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Prior predictive probability

In this section we highlight the steps to obtain the prior
predictive probability, by rewriting it as a expected value
w.r.t. the prior distribution as follows. Given that the
probabilistic models, πY | θ(y |θ) and the prior πθ are
positive functions, we can rearrange the order of the in-
tegration (See Folland, 2013, Fubini-Tonelli theorem).
Hence we have

PA|λ :=

∫
A

πY (y |λ) dy

=

∫
A

∫
Θ

πY | θ(y |θ)π(θ |λ) dθ dy

Fubini
=

∫
Θ

∫
A

πY | θ(y |θ)π(θ |λ) dy dθ

=

∫
Θ

PY | θ(Y ∈ A|θ)π(θ |λ) dθ

= Eθ
(
PY | θ(Y ∈ A|θ)

)
. (1)

Approximate role of the precision measure

Here we show the approximate behaviour of the preci-
sion parameter α for the general case when covariates
are present. The simplification to other cases in straight-
forward. Recall the likelihood function of λ given expert
data reads,

D(p1, . . . ,pJ |α,λ) =
Γ(α)J

J∏
j=1

nj∏
ij=1

Γ(α PAj,ij
|λ)

×

J∏
j=1

nj∏
ij=1

p
αPAj,ij

|λ−1

j,ij
. (2)

Consider the Stirling’s approximation1 to the Γ(·) func-
tion given by,

Γ(x) ≈
√

2π

x

(x
e

)x
. (3)

Rewriting the likelihood function in terms of the above
approximation and removing terms that does not depend
on α with a simplified notation we get,

D(p |α,λ) ≈

(√
2π

α

(α
e

)α)J
∏
j,ij

√
2π

αPAj,ij
|λ

(
αPAj,ij

|λ

e

)αPAj,ij
|λ

× exp

∑
i,j

α(PAj,ij
|λ − 1) log pj,ij



≈
α

∑
j nj/2−J/2 ∏

i,j

P1/2
Aj,ij

|λ

exp

(
α
∑
i,j

PAj,ij
|λ log

PAj,ij
|λ

pi,ij

) (4)

Take the logarithm of the above function and the deriva-
tive w.r.t. α. Setting it to zero and solving for α we
obtain,

α̂ ≈
∑
j nj/2− J/2∑

j

KL(P
j
||pj)

(5)

where the notation Pj = [PAj,1|λ · · ·PAj,nj
|λ]> and

KL(P ||Q) denotes the Kullback-Leibler divergence in
this order.

1This is a precise approximation.



Hyperparameters’ Fisher information matrix

The Fisher information matrix for the unknown hyper-
parameters can be obtained in closed-form by the fact
that, in the original parametrisation of the Dirichlet dis-
tribution, the Fisher information is already known. In the
original parametrisation and in its basic form, the proba-
bility density function reads

D(p |α,P) =
Γ(α)∏n

i=1 Γ(α Pi)

n∏
i=1

pαPi−1
i (6)

where P = [P1 · · ·Pn]>. Also knowing that the Dirich-
let distribution belongs the exponential family, the Fisher
information matrix reads,

HP = α2(diag(ψ′(αP))− ψ′(α)11>), (7)

whose inverse is given in closed-form as

H−1
P = 1

α2

(
diag(ψ′(αP))−1 (8)

+
diag(ψ′(αP))−111> diag(ψ′(αP))−1

(1/ψ′(α)− 1> diag(ψ′(αP))−11)

)
where 1 is n × 1 vector with each component equals to
unity.

In the main paper, the vector of parameters P of the
Dirichlet distribution is written as a function of λ. Using
the change of variables for a new parametrisation (see
Calderhead, 2012; Girolami and Calderhead, 2011, page
64, Section 3.2.5, equation 3.27), the Fisher information
matrix with respect to λ can be obtained directly (by
passing any need of recalculating integrals) as,

Hλ =
[
d
dλ1

P · · · d
dλM

P
]>
HP
[
d
dλ1

P · · · d
dλM

P
]

(9)

where the vector d
dλm

P =
[

d
dλm

P1 · · · d
dλm

Pn
]>

(the Ja-
cobian matrix). Note that HP is invertible and positive-
definide, so as Hλ. Hence Hλ is also invertible and its
cholesky decomposition is stable to compute.

Presence of covariates (inputs): When set of covari-
ates are present, we have to consider that different par-
titions are provided. Since the likelihood function will
still factorise for distinct covariates, note equation (2),
the resulting Fisher information matrix will be the sum of
Fisher information matrices (Casella and Berger, 2001).
Hence, we can write,

Hλ =
∑
j

[
d
dλ1

Pj · · · d
dλM

Pj
]>
HPj

[
d
dλ1

Pj · · · d
dλM

Pj
]

(10)

Non-closed form prior predictive probabilities and
hierachical structures

For the case where Pj does not have closed-form expres-
sion we can estimate Pj and its derivatives w.r.t λ us-
ing the reparametrisation gradients and automatic dif-
ferentiation. The main idea is to find a pivotal function
(see Casella and Berger, 2001, page 427, Section 9.2.2)
and obtain Monte-Carlo estimates of Pj and gradients
d/dλmPj with low computational cost according to Fig-
urnov et al. (2018) and Mohamed et al. (2019).

With a simplified notation, recall the prior distribution πθ
and that the prior predictive probability can be rewritten
as a expected value

PA|λ = Eθ
(
P(Y ∈ A|θ)

)
(11)

which depends on λ. Here the expression P(Y ∈ A|θ)
depends only on θ. Then, find a pivotal function X =
T (θ) such that the distribution of X does not depend on
λ. We then can rewrite the expectation,

PA|λ = EX
(
P(Y ∈ A|T−1

X (λ))
)

(12)

The gradients can be computed by interchanging the or-
der of integration and derivation,

d

dλm
PA|λ = EX

(
d

dλm
P(Y ∈ A|T−1

X (λ))

)
. (13)

Where T−1
X (·) is a inverse function of T and depends

on X and λ. The important notion here is that there is
no need for resampling X since the distribution πX(·) is
free of λ by definition.

Hierachical structures: Assume a hierarchical proba-
bilistic model defined in form of layers as in the repre-
sentation Y ← θ1 ← · · · ← θL ← λ, where the letter
L indicate the number of hierarchical layers. Formally
one could write the hierarchical probabilistic model,

Y |θ1 ∼ π(y |θ1)

θ1 |θ2 ∼ π(θ1 |θ2)

...
θL |λ ∼ π(θL |λ) (14)

whose prior predictive probability reads,

PA|λ =

∫
Θ

P(Y ∈ A|θ1)

L−1∏
`=1

π(θ` |θ`+1)

× π(θL |λ) dθ

=

∫
ΘL

π(θL |λ)

∫
ΘL−1

π(θL−1 |θL) · · ·∫
Θ1

π(θ1 |θ2)P(Y ∈ A|θ1)dθ1 . . . dθL (15)



where Θ = ∪L`=1Θj and θ` ∈ Θ`. Note that the above
equation can be rewritten via the tower property by ap-
plying it sequentially due to the model hierarchy.

PA|λ = EθL

(
EθL−1

· · ·
(
Eθ1

(
PA| θ1

)))
(16)

with shortened notation P(Y ∈ A|θ1) = PA| θ1
.

In this case, to apply the reparametrisation gradients
technique, first find a pivotal function X` = T`(θ`)
for each layer ` whose inverse function is denoted as
T−1
X`

(θ`+1).

Note the fact when we assume a pivotal quantity for
every layer `, by definition the distribution of πX`

(x`)
= πθ` | θ`+1

(T−1
x`

)|det J(T−1
x`

)| does not dependent on
θ`+1 or λ. Hence, define the composite of inverse func-
tions for each layer as

θ` = f`(λ) = (T−1
X`
◦ T−1

X`+1
◦ · · · ◦ T−1

XL
)(λ)

This way, the above expected value as a function of λ
can be rewritten as,

PA|λ = EXL

(
EXL−1

· · ·
(
EX1

(
PA|f1(λ)

)))
(17)

To estimate PA|λ via Monte Carlo first remember that
λ is fixed. Sample from πX`

for each ` and obtain the
respectively the value of the function f`(λ) for each `.
Calculate the sample mean of PA|f1(λ).

Gradients of PA|λ w.r.t. λ can be obtained similarly, the
extra step needed is in the calculation of the following
expression,

d

dλm
PA|λ = EX

(
df1

dλm

d

df1
PA|f1(λ)

)
(18)

where the notation of the expectation EX(·) is the same
as in (17), but shortened. The first derivative on the right-
hand side of the equation above then reads,

df1

dλm
=

L−1∏
r=1

dT−1
Xr

dT−1
Xr+1

dT−1
XL

dλm
. (19)

In cases where the derivative of the inverse function T−1
X`

above cannot be obtained in closed-form we proceed
similar as Figurnov et al. (2018) equation (6). Knowing
that T` is one-to-one function, we can write

X` = T`(T
−1
X`

(θ`+1)) (20)

Take implicit and explicit derivatives (total derivative)
with respect to θ`+1 to get that

0 =
dT`

dθ`+1

∣∣∣∣
explicit

+
dT`

dθ`+1

∣∣∣∣
implicit

=
dT`

dθ`+1
+

dT`
dθ`

dθ`
dθ`+1

(21)

Identifying the notation θ` = T−1
X`

for all ` and solving

for
dθ`

dθ`+1
yields,

dT−1
X`

dT−1
X`+1

= −

(
dT`

dT−1
X`

)−1
dT`

dT−1
X`+1

(22)

We can now plug (22) into (19) to estimate (18) and in
turn to have the estimate for hyperparmeters’ Fisher in-
formation matrix in (9) and (10). Hence, we can proceed
with stochastic natural gradient descent to estimate hy-
perparameters λ for general types of probabilistic mod-
els.

Predictive elicitation in practice: Example

The probabilistic model for observed data (stature of
male human being) is specified as follows,

Yt|θ, b ∼ W(h(t;θ), b)

b ∼ G(a0, b0)

θd
i.i.d∼ LN (ad, bd) (23)

where Yt is univariate S = 1 and denotes the stature of
the human being at time t. The parameters of the growth-
model h(t;θ) are denoted as θ = [θ1 θ2 θ3 θ4 θ5] =
[h1, ht∗ , t∗, s0, s1]>, where h1 is the average height of
an adult human, ht∗ is the average high for the event
”growth-spurt” (Preece and Baines, 1978), t∗ is when
that event happens, s0 and s1 are constants from the
model. The parameter b controls the variance of the vari-
able Yt around h(t;θ). Large the values of b less vari-
ance around the h(t;θ) and vice-versa. W , G and LN
stands for respectively, Weibull, Gamma and log-Normal
distributions.

We used the Weibull distribution in the mean-variance
parametrisation which means that the probability distri-
bution of Yt|θ, b is given by,

πYt| θ,b(y) = b Γ(1+1/b)
exp(h(t;θ))

(
y Γ(1+1/b)

exp(h(t;θ))

)b−1

× exp

(
−
(
y Γ(1+1/b)

exp(h(t;θ))

)b)
(24)

The other distribution used for the prior are used in
their standard parametrisation scale-shape for Gamma
and mean-variance for log-Normal distribution. The vec-
tor of hyperparameters is λ = {am, bm,m = 0, . . . , 5}.
The human-growth mode was obtained by Preece and
Baines (1978) and given in Section 2, Model 1 in their
paper. In our notation this growth-model reads

h(t;θ) = h1 −
2(h1 − ht∗)

exp[s0 (t− t∗)] + exp[s1 (t− t∗)]
.

(25)



The only general background information provided
to the participants was the following brief description
characterizing the overall growth process and providing
general numerical values as reminders:

”During the early stages of life the stature of female and
male are about the same, but their stature start to clearly
to differ during growth and in the later stages of life. In
the early stage man and female are born roughly with
the same stature, around 45cm - 55cm. By the time they
are born reaching around 2.5 years old, both male and
female present the highest growth rate (centimetres pey
year). It is the time they grow the fastest. During this
period, man has higher growth rate compared to female.
For both male and female there is a spurt growth in the
pre-adulthood. For man, this phase shows fast growth
rate varying in between 13-17 years old and female
varying from 11-15. Also, male tend to keep growing
with roughly constant rate until the age of 17-18, while
female with until the age of 15-16. After this period of
life they tend to stablish their statures mostly around 162
- 190cm and 155 - 178cm respectively.”

Given the background information we asked each user
to provide the distribution for statures of males at given
ages t = {t1, t2, t3, t4} = {0, 2.5, 10, 17.5} in form of
probabilistic assessments. For eliciting the probabilities
we asked them to provide the thresholds yi determining
the statures that partition the sample space with the fol-
lowing probabilities

P(Yt ≤ y1) = 0.10

P(Yt ≤ y2) = 0.25

P(Yt ≤ y3) = 0.50

P(Yt ≤ y4) = 0.75

P(Yt ≤ y5) = 0.90 (26)

where naturally y1 < y2 < . . . < y5. The data used as
each tj was hence given by

P(Ytj ∈ (0, y1)) = pj,ij = 0.10

P(Ytj ∈ (y1, y2)) = pj,ij = 0.15

P(Ytj ∈ (y2, y3)) = pj,ij = 0.25

P(Ytj ∈ (y3, y4)) = pj,ij = 0.25

P(Ytj ∈ (y4, y5)) = pj,ij = 0.15

P(Ytj ∈ (y5,∞)) = pj,ij = 0.1 (27)

Results for the prior predictive elicitation

The main manuscript provided the results for one exam-
ple user. The results for other four users are provided
here in Tables 1 to 4.

The general trend of prior predictive elicitation matching
better the data-dependent values of Preece and Baines
(1978) remains, and for some users the direct parameter
elicitation approach resulted in very poor prior (e.g. ht∗
for User 3).

Table 1: User 2
Predictive Parametric

Parameter Reference E[·] V(·) E[·] V(·)
h1 174.6 191.74 4.32 172.7 101.6
ht∗ 162.9 153.73 1.6 129.1 31.0
s0 0.1 0.04 < 0.01 0.51 < 0.04
s1 1.2 2 4.3 0.5 < 0.04
t∗ 14.6 15.9 0.7 12.9 0.5
b 61.4 111.4 3.1 2.6
α − 14.0 − 1.3 −

Table 2: User 3
Predictive Parametric

Parameter Reference E[·] V(·) E[·] V(·)
h1 174.6 177.14 3.68 174.6 146.3
ht∗ 163.0 148.8 1.86 78.5 37.2
s0 0.1 0.07 < 0.001 0.2 0.004
s1 1.2 4.54 37.83 0.9 0.004
t∗ 14.6 11.31 0.21 6.9 2.9
b − 18.4 12.5 25.8 74.1
α − 9.5 − 1.5 −

Table 3: User 4
Predictive Parametric

Parameter Reference E[·] V(·) E[·] V(·)
h1 174.6 174.5 < 0.01 50.5 64.5
ht∗ 162.9 162.8 0.02 129.1 31.0
s0 0.1 0.1 < 0.01 5.1 2.7
s1 1.2 1.6 1.7 5.1 2.7
t∗ 14.60 14.7 0.9 12.9 0.6
b − 14.5 14.3 1 < 0.02
α − 17.1 − 1.2 −

Table 4: User 5
Predictive Parametric

Parameter Reference E[·] V(·) E[·] V(·)
h1 174.6 174.4 0.91 159.66 155.96
ht∗ 162.9 162.6 0.85 121.75 57.27
s0 0.1 0.1 < 0.01 3.3 3.3
s1 1.2 3.4 < 0.01 3.3 3.3
t∗ 14.6 14.6 0.02 11.7 5.36
b − 17.8 17.8 9.5 8.3
α − 7.7 − 1.5 −
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