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Abstract

The prior distribution for the unknown model
parameters plays a crucial role in the process of
statistical inference based on Bayesian meth-
ods. However, specifying suitable priors is of-
ten difficult even when detailed prior knowl-
edge is available in principle. The challenge is
to express quantitative information in the form
of a probability distribution. Prior elicitation
addresses this question by extracting subjec-
tive information from an expert and transform-
ing it into a valid prior. Most existing methods,
however, require information to be provided
on the unobservable parameters, whose effect
on the data generating process is often compli-
cated and hard to understand. We propose an
alternative approach that only requires knowl-
edge about the observable outcomes — knowl-
edge which is often much easier for experts to
provide. Building upon a principled statisti-
cal framework, our approach utilizes the prior
predictive distribution implied by the model
to automatically transform experts judgements
about plausible outcome values to suitable pri-
ors on the parameters. We also provide com-
putational strategies to perform inference and
guidelines to facilitate practical use.

1 INTRODUCTION

The Bayesian approach for statistical inference is widely
used both in statistical modeling and in general-purpose
machine learning. It builds on the simple and intuitive
rule that allows updating one’s prior beliefs about the
state of the world through newly made observations (i.e.,
data) to obtain posterior beliefs in a fully probabilistic
manner. Nowadays, the Bayesian approach can routinely
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be used in a vast number of applications due to combi-
nation of powerful inference algorithms and probabilis-
tic programming languages (Meent et al., 2018), such as
Stan (Carpenter et al., 2017).

Despite available computational tools, the task of design-
ing and building the model can still be difficult. Often,
the user building the model can safely be assumed to
have good knowledge of the phenomenon they are mod-
eling. However, they additionally need to have sufficient
statistical knowledge in order to formulate the domain
assumptions in terms of probabilistic models which are
sensible enough to obtain valid inference. This is by no
means an easy task for the majority of users. Hence, the
model building process is often highly iterative, requir-
ing frequent modifications of modeling assumptions, for
example, based on predictive checks and model compar-
isons; see Daee et al. (2017), Schad et al. (2019) and
Sarma and Kay (2020) for attempts of formalising the
modeling workflow.

We focus on one particular stage of the modeling pro-
cess, namely the problem of specifying priors for the
model parameters. The prior distribution lies at the heart
of the Bayesian paradigm and must be designed coher-
ently to make Bayesian inference operational (e.g., see
Kadane and Wolfson, 1998). The practical difficulty,
though, even for more experienced users, is the encod-
ing of one’s actual prior beliefs in form of parametric
distributions. The parameters may not even have direct
interpretation, and the effect of the prior on the data gen-
erating mechanism can be quite involved and show large
disparity with respect to what the user’s prior beliefs over
the data distribution could be (Kadane et al., 1980).

The existing literature addresses this issue via expert
knowledge elicitation. This is understood as the pro-
cess of extracting the expert’s information (knowledge or
opinion) related to quantities or events that are uncertain,
and expressing them in the form of a probability distri-
bution, the prior. See, for example, the works by Lindley



(1983) and Gelfand et al. (1995) for early ideas and in-
troduction. See Garthwaite et al. (2005) and O’Hagan
(2019) for detailed reviews of expert elicitation proce-
dures and guidelines.

The majority of the knowledge elicitation literature is
on eliciting information with respect to the parameters
of the model, that is, asking the expert to make state-
ments about plausible values of the parameters. The
early works do this within specific parametric prior fami-
lies, whereas more recently, O’Hagan and Oakley (2004)
and Gosling (2005) have proposed nonparametric ap-
proaches based on Gaussian processes (O’Hagan, 1978),
allowing more more flexibility. Even though the prior
itself can be of flexible form, the elicitation process is
typically carried out on a parameter-by-parameter basis
so that each parameter receives its own independent uni-
variate prior. As a result, the implied joint prior on the
whole set of parameters is often unreasonable. Although
Moala and O’Hagan (2010) generalized the approach of
Gosling (2005) to multivariate priors, the resulting pro-
cess is difficult for experts, since they are required to
express high-dimensional joint probabilities. Hence, its
practical use is basically limited to just two dimensions.

Independently of whether we assign individual or joint
priors on the model parameters, any prior can only be
understood in the context of the model it is part of (e.g.,
Gelman et al., 2017; Simpson et al., 2017). This point
may be obvious but its practical implications are far
reaching. Subject matter experts, who may understand-
ably lack in-depth knowledge of statistical modeling, are
left with the task of assigning sensible priors on parame-
ters whose scale and real-world implications are hard to
grasp even for statistical experts.

For this reason, Kadane et al. (1980) and Akbarov (2009)
argue that prior elicitation should be conducted using
observable quantities, by asking statements related to
the prior predictive distribution, that is, the distribution
of the data as predicted by the model conditioned on
the parameters’ prior, instead of directly referring to the
prior on the unobservable parameters. After eliciting the
prior predictive distribution, the information can then be
transformed into priors on the parameters by a suitable
methodology. The logic of using the prior predictive dis-
tribution is that the expert should always have an under-
standing about plausible values of the observable vari-
ables based on their own domain knowledge — even if
they may not fully understand the statistical model and
the role of parameters used to represent the underlying
data generating mechanism. After all, what is an expert
if they do not understand their own data?

From a predictive viewpoint, Kadane et al. (1980),
Kadane and Wolfson (1998), Geisser (1993), and Ak-

barov (2009) present practical methods for recovering
the prior distribution via expert’s information on the prior
predictive distribution. Those methods are based on
specifying particular moments of the prior predictive dis-
tribution for a Gaussian linear regression model, or on
providing prior predictive probabilities for fixed subre-
gions of the sample space where the prior distribution is
assumed to be univariate. In the latter case, the strategy
is to perform least-squares minimization between theo-
retical probabilities and those probabilities quantified by
the expert. However, in the sense of O’Hagan and Oak-
ley (2004), these approaches neglect the fact that the ex-
pert’s information itself can be uncertain and provide no
measure for whether the chosen predictive model is able
to reproduce the expert’s probabilistic judgements well
enough. That is to say, existing methods do not take into
account imprecisions in probabilistic judgements when
constructing the prior predictive distribution, nor do they
provide a principled framework which would guide the
experts to select a predictive model and/or prior distri-
bution matching their knowledge (Jeffreys and Zellner,
1980).

Our contribution addresses the question of prior elicita-
tion via prior predictive distributions using a principled
statistical framework which 1) makes prior elicitation
independent on the specific structure of the probabilis-
tic model from the users’ viewpoint, 2) handles com-
plex models with many parameters and potentially mul-
tivariate priors, 3) fully accounts for uncertainty in ex-
perts/users probabilistic judgements on the data, and 4)
provides a formal quality measure indicating if the cho-
sen predictive model is able to reproduce experts’ proba-
bilistic judgements. Our work provides both the theoret-
ical basis as well as flexible tools that allow the modeller
to express their knowledge in terms of the probability of
the data while taking into account the uncertainty in their
judgements.

In Section 2, we highlight basic foundation of the
Bayesian statistical paradigm, we introduce the prior pre-
dictive distribution used throughout the paper to repre-
sent expert’s opinions about data which would be ob-
served from an experiment. Sections 3 and 4 introduce
the methodology to tackle imprecise probabilistic judge-
ments via a principled statistical framework, and general
computational procedures to recover the hyperparame-
ters of a prior distribution. The development is inter-
leaved with practical examples illustrating the core con-
cepts and demonstrating its practical use — via concrete
instantiations for multivariate prior elicitation for gener-
alized linear models and a small-scale user study com-
paring the proposed methodology for classical prior elic-
itation directly on model parameters. We close the paper
in Section 5, where conclusions and potential future di-



rections are presented.

2 NOTATION AND PRELIMINARIES

2.1 BAYESIAN APPROACH TO STATISTICAL
INFERENCE

The process of performing Bayesian statistical inference
usually starts by building a joint probability distribution
of observable variables/measurements Y and unobserv-
able parameters 8. The corresponding marginal distri-
bution with respect to 0 is referred to as the prior distri-
bution and the marginal distribution with respect to Y’
is referred to as the prior predictive distribution. Ac-
cording to the Bayesian paradigm, the prior distribution
should be designed independently of the measurement
outcomes, that is to say, it must reflect our prior knowl-
edge about the parameters 8 before seeing the actual in-
dependent measurements y,,ys, . .. (i.e., realizations of
Y) obtained in the experiments (Berger, 1993; O’Hagan,
2004). After having obtained the measurements, the pos-
terior distribution of @ arises from the joint distribution
by conditioning on y;, ¥, . .. (O’Hagan, 2004).

2.2 PRIOR PREDICTIVE DISTRIBUTION

Let Y = [Y;...Ys] be a S-dimensional vector of ob-
servable variables and denote the sample space () as a
subset of R, Hereafter we denote by Y |9 ~ 7y | our
data probability distribution conditioned on the parame-
ters. We also write @ ~ mg where 8 € © C RP and
e belongs to a given family of parametric distributions,
say F» indexed by a hyperparameter vector A. Then, by
marginalizing out the parameters 0, the prior predictive
distribution is given by
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The prior predictive distribution is not to be confused
with the marginal likelihood of observed data, which is
obtained by marginalization over 6 of the observed data’s
sampling distribution times the prior (e.g., Jeffreys and
Zellner, 1980).

Given any subset A C ), the prior predictive probability
of A, denoted as P(Y € A| ), can be obtained by ex-
changing the order of integration via the Fubini-Tonelli
theorem (Folland, 2013) as

MM:AMMMW

=Eo (Py |o(Y € A]0)). )

See supplementary materials for details. The hyperpa-
rameter vector A, which defines a particular prior from

the set of all priors F», will be treated as constant.
Hence, no prior needs to be assigned to it. Instead, the
values of A will be obtained during the prior predictive
elicitation method presented below.

3 PRIOR PREDICTIVE ELICITATION

Our approach follows Gosling (2005) by approaching
the elicitation process as a problem of statistical infer-
ence where the information to be provided by the ex-
pert is in the form of probabilistic judgements about the
data. However, the solution itself is novel. From an
high-level perspective, our elicitation methodology for
any Bayesian model can be summarized as follows:

1. Define the parametric generative model for observ-
able data Y compose of a probabilistic model con-
ditioned on the parameters 0 and a (potentially mul-
tivariate) prior distribution for the parameters. The
prior distribution depends on hyperparameters \ es-
sentially defining the prior which we seek to obtain
(see Section 2).

2. Partition the data space into exhaustive and mutu-
ally exclusive data categories. For each of these
categories, ask the expert what they believe is the
probability of the data falling in that category.

3. Model the elicited probabilities from Step 2 as a
function of the hyperparameters A from Step 1
while taking into account that the expert informa-
tion is itself of probabilistic nature and has inherent
uncertainty.

4. Perform iterative optimization of the model from
Step 3 to obtain an estimate for A describing the ex-
pert opinion best within the chosen parametric fam-
ily of prior distributions.

5. Evaluate how well the predictions obtained from the
optimal prior distribution of Step 4 can describe the
elicited expert opinion.

In the remainder of this section, we first introduce the
basic formalism for modelling the users’ beliefs in Sec-
tion 3.1, provide a key consistency result in Section 3.2,
then demonstrate how it can be applied to predictive
problems in Section 3.3, and finally discuss the inter-
faces for the actual knowledge elicitation procedure in
Section 3.4. Each part is concluded by an example illus-
trating the concept.

3.1 MODELING EXPERT OPINIONS

Our assumption is that the output elicitation procedure
provides information as probabilistic assignments re-



garding the data vector Y falling within a fixed set of
mutually exclusively and exhaustive events A, instead
of trying to specify a full density/mass function for the
prior predictive distribution, task which would be almost
impossible (see Goldstein and Wooff, 2007).

Such collection of assignments is easier to provide, can
be considered as the data available for inferring the prior,
and is not to be confused by actual measurement data
following the generative model. Our focus here is in the
mathematical machinery required for converting this in-
formation into prior distributions, not taking any stance
on how the information is collected from the expert.
However, we will briefly discuss the elicitation process
itself in Section 3.4.

Let A ={A,,..., A, } beapartition of the sample space
Q. Throughout the elicitation procedure, the expert sup-
plies their opinions regarding the quantities IP 4,  for all
i = 1,...,n. The expert’s judgements themselves are
not fully deterministic and retain some uncertainty. Also,
the expert may be more comfortable to make statements
for certain partitions of {2 than for others.

To account for the uncertainty in the probability quan-
tifications of P 4, », we assume that the obtained judge-
ments p = [p;---py) follow a Dirichlet distribution
(Ferguson, 1973) with base measure given by the prior
predictive probabilities P4, » and precision parameter
«. Hence, for any chosen partition A of size n, we de-
note the distribution of p as

Plos A ~D(a, [Pa,jx-Pa, al) 3

where D(-) stands for Dirichlet distribution and whose
multivariate density function reads

I'a) aF A, x—1
[T T(@Paga) 25

Naturally, we require Z?:l P4, » = 1. The Dirichlet
density (4) accounts for the uncertainty inherent to the
numerical quantification of the probability vector p due
to, for example, biases introduced through the mecha-
nisms of elicitation processes (the way in which ques-
tions are made), practical imperfection (imprecision) of
experts’ judgements in probabilistic terms or poor judge-
ments on the effect of parameters in the output of the
model. For details and in-depth discussion, see O’Hagan
and Oakley (2004), O’Hagan (2019) and Sarma and Kay
(2020) .

D(pla,A) =

“

The hyperparameter o measures how well the prior pre-
dictive probability model is able to represent (or repro-
duce) the probability data provided in the elicitation pro-
cess. The larger the values of «, the less variance around
the expected value P 4, 5. For practical use of this princi-
ple, we can find the maximum likelihood estimate (MLE)

& of a, which can be directly understood in terms of the
deviance between the prior predictive probability and the
expert’s opinion. More specifically, we have

n/2—1/2
KL(PAM Il p)

o~

(&)

where ]P)A| A= []P)Az‘ AT ]P)An\ )\]T and KL(]P)A‘ b || p)
is the Kullback-Leibler divergence between the two dis-
tributions. The practical interpretation is that for small
KL values, we would not be able discriminate the prior
predictive probability from the probability data provided
by the expert. See supplementary materials for the proof
of Equation (5).

Example: Consider a generative model given by
Y0 ~ N(0,0%) and 6 ~ N (u1,0%) + 2N (p2, 03).
This yields the prior predictive distribution Y ~
IN(p,0% + o) + $N(u2,0% + 03) with hyper-
parameters A = [u1, pa, 02, o2, o3]". For a set

A = (a,b] C R, the prior predictive probability is
Pajx = et 50(( — ) /v/07 +07) = 50((b -
1))/ /0% + o7). Figure 1 illustrates the effect of the
o parameter for a given partition A with n = 10. For
each « € {1, 15,50, 100, 300,1000}. we generated p by
sampling from (3), using fixed hyperparameter values of

u1=—u2:2and02:a§:g§:1,

3.2 CONSISTENCY WITH RESPECT TO
PARTITIONING

Even though we work in a Bayesian context looking to
recover a prior distribution, the core procedure of our
method applies classical statistical inference. Given a
numerical vector of probabilities from the elicitation pro-
cess, the goal is to show that we are able to find the value
of certain parameters (in this case the hyperparameters
A and concentration « parameter) of the Dirichlet prob-
abilistic model (3) which would have most likely gener-
ated this particular data (of user’s subjective knowledge).
In other words, we are aiming to obtain the maximum
likelihood estimator (MLE).

To study the MLE, we consider the limit where the par-
titioning is made increasingly more fine grained by in-
creasing n towards infinity. However, we still only ob-
tain information from the user once (i.e., for a single par-
titioning). That is, the user is providing more and more
information about the probabilities, but does not repeat
the procedure multiple times. As we will show below, the
MLE is consistent under these circumstances, providing
the true A when n — oo, under reasonable assumptions.

Recall that equations (3) and (4) represent the probabilis-
tic model of p conditioned on the parameters n = (X, ).



Estimates a = 8.85 | KL = 0.91

_ A

Estimates o =51.87 | KL = 0.16

Estimates o = 17.87 | KL = 0.45

Estimates o = 163.82 | KL = 0.05

Estimates a = 440.59 | KL = 0.02

Figure 1: Illustration of the role of the concentration pa-
rameter «. Large values correspond to scenarios where
the prior predictive distribution (solid line) is able to rep-
resent expert’s opinions (bars) accurately. That is, a pro-
vides an accuracy diagnostic for our method with higher
values indicating higher accuracy.

Suppose that there exists a true prior distribution of the
expert has hyperparameter values Ag and denote 1, =
(Xo, o), where «y measures the noise in her/his state-
ments . Take the size of the partition n to be large and de-
note the log-likelihood as T, (p) = log D(p |, A) with
expectation Qy, (1) = Ep (T (p)).

We show that the expected log-likelihood is maximized
at 7. By Jensen’s inequality, we know that

D(pla,A) ]
Ep |[—log —————
P [ & D(p |0, Ao)
D(p o, A) }
g | P10 |5 (6
: [D<pao,xo> ©
yielding

Qny(1M0) = Ep(Ty,(P)) > En(Th(P)) = Qn, (1),

which holds for all 7. The expectation Ep(-) is taken
with respect to the distribution (4). The technical condi-
tion to ensure uniqueness of the MLE is that the proba-
bilistic model (4) must be identifiable'. That is, equal-
ity of likelihoods must imply equality of parameters:

'In practise, this may not be an issue when fitting the model.

Prior predictive Prior recovery

Hyperparameters
501 o O ©
© @
25
L " s
oof & B
True hyperparameter values

-25 C/\c\ —O— Hyperparameter estimates

© @

-5.0

3 5 10 20 30
Partition size n

Figure 2: Consistency of the MLE for A. Bottom: All
six hyperparameter values converge to the true values
as the number of partitions n increases (each line corre-
sponds to one hyperparameter), here converging already
roughly for n = 10. Top: Both the estimated prior distri-
bution (left) and the corresponding prior predictive dis-
tribution (right) converge towards the respective true dis-
tributions, depicted as black lines. .

D(plai, A1) = D(p|az, A2) = n; = n, for all p.
Otherwise we may encounter multiple maxima and thus
the prior distribution in the set Fy is not unique.

Example: Extending the earlier example, consider a
more general generative model where the prior distribu-
tion is now 6 ~ wi N (p1,0%) + weN (uz2,03) yielding
the prior predictive distribution Y ~ wi N (p1, 0% +0?)+
woN (2,02 + 02), where w; and w, are weights sum-
ming up to 1 and the hyperparameters are given by A =
[Mlv H2, 027 J%a 0-%7 Wi, U)Q]-

Suppose « is fixed and the true prior distribution has hy-
perparameters Ag. We run an experiment where proba-
bility vectors are generated from (3) with increasing par-
tition sizes. Figure 2 shows that, as the partition size in-
creases, the estimates A converge to Ay, which means the
prior distribution is recovered from single-sample elici-
tation of probability data.

However, we believe it is important to understand the theoret-
ical properties of the inference process so that we can avoid
problems in the optimisation procedures.



3.3 COVARIATE-DEPENDENT MODELS AND
MULTIVARIATE PRIORS

Next, we demonstrate how the proposed approach can be
used for concrete modelling problems, by detailing the
procedure for the widely-used family of generalized lin-
ear models (GLM; Nelder and Wedderburn, 1972). As
GLMs typically have several parameters — one parameter
per predicting covariate plus an intercept and potentially
a dispersion parameter — direct specification of the pa-
rameters’ joint prior is often difficult. However, our prior
predictive approach can handle this situation elegantly.

In the case of a GLM, our elicitation method requires
the selection of sets of covariate values for which
the expert is comfortable to express probability judge-
ments about plausible realizations of Y. More for-
mally, for each set of covariates x; = [z;1--- ;]
7 =1,...,J,the expert provides probability judgements
P; = [Pj1 " Pjn,] With ZZj:1 pji; = 1, where n; is
the partition size for covariate set j implying the partition
Aj; = {Aj1, ..., Ajn,}. Under the assumption of the
judgement p; being pairwise conditionally independent,
we can express the likelihood function of « and A as

I'(a)’
Dlpy.....pylaA) = ) S
H H F(a]P)Aj,ij‘A,Xj)
j=li;=1 :
J T aPa; I xx; =1
H H Pji; o ' @)
j=li;=1

where P4, . | x x; is the prior predictive probability for
EHEY
the set A; ;, related to covariate set x;.

Importantly, there is no need for the partitions them-
selves or their size to be the same throughout the sets
of covariate values: For each j, the expert can create any
partition they are most comfortable with making judge-
ments about. This feature provides much more freedom
to the expert in expressing their knowledge of the data
compared to alternative methods. For example, to ob-
tain a prior distribution for logistic regression model, the
method of Bedrick et al. (1997) requires the user to pro-
vide a fixed number of probabilities just enough to make
the Jacobians appearing in their method invertible.

Example: Here we consider a generative model for bi-
nary data in the presence of a vector of covariates. The
observable variable conditioned on the parameters is dis-
tributed according to a Bernoulli model and we take a
multivariate Gaussian distribution as the prior distribu-
tion for the vector of parameters in the predictor function.
This can be formalized as

Y6~ B(®(x'0)) 0 ~Np(p,2) (8

yielding the prior predictive distribution
Y ~ B(p(x,\) ©

with p(x,A) = ®(x " /V1I+xT ¥ x).

The notation N (-, -) stands for a D-dimensional Gaus-
sian distribution and B(-) for the Bernoulli distribution.
The hyperparameter vector A = [u, ], consists of the
prior means g = [p1, -+ - , i4p] and prior covariance ma-
trix 3. We fix the partitioning throughout the covariate
setas Aj; = {0}, A;o = {1} since Y € Q = {0,1}.
Equation (2) simplifies to P4,;x = 1 — p(x,A) and
PAQI A =D(X, A).

The notation Np (-, ) stands for a D-dimensional Gaus-
sian distribution and B(-) for the Bernoulli distribution.
The hyperparameter vector A = [u, Y], consists of the
prior means g = [u1,- - , up| and prior covariance ma-
trix 2. We fix the partitioning throughout the covariate
setas A;1 = {0}, Ajo = {1} since Y € Q = {0,1}.
Equation (2) simplifies to P4, = 1 — p(x,A) and
Pa,ia = p(x,A).

The parametrisation of the covariance matrix follows the
separation strategy suggested by Barnard et al. (2000) on
an unconstrained space as presented by Kurowicka and
Cooke (2003). That is, the covariance matrix is rewritten
as ¥ = diag(c?,...,0%) R diag(o?,...,0%) where
(0%,...,0%) are the variances and R is the correlation
matrix.

In the simulation experiment, we vary the dimension
D € {2,3,4,5,6} and the number of sets of covariates
J € {3,5,15,30,80}. For each D we randomly pick
a true value for X, and for each covariate set, we draw
random probabilities of success/failure from the Dirich-
let probability model. Hence, the likelihood is given by
(7). We repeat the procedure for each D and .J where the
hyperparameters A are fixed with respect to J.

To show the convergence with respect to the estimates of
) obtained from the expert judgements, we compare the
logarithm of the Frobenius norm between the estimated
covariance matrix and the true covariance matrix (Fig. 3).
For sufficiently large J, roughly from J = 15 onwards,
we are able to accurately elicit multivariate priors up to 5-
6 dimensional priors — this is a significant improvement
over earlier methods that have been limited to univariate
or at most bivariate priors (Moala and O’Hagan, 2010).
For increasing D from 2, 3, 4, 5 to 6, the respective num-
ber of hyperparameters in the vector A becomes 5, 9, 14,
20 to 27, explaining the increased elicitation difficulty
for large D.



Table 1: Result of a real prior elicitation experiment for
one user, characterized by statistics of the prior distribu-
tion. The proposed approach (Predictive) better matches
the parameters found by fitting the model to actual data
Preece and Baines (Reference; 1978), compared to direct
parameter elicitation (Parametric). This is visible in the
lower « estimate as well. The reference column excludes
b due to their use of a non-probabilistic model.

3 -
—@— Multivariate prior dimension, D =2
~—@-— Multivariate prior dimension, D = 3
- —@~— Multivariate prior dimension, D = 4
+ @~ Multivariate prior dimension, D =5
I, 2r —@— Multivariate prior dimension, D = 6
i~
|
j
%o 1
<
35 15 30 80

Number of different vectors of covariates (J)

Figure 3: Convegence of the covariance matrix estimates
for multivariate prior elicitation for binary linear regres-
sion as a function of the number of covariates J for
which the user provides probability estimates, measured
using the logarithm of the Frobenius norm of the dif-
ference between the true covariance matrix and the es-
timate. The coloured lines refer to the dimensionality
D of the prior distribution, showing that we can effec-
tively elicit multivariate priors of reasonable dimension-
ality, with naturally increasing difficulty for larger D.

3.4 PRIOR ELICITATION IN PRACTICE

Using the machinery above requires obtaining the prob-
ability judgements p from the user. The method itself is
general, and can be used as part of any practical Bayesian
modelling workflow when linked to any particular elic-
itation interface. We have implemented an extension of
the SHELF interface (Oakley and O’Hagan, 2019) as a
reference, by replacing the direct parameter elicitation
components with variants that query the user for the prior
predictive probabilities. This readily provides practical
elicitation methods for the user to specify probabilities
by utilizing probability quantiles or roulette chips. This
means that probability ratios for events are provided and
then individual probabilities are recovered under the nat-
ural constraint )., p; = 1. Hence, the user can choose
the way of providing information they feel most com-
fortable with. Besides graphical interfaces, the elicita-
tion can be carried out by the modeller interviewing a
domain expert. Experienced modellers may also choose
to simply express some particular priors via providing p
while designing the model.

Example: To evaluate the applicability of our method
in practice, we conducted a small user study of N = 5
doctoral students of computer science with reasonable
statistical knowledge. The task was to elicit priors of

Predictive Parametric

Parameter Reference  E[] V() E[] V()
hy 174.6  174.5 0.8 1762 105.3

he, 162.9 162.8 42 129.1 33.6

So 0.1 0.1 <0.1 1.2 1.13

s1 1.2 33 021 1.2 113

t. 14.6 13.4 0.01 12.5 0.57

b - 1579 12.9 197 457

o — 6.9 — 1.2 —

a human growth model (see Preece and Baines, 1978,
model 1, Section 2) with a six-dimensional hyperparam-
eter vector X. We queried the users for n; = 6 probabil-
ities and J = 4 covariates, each corresponding to stature
distribution of males at the age of ¢ € {0,2.5,10,17.5}
years. We chose this model because everyone can be ex-
pected to have a rough understanding of the observed
data and hence can act as an expert. As a baseline,
we used a standard elicitation procedure which queries
the prior distributions for each parameter directly (again
with n = 6). Some of these parameters are intuitive
(e.g., stature as adult) while some control the quantita-
tive behaviour of the model in a non-trivial way. The
model was implemented in brms (Biirkner, 2017) to
demonstrate compatibility with existing modelling tools.
Gradient-free optimization (see next section) was used
for converting the elicited probabilities into priors. Ta-
ble 1 shows exemplary for one user how the prior pre-
dictive distribution corresponding to X elicited with the
proposed method matches well with results of Preece and
Baines (1978). When applying direct parameter elicita-
tion, the match was clearly worse because the user was
unable to provide reasonable estimates for parameters
without an intuitive meaning, despite being provided an
explanation of the model and its parameters. In a stan-
dardized interview, all users reported that they were more
comfortable providing probability judgements for the ob-
servables than for the parameters, and that they were
more confident that the resulting prior matches their ac-
tual subjective prior. See supplementary materials for de-
tails of the model and user study, as well as results for all
users.



4 ON THE LEARNING ALGORITHMS

Having characterized the problem itself and its asymp-
totic properties, we now turn our attention to the compu-
tational problem of estimating the hyperparameter vector
A and the uncertainty parameter « in practice. We start
by mentioning basic notions for the type of models and
properties over which our method is able to accommo-
date and systematise general purpose model independent
computer algorithms.

The methodology presented in Section 3 supports both
discrete and continuous components in the observables
variables Y, or combinations of both. It also works
for any data dimension S and any parameter dimension
D. Interesting cases are when S = 1 and D > 1,
meaning that, as we have showed previously, we can re-
cover a multivariate prior distribution from probability
judgements of 1-dimensional observable variable. This
is novel in the recent literature.

For arbitrary S, where we would possibly work with a
multivariate distribution over a vector of observable vari-

ables, probabilities for a generic rectangular set A =

szl(ag, bs] can be formulated via the cumulative dis-

tribution function of the prior predictive distribution (1)
as follows. Let I = (a, b] be an interval, g some func-
tion with g : RS — R, and A7 the difference opera-

tor with A; = g(y17 sy Ys—1, b) - g(yla s Ys—1, a/)'
Then, equation (2) takes the general form

by bs
PAM:/ / Ty (A1, ys)dyr ... dys

:A}1A§ AIS yp\(yla"'vys)v (10)
where F

v L (+) is the cumulative distribution function
of the prior predictive distribution (1). Cases in which
S > 1 appear, for example, in lifetime analysis or
Markovian models. In lifetime analysis, components of
electronic equipments are dependent and there is a need
to consider bivariate models in the first level of the gen-
erative model (Lawless, 2011). Markovian models are
widely used to model natural phenomena such as popu-
lation growth, climate, traffic, and language models in
which multiple measurement variables naturally occur
(Kijima, 1997).

Natural gradients for closed-form cases: If equation
(10) is available in closed-form, usual gradient-based op-
timisation algorithms are applicable. We recommend us-
ing natural gradients (Amari, 1998), which have been
widely applied for statistical machine learning problems
(e.g., see Girolami and Calderhead, 2011). In this case,
the Fisher information matrix for A can be computed in

closed-form using results from the original parametrisa-
tion of the Dirichlet distribution (Ferguson, 1973) as

Hx=(75Paix)" Hey o (75 Pajn) (11)

where Hp, , = o?(diag(¢/(aPaja)) — Y ()11 T) is
the Fisher information matrix of the standard Dirichlet
distribution, P o x = [P, jx -+ Pa, 2] T, and 5 Paj»
= [;LPajx - 78 Paja] . The function ¢/(-) is
the the derivative of the digamma function and ﬁ[@ is
the derivative of the vector PP with respect to an element
in the vector of hyperparameters A. Due to the closed-
form expression, we can use natural gradients with al-
most no additional computational cost. The only extra
step is the calculation of ﬁ]‘? which can be obtained
easily with automatic differentiation regardless of the
chosen generative model.model.

Stochastic natural gradients optimization: If (10)
cannot be expressed in closed-form but the equation (4)
or (7) are differentiable with respect to A, one can use
gradient-based optimization with reparametrisation gra-
dients and automatic differentiation. The elements of P
are expected values with respect to the prior distribution
(2), and the goal is then to find a pivotal function for
the prior (see Casella and Berger, 2001, page 427, Sec-
tion 9.2.2) and obtain Monte-Carlo estimates of it (which
is not difficult once we can use the representation (10))
and gradients d}\ P with very low computational cost
according to Flgurnov et al. (2018).

When the generative model has a higher level hierar-
chical structure, such as Y |01 ~ 7w(y|61), 61|02 ~

m(011602), ..., 0| A ~ w(0L|A), we can show that
the elements of P4 and d;f P4 can also be com-
puted efficiently together with a stochastic estimation of
the hyperparameters’ Fisher information matrix. That is

]PA\A = ]EXL (EXL—l (Exl (PA|fl(>\)))) (12)

where X, are pivotal quantities with respect to distribu-
tions m(0y | O¢y1) for £ = 1,..., L and f1(A) is a func-
tion which depends only on the hyperparameters A. Gra-
dients are estimated similarly as

d

d)\ ]P)A\)\ ]EXL (EXL—1"'

d d
(= (Sdgmue))) 0

The equations above can be plugged into (11) to obtain
an estimation for the hyperparameters’ Fisher informa-
tion matrix. The proof and detailed explanations are pro-
vided in the supplementary materials.



Gradient-free optimization: Finally, for completely
arbitrary models, we can step outside of gradient-based
optimization and use general-purpose global optimiza-
tion tools for determining A. Methods such as Bayesian
optimization and Nelder-Mead only require the ability to
evaluate the objective (10), and many practical optimiza-
tion libraries (e.g. optimR) provide extensive range of
practical alternatives. For models with relatively small
number of hyperparameters, we have found such tools
to work well in practice. However, whenever either of
the gradient-based methods described above is applica-
ble, we recommend using them due to substantially im-
prove efficiency.

Optimization of a: Finally, besides A, we usually
want to estimate o as well which quantifies the uncer-
tainty as explained in Section 3.1. One can either directly
optimise (4) for (A, «) together, or switch optimisation
of (4) for A with fixed v with optimization of (4) for «
with fixed A. This may be easier since we have an ap-
proximate closed-form expression for o provided in the
supplementary materials.

S DISCUSSION AND CONCLUSIONS

Prior elicitation is an important stage in the Bayesian
modeling workflow (Schad et al., 2019), especially for
hierarchical models whose parameters have a complex
relationship with the observed data. Standard prior elic-
itation strategies, such as O’Hagan and Oakley (2004);
Moala and O’Hagan (2010), do not really help in such
scenarios, since the expert still needs to express informa-
tion in terms of probability distribution of the model’s
parameters. The idea of eliciting knowledge in terms of
the observable data is not new — in fact, it dates back
to Kadane et al. (1980). However, to our knowledge
we proposed the first practical formulation that accounts
for uncertainty in the expert’s judgements of the prior
predictive distribution, with easy, general, and complete
implementation that allows eliciting both univariate and
multivariate prior distributions more efficiently.

We demonstrated the general formalism in several prac-
tical contexts, ranging from simple conceptual illustra-
tions and technical verifications to real elicitation exam-
ples. In particular, we showed that multivariate priors
(of reasonable dimensionality) can be elicited in context
of generalized linear models based on relatively small
collection of probability judgements for different co-
variate sets. The approach can be coupled with exist-
ing modelling tools and used for eliciting prior infor-
mation from real users, as demonstrated for the human
growth model of Preece and Baines (1978) implemented
in brms (Biirkner, 2017). Even though we only carried

out a simplified and small-case experiment, the results
already indicate that even users familiar with statistical
modelling were more comfortable expressing knowledge
of the observed data rather than model parameters, and
that the resulting priors better matched their beliefs.

The obvious continuation of this work would con-
sider tighter integration of the method into a principled
Bayesian workflow, coupled with more extensive user
studies. We also look forward to extend our method to
cases of multiple experts opinions about the same ob-
servable variables. As a first attempt, we could consider
the same predictive model and distinct o’s for multiple
experts. However, more work is needed in that regard.
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