP, (S,B) has only itself as upper bound inM . But
every PEC is contained in some MPEC which itself, as argued before, has to be included inM . Thus, this MPEC inM is
an upper bound to (S,B), hence the MPEC has to be (S,B) and therefore every component (S,B) ∈M is a MPEC.

Finally, because the algorithm always partitions the states of the components ofM , it has to finish after at most |Q| itera-
tions and can therefore be implemented with a runtime ofO(|Q||T |) since SCCs can be calculated in linear time.

E PROOF OF THEOREM 3 (CORRECTNESS OF ALGORITHM 2)

Proof of Theorem 3. First note that each SEC is contained in S at the beginning of the algorithm. Moreover, if a SEC is
contained in S during the algorithm, then all its states will get added to S′. Indeed, consider the end of the while-loop.
Then we have for each state s ∈ S \ S′ that all actions a ∈ BS(s), which would include all actions of the SEC, are
also in BQ\S′(s), i.e. all must and at least one must or may transition for this action stay outside of S′. But this means
that it is possible to instantiate exactly those transitions, i.e. we can choose a transition relation T with supp(T, s, a) =
supp(T , s, a) ∩ (Q \ S′) for all these s and a, giving rise to a graph GS,BS ,T where no state s ∈ S \ S′ has an edge to a
node in S′ by construction of T . So all states in S \ S′ have no path to s0 ∈ S′ in that graph. Because the graph for the
SEC is a subgraph of this graph, it follows that all states of the SEC have to be contained in S′ by the second property of
SECs. Inductively, it follows that each SEC is contained in S after the repeat-until-loop finishes.

Since each SEC is in S after the repeat-until-loop, thus also has only actions of BS , and since each SEC is a PEC and



therefore strongly connected, it follows that all states of the SEC are reachable from s0 in GS,BS ,T . Hence, all SECs are a
subset of (S,B) after the end of the algorithm.

Next we show that the second constraint of SECs holds for (S,B) after the end of the algorithm. Consider an arbitrary
transition relation T with supp(T, s) = A(s) = supp(T , s) for all s ∈ S. Since S stayed unchanged in the last iteration
of the repeat-until-loop, we can show that all states in S have a path to s0 in GS,BS ,T . This can be done inductively by the
number of the iteration when a state s has been added toS′. The action a /∈ BQ\S′(s), for which it has been added, tells us
that either amust transition or all may transitions for action a go toS′. BecauseT ⊆ T and supp(T, s) = supp(T , s), this
means that either such amust transition or one of thosemay transitions has to exist in T . In all cases, there is a transition in
T connecting s to some state in S′. Since S stayed unchanged, this action is inBS after the repeat-until-loop. Moreover,
since s is inS after the end of the algorithm, it is reachable from s0 inGS,BS ,T . As a ∈ BS(s), all successors supp(T , s, a)
of s after action a are therefore also reachable from s0 in that graph, giving that they have to be in S after the end of the
algorithm, in particular action a is also still in BS(s). Using the transition of T from s to some state in S′, by induction
we get the desired path in GS,BS ,T to s0.

Finally, strong connectivity of GS,BS ,T follows from the fact that with T = T , each state has path to s0 in GS,BS ,T by the
previous argument, and every state is reachable from s0 by construction. Since B = BS , this gives that (S,B) is a SEC,
and because it contains all SECs, it has to be an MSEC.

The algorithm finishes after at most |Q| iterations since it always removes at least one state fromS in each iteration. More-
over, the while-loop can be implemented in linear time using reference counting. Thus, the algorithm can be implemented
with a runtime ofO(|Q||T |).

F PROOF OF THEOREM 4

Proof of Theorem 4. First we note that the L computed for Theorem 1 in Lemma 5 depends only on pmin, |Q|, |A| and ε.
It does not depend on the structure ofM, so we do not need the transition relation in order to compute L. Then we can
also compute the correspondingO as in Proposition 4 which also depends only on the mentioned terms.

Let’s fix a MEC (S,B) ofMwithPrq0Mσp [Inf ⊆ S] > 0 and denote byN = (S, s0, B, P |S×A , R|S×A×S) the restric-
tion ofM to that MEC. In particular,Val(N ) = Val(M | S,B). Then execution of σε with our choice of L and O in
N will give an ε-optimal mean-payoff almost surely according to Theorem 1. We might not have exactly the same L and
O as those from Theorem 1 because it might hold |S| < |Q|, however, the L chosen here is definitely larger than the one
from Theorem 1, and therefore the choice ofO ensures that the result still holds.

For n ∈ N, qn ∈ Q and (S′, B′) with S′ ⊆ Q andB′(s) ⊆ A(s) for all s ∈ S′, define

Runsq0,qnS′,B′(Mσp)
def
= {h0h1 . . . ∈ Runsq0(Mσp) : last(hn) = qn ∧ (S′, B′) is the MPEC containing qn at time n}

as the set of all runs being in qn at time stepn andwith (S′, B′) being theMPEC computed byσp at that time step. (S′, B′)
could be different from the MPEC which one would compute using the original transition relation bounds since σp might
update those bounds. Moreover, we write

Runsq0,qnS′,B′,S(M
σp)

def
=
{
h0h1 · · · ∈ Runsq0,qnS′,B′(Mσp) : last(hn−1) /∈ S ∧ ∀k ≥ n : last(hk) ∈ S

}
as the set of all runs from Runsq0,qnS′,B′(Mσp) such that n is the first time step after which the runs stay in S forever. Then
we get

{Inf ⊆ S} =
⋃

n,qn,S′,B′

Runsq0,qnS′,B′,S(M
σp)

as a countable disjoint union. Set Opt = {ρ ∈ Runsq0(Mσp) : MP(ρ) ≥ Val(N )− ε} as the set of ε-optimal runs
w.r.t. the mean-payoff achievable inN , i.e. in the MEC (S,B). Then, the law of total probability gives us that

Prq0Mσp [Opt | Inf ⊆ S] =
∑

n,qn,S′,B′

Prq0Mσp

[
Opt

∣∣∣ Runsq0,qnS′,B′,S(M
σp)
]
Prq0Mσp

[
Runsq0,qnS′,B′,S(M

σp)
∣∣∣ Inf ⊆ S]



And therefore we get with I =
{
(n, qn, S

′, B′) : Prq0Mσp

[
Runsq0,qnS′,B′,S(Mσp)

]
> 0
}
that

Prq0Mσp [Opt | Inf ⊆ S] ≥ inf
(n,qn,S′,B′)∈I

Prq0Mσp

[
Opt

∣∣∣ Runsq0,qnS′,B′,S(M
σp)
]

If we can show
Prq0Mσp

[
Opt

∣∣∣ Runsq0,qnS′,B′,S(M
σp)
]
= 1

for all (n, qn, S′, B′) ∈ I , then this proves the claim.

Therefore, fix some (n, qn, S′, B′) ∈ I . Since (S,B) is aMEC, (S,B) is also a PEC and therefore contained in theMPEC
(S′, B′), i.e. S ⊆ S′ and B(s) ⊆ B′(s) for all s ∈ S. We claim that B′|S = B. Assume the opposite is true, i.e. there
exists an s ∈ S and a ∈ B′(s) \B(s). Since (S,B) is a MEC and a /∈ B(s), it holds supp(P (s, a)) * S, so there exists
a transition leading out of S after action a in state s. As S is strongly connected using the actions inB which are included
inB′, from every state in S there exists a path of length at most |Q|−1 leading to state s. Since σp employs an exploration
strategyλ in (S′, B′), during all consecutive |Q| steps of the execution ofλ there is a (constant) positive probability that the
strategy will choose the path to s and then leave the MEC using the transition after action a, so the probability of staying
in S after these |Q| steps is less than one. Since σp will execute infinitely many |Q| steps with strategy λ, it follows that the
probability of staying in S is zero, contradicting

Prq0Mσp

[
Runsq0,qnS′,B′,S(M

σp)
]
> 0

Finally, this means that λ is an exploration strategy in (S,B), thus from moment n onwards σp executes σε inN . Hence,

Prq0Mσp

[
Opt

∣∣∣ Runsq0,qnS′,B′(Mσp)
]
= 1

and therefore also
Prq0Mσp

[
Opt

∣∣∣ Runsq0,qnS′,B′,S(M
σp)
]
= 1

G PROOF OF LEMMA 1

Proof of Lemma 1. Westart by showing that all s0-EC-safe strategiesσ only choose actionswithin theMSEC (S,B). There-
fore, let σ be an s0-EC-safe strategy. Assume there exists a history h ∈ Hists0(M) with last(h) ∈ S (and positive
probability under σ) such that supp(σ(h)) * B(last(h)). Let h be the shortest history with this property.

We show in the following paragraphs that we can construct a transition function P ′ such that P ′|S×A = P
∣∣
S×A, i.e. P

′

coincides with P on (S,B), and such that no state outside of S is in the same MEC as s0. Then, since supp(σ(h)) *
B(last(h)), we have that there exists an action a ∈ supp(σ(h)) \ B(last(h)), and because this action is not in the
MSEC (S,B), it has to hold supp(T , last(h), a) * S. But then this action cannot belong to the MEC containing s0
inM′ = (Q, s0, A, P

′, R) since the MEC only has states from S (by the assumption on how P ′ is constructed), but
supp(P ′(last(h), a)) = supp(P (last(h), a)) = supp(T , last(h), a) * S, contradicting the second property of ECs.
Moreover, because h is the shortest history with the given properties, h has only been in the MSEC (S,B) so far and
therefore, since P ′ coincides with P on (S,B), we get that h also has positive probability under σ inM′. Thus, this gives
a contradiction to the fact that σ is s0-EC-safe inM′.

Instead of constructingP ′, we will actually construct a transition relation T which coincides with supp(P ) on S×A and
which has the property that if supp(P ′) = T , then no state outside of S is in the same MEC as s0. Then we can choose
an arbitrary transition function P ′ with supp(P ′) = T and P ′|S×A = P

∣∣
S×A (this is possible since T and supp(P )

coincide on S ×A) which then gives the desired properties of P ′.

SinceT should coincide with supp(P ) onS×A, we only have to defineT outside ofS. For this we use the same construc-
tion as the one in the proof of Theorem3. Recall this construction. For all states s ∈ S not added toS′ in thewhile-loop, we
instantiate T such that supp(T, s, a) = supp(T , s, a) ∩ (Q \ S′) for all a ∈ BS(s) and supp(T, s, a) = supp(T , s, a)
for all other actions. Here, S denotes the set S from the algorithm.

Then, the states removed from S in the first iteration of the algorithm have no transition in T connecting them to states
in S′, because at that point it did hold S = Q, henceBS(s) = A(s) and therefore supp(T, s, a)∩ S′ = supp(T , s, a)∩



(Q \S′)∩S′ = ∅ for all a ∈ A(s). In particular, they have no path to s0 ∈ S′ and can therefore not be in the sameMEC
as s0.

For all states s removed in later iterations from S, we have BS(s) = BQ\S′(s). Thus, there are two cases to consider
for an action a ∈ A(s). Either a /∈ BS(s). Then we have that supp(T , s, a) * S. But since states removed earlier
on in the algorithm from S can’t be in the same MEC as s0, action a as well cannot belong to that MEC by the second
property of ECs. Thus, the MEC could only contain actions a ∈ BS(s) = BQ\S′(s). But for those actions it holds
supp(T, s, a) = supp(T , s, a) ∩ (Q \ S′), i.e. for these actions, T has no transition to any state of S′. Hence, no state in
S \ S′ could have a path to any state of S′ in the MEC. Thus, since s0 ∈ S′, the second property of ECs tells us that the
states in S \ S′ cannot be in the same MEC as s0.

Overall we get that all states removed at some point from S cannot be in the sameMEC as s0 for the transition relation T .
Hence, this construction provides the required transition relation T such that no state outside the MSEC (S,B) can be in
the same MEC as s0. This concludes the proof of the first part of the Lemma. Hence, all s0-EC-safe strategies are in the
MSEC w.r.t. s0.

To show the reverse direction, we actually show the additional claim that every strategy σ which is in the MSEC (S,B)
w.r.t. s0 is also in themaximal EC (S′, B′)within theMSEC (S,B) containing s0, i.e. (S′, B′) is an ECwith s0 ∈ S′ ⊆ S,
B′(s) ⊆ B(s) for all s ∈ S and it is the maximal EC with these properties. Since the strategy is in an EC containing s0,
this directly implies that the strategy is also in theMEC containing s0, hence s0-EC-safe. Showing this therefore concludes
the complete proof.

We claim that S′ consists of all states reachable from s0 in GS,B,supp(P ) and B′ = B|S′ . On the one hand, since
GS′,B′,supp(P ) must be strongly connected by the second property of ECs and because (S′, B′) is a subset of (S,B),
we get that GS′,B′,supp(P ) is a subgraph of GS,B,supp(P ) and therefore all states of S′ have to be reachable from s0 in that
graph. On the other hand, by the second property of SECs, we have that all states in S′ have a path to s0 in GS,B,supp(P ).
But since all successors ofS′ in that graph are by construction also included in our setS′, we get that this path also exists in
GS′,B′,supp(P ). This gives the strong connectivity, and the first property of ECs is satisfied by construction. So our choice
of (S′, B′) is indeed an EC, and by the first argument, it is the maximal EC with the required properties.

In particular, this characterisation gives that all actions ofB(s) for a state s ∈ S′ in that EC are part of the EC, and therefore
σ is in this maximal EC.

H PROOF OF THEOREM 5

Proof of Theorem 5. We choose the L andO as in the proof of Theorem 4. Define (S,B) to be the maximal EC containing
s0 within the MSEC (S′, B′) w.r.t. s0 and denote by N = (S, s0, B, P |S×A , R|S×A×S) the restriction ofM to that
EC. As seen before, employing σε with our choice of L andO inN would give us a mean-payoff of at leastVal(N ) − ε
almost surely.

Note that Lemma 1 gives us that s0-EC-safe strategies are exactly the strategies in (S,B), hence sVal(M, s0) = Val(N ).
Furthermore, this Lemma states that σs is in (S,B) as well, i.e. it chooses only actions from B(s) for all s ∈ S. Because
σs employs an exploration strategy λ in (S′, B′) andB(s) ⊆ B′(s) for all s ∈ S, this implies that actuallyB(s) = B′(s)
for all s ∈ S, i.e. B′|S = B. Thus, λ is an exploration strategy in (S,B), therefore σs is the strategy σε inN and finally
this gives

Prs0Mσs [ρ : MP(ρ) ≥ sVal(M, s0)− ε] = Prs0Mσs [ρ : MP(ρ) ≥ Val(N )− ε] = 1
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