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Abstract

We propose a matching method for obser-
vational data that matches units with others
in unit-specific, hyper-box-shaped regions of
the covariate space. These regions are large
enough that many matches are created for each
unit and small enough that the treatment effect
is roughly constant throughout. The regions
are found as either the solution to a mixed in-
teger program, or using a (fast) approximation
algorithm. The result is an interpretable and
tailored estimate of the causal effect for each
unit.

1 INTRODUCTION

Interpretability is paramount in causal inference settings:
high-stakes decisions involving medical treatments, pub-
lic policies, or business strategies, are increasingly made
on the basis of causal estimates from pre-existing data.
Decision-makers in such settings must often be able to
justify their choices for purposes of accountability, and
must also be able to take advantage of all existing infor-
mation in their decisions, rather than complex summaries
of it – interpretability plays a critical role to fulfill these
needs. Matching methods in causal inference, which
match treated and control units with the same or similar
covariate values, are commonly used for interpretabil-
ity and mitigating bias. However, they can suffer from
problems when human analysts manually choose the dis-
tance metric for matching: humans are notoriously poor
at manually constructing high dimensional functions.

For matching, units with similar values of the confound-
ing covariates should be matched together, so as to repli-
cate the random assignment of treatment provided by a
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randomized experiment within each matched group (Ru-
bin 1974; Pearl 2009). Ideally, matching should be exact,
where a treated unit is matched with one or more iden-
tical control units in a matched group. However, when
covariates are high-dimensional, it is generally impossi-
ble to find units with identical values of all covariates.
Because of this, matching methods typically use a notion
of closeness between units (e.g., a distance metric), that
allows matches to be made approximately rather than ex-
actly. The question then becomes how to construct a
good distance metric.

The choice of a distance metric for matching largely
drives the interpretability and accuracy of the method.
Coarsened exact matching (Iacus et al. 2011; Iacus et al.
2012), for example, can require a user-defined coarsen-
ing of a high dimensional covariate space, which can be
error-prone. Other matching methods, such as propen-
sity score matching (Rosenbaum and Rubin 1983) or
prognostic score matching (Hansen 2008) are more auto-
mated in that they only require the user to select a model
class, and may yield better estimates of average treat-
ment effects. However, these techniques suffer from lack
of interpretability: e.g., when one projects data onto the
propensity score, the matched units may be distant from
each other in covariate space, only having in common
that they are equally likely to receive the treatment. Even
in techniques like optimal matching (Rosenbaum 1989),
the distance metric between units is an input parameter
or a user-defined constraint, which is again problematic
as the human analyst manually defines high dimensional
distance metrics between units.

Our Contribution We propose a method for match-
ing that provides both interpretability and accuracy with-
out requiring humans to design the distance metric for
matching. In particular, the approach learns an opti-
mal adaptive coarsening of the covariate space from
a model trained on a separate training dataset, leading
to accurate estimates of the treatment effect and inter-
pretable matches. The matched group for a unit consists



of all units within a learned unit-specific high dimen-
sional hyper-box. These hyper-boxes are constructed so
that they 1. contain enough units for reliable treatment
effect estimates, and also so that 2. units within each box
have similar potential outcomes, which lowers the bias
of the estimated treatment effect. This allows us to avoid
black-box summaries (propensity or prognostic scores)
and ad-hoc pre-specified metrics given by the users. Our
estimates are interpretable. First, they are case-based:
each individual’s estimate can be explained in terms of
the units they are matched with. Second, the choice of
cases is itself interpretable: if two units are matched to-
gether, it is because they fall in the same easily-described
hyper-box.

We formulate the problem of learning optimal partitions
for matching as an optimization problem, to which we
propose two solutions. Broadly, the optimization prob-
lem solves the following minimization:

min
box

[
variability(predictions in box)+

error(estimates of counterfactuals within box)

]
subject to the constraint that the box contains at least m
control units when estimating causal effects for a single
treatment unit (the choice of m depends on the applica-
tion).

By training hyper-boxes in a way that leverages a model
trained on a training set, we are able to create boxes
that adapt to the covariate space. There is a tradeoff in
the construction of the hyper-boxes between including a
large number of points within the hyper-box and keeping
variance low for the predictions within the hyper-box;
both goals can help preserve the quality of treatment ef-
fect estimation. As a result of these goals, hyper-boxes
can be arbitrarily large along covariates that are irrele-
vant for treatment effect estimation, whereas box-widths
can be small in regions where the outcome changes
rapidly. Figure 1 shows an example of these adaptively-
learned hyper-boxes for a two-dimensional dataset. By
looking at the shapes of these boxes, one can observe
where the outcome changes rapidly (regions with the
smaller boxes) and where it changes slowly (regions with
larger boxes).

We provide two optimization methods for the boxes.
First, we formulate the problem as a mixed integer pro-
gram (MIP) and are thereby able to solve it exactly using
state-of-the-art MIP solvers, which are fairly efficient for
this problem. Second, we propose a faster and more scal-
able approximation algorithm.

In Section 2, we present motivation, discuss issues with
existing approaches to coarsening, formulate our method
as a MIP, and introduce a fast approximation. In Section
3, we compare to other matching methods in a simulation

Figure 1: A toy two-dimensional dataset with covariates
X1, X2, with a few of the matched groups shown as
boxes. Each unit has its own matched group, which can
overlap with others. The background indicates the true
outcome values, with darker regions representing lower
outcomes. The boxes are small where outcomes change
rapidly, and large in regions of near-constant outcome.

study. In Section 4, we apply our method to a study of
the effect of a work training program on future earnings.
We conclude with a discussion in Section 5. Our method
is called “Adaptive Hyper-Box” (AHB) matching.

1.1 RELATED WORK

There is a large literature on estimating treatment effects
in observational studies (Stuart 2010), and in particular,
on matching methods (e.g., Zubizarreta 2012; Pimentel
et al. 2018; Keele and Pimentel 2019; Angeles Resa and
Zubizarreta 2016; Rosenbaum 2017).

One formulation of our approach relies on solving a
mixed integer program (MIP). MIPs have previously
been used for causal inference in order to accomodate
linear balance constraints on the covariates (Zubizarreta
2012; Zubizarreta et al. 2014; Morucci et al. 2018). Our
goals are entirely different from those of other MIP-
based causal problems.

There are also machine learning methods for estimating
treatment effects with continuous confounders (e.g., dou-
ble machine learning, Chernozhukov et al. 2017), that
are not interpretable. The black box methods with the
best current performance have been demonstrated to be
variants of Bayesian Additive Regression Trees (BART)
(J. L. Hill 2011; Hahn et al. 2020; J. Hill et al. 2020). Our
method leverages a black box machine learning model
(in our case, a BART model) loosely to help define
hyper-boxes, using the help of the training set.

Our work is closely related to several threads in the lit-
erature: 1. prognostic scores (Hansen 2008; Stuart et



al. 2013), as we leverage predictions to create matches;
2. methods within the almost-exact-matching (AEM)
framework (FLAME, DAME, and MALTS) (Wang,
Morucci, et al. 2017; Dieng et al. 2019; Parikh et al.
2018) that leverage a training set for matching, and 3. the
causal forest (CF) framework (Wager and Athey 2018),
because they use a training set for assisting with “soft”
matching on a test set. Matching on the prognostic score
attempts to find a low dimensional summary to match
on, which our approach avoids. Our method differs from
FLAME and DAME (which handle only discrete covari-
ates and use learned Hamming distances), differs from
MALTS (which uses learned Mahalanobis distances on
continuous covariates), and differs from CF (because
it aims to specifically generate interpretable matched
groups). Adaptive Hyper-Boxes handles both continuous
and discrete variables in the same framework, and needs
only to pinpoint hyper-box edges. We do not use nearest
neighbors, we do not parameterize a distance metric; we
use all points within the learned interpretable hyper-box.

Hyperboxes have been used extensively for regression
(e.g., Peters 2011), classification (e.g., Xu and Papageor-
giou 2009) and prediction (e.g., Goh and Rudin 2014)
but notably, not for causal inference (Khuat et al. 2019).
These methods (and others, such as bump hunting,
Friedman and Fisher 1999) aim to find adaptive boxes
around individual units and some use MIPs to find boxes,
as we do. Some other works aim to create global rule-
based classifiers for causal inference (Wang and Rudin
2017), whereas our method provides local rules.

2 METHODOLOGY

Throughout, we consider n units and p covariates. The
units are indexed by i = 1, . . . , n, and the covariates
of unit i are denoted by a p-dimensional random vari-
able Xi, taking values xi = (xi1, xi2, . . . , xip)

′ ∈ Rp.
A unit’s potential outcomes are given by (Yi(0), Yi(1)),
which are also random variables in our setting. We use
the following model for the potential outcomes: Yi(t) =
ft(Xi) + νi, where E[νi] = 0, and, for any two units
i and k, νi and νk are independent. We require f to be
nonparametrically estimable from the data. We denote
treatment by the random variable Ti ∈ {0, 1}; we refer
to units with Ti = 1 as treated units, and to units with
Ti = 0 as control units. We denote observed outcomes
with the random variable Yi = Yi(1)Ti + Yi(0)(1− Ti).
Our quantity of interest is the Individual Treatment Ef-
fect (ITE) for each treated unit, defined as τi = E[Yi(1)−
Yi(0)|Xi = xi]. By definition of Yi, we never have ac-
cess to Yi(0) for treated units, and control units must be
employed to construct an estimate of this missing poten-
tial outcome for treated units. To do this we make the

following canonical assumptions of observational infer-
ence:
(A1) Overlap. For all values of x and units i, we have
0 < Pr(Ti = 1|Xi = x) < 1.
(A2) SUTVA. A unit’s potential outcomes depend only
on the treatment administered to that unit, i.e., if
Yi(t1, . . . , tn) denotes unit i’s potential outcome as a
function of all n units’ treatment status, under SUTVA
we have: Yi(t1, . . . , tn) = Yi(ti).
(A3) Conditional ignorability. For all units i and any
t ∈ {0, 1}, treatment is administered independently of
outcomes conditionally on the observed covariates, i.e.,
Ti |= (Yi(1), Yi(0))|Xi = xi. This directly implies that
E[Yi|T = t,Xi = xi] = E[Yi(t)|Xi = xi], which en-
ables us to estimate treatment effects on observed data.

Under these assumptions, if for a treated unit i there
existed a control unit k such that xi = xk, then we
would have E[Yi(0)|X = xi] = f0(xi) = f0(xk) =
E[Yk(0)|X = xk], and the estimator Yi − Yk would be
unbiased for τi. Unfortunately, this is almost never the
case in practice: since x is high-dimensional, it is un-
likely that most units would have a match with the same
exact covariate values. To remedy this issue, we match
treatment units to control units with similar values of x.

2.1 PRINCIPLES OF APPROXIMATE
MATCHING VIA HYPER-BOXES

We focus without loss of generality on creating hyper-
boxes for treatment units; any control unit within treat-
ment unit i’s box will be considered to be matched to i.
Each hyper-box is p-dimensional. Hyper-boxes for con-
trol units can be constructed analogously.

Hyper-boxes are specified by lower and upper bounds
for all covariates ai = (ai1, ai2, . . . , aip)

′ and bi =
(bi1, bi2, . . . , bip)

′. For convenience, we define the func-
tion H(a,b) = [a1, b1] × · · · × [ap, bp] and also denote
unit i’s p-dimensional hyper-box as Hi = H(ai,bi).
Necessarily, xi ∈ Hi; i.e., unit i is contained in its own
box. Similarly, we say that a unit k is contained in i’s box
if xk ∈ Hi and we define the main matched group for
treated unit i to be the set of all units contained in i’s box:
MMG(Hi) = {k ∈ 1, . . . , n : xk ∈ Hi}. We also use
ntHi

=
∑
k∈MMG(Hi)

Tk and ncHi
=
∑
k∈MMG(Hi)

1 − Tk
to denote the number of treated and control units in unit
i’s box respectively, as well as nHi

= ntHi
+ ncHi

.

We use the following estimators for outcomes of unit i.
We emphasize that both quantities are estimated from a
single box associated with unit i; the first from control



units and the second from treatment units.

Ŷi(0) =
1

ncHi

∑
k∈MMG(Hi)

Yk(1− Tk). (1)

Ŷi(1) =
1

ntHi

∑
k∈MMG(Hi)

Yk(Tk). (2)

There are then two options to estimate τi: τ̂a = Ŷi(1) −
Ŷi(0), and τ̂b = Yi(1) − Ŷi(0). The first option is better
when wanting to extend the estimated effects to a super-
population of interest, as it can lower the population vari-
ance of the estimated response function, while the second
option is better in finite-sample inference settings. It is
clear by definition of our quantity of interest, τi, that our
objective should be constructing hyper-boxes for unit i
such that Ŷi(0) ≈ Yi(0), and Ŷi(1) ≈ Yi(1).

We thus follow three principles in creating hyper-boxes:
1. Bias Minimization: Matches should yield high quality
estimates of the treatment effect. To this end, we cre-
ate large boxes with low variance in their estimates. 2.
Interpretability: Matches must be interpretable to per-
mit case-based reasoning. 3. Honesty: No test outcomes
may be used to construct hyper-boxes. This helps lower
bias, and is a general principle of causal inference (Rubin
2005; Wager and Athey 2018). We may use covariates
and outcomes of a separate training set, and covariates
for the (test) units to be matched.

Issues with existing fixed-width coarsening methods.
Common matching methods based on pre-specified
fixed-width bins (Iacus et al. 2011; Iacus et al. 2012),
will take as input a desired box size for each covariate,
ε = (ε1, . . . , εp), and then construct boxes of size ex-
actly ‖ε‖1. This approach suffers from two issues:
Issue 1: ‖xi − xk‖1 ≥ ‖ε‖1, but |ft(xi) − ft(xk)| is
small. In this case we have two units that are further
away on the space of x than the pre-specified tolerance,
but it is entirely possible that these units could have simi-
lar values of the outcome function. In this case, the units
would not be matched, leading to few (or no) matches for
i and therefore a poor (or nonexistent) ITE estimate.
Issue 2: ‖xi − xk‖1 ≤ ‖ε‖1, but |ft(xi) − ft(xk)| is
large. This could happen in the case in which ε is pre-
specified without taking variation in the response func-
tion into account. If the slope of the response function
is large, then even units that have close values of x will
have significantly different values of y(0). Matching i to
k in this case would lead to a bad estimate of i’s ITE.

Several rules have been developed to choose fixed-width
bins based on the data (e.g., Scott 1979; Freedman and
Diaconis 1981; Wand 1997). These rules do not take into
account relationships between covariates and outcome,

Figure 2: Issues from matching with fixed-width boxes
are demonstrated in Panel a. The solid line represents the
outcome function, black dots are units to be matched, and
vertical dashed lines represent fixed-width boxes. Issue
1 arises when u3 and u4 are not matched together be-
cause they are in different boxes, despite having almost
constant values of Y within the full range between them.
Issue 2 is present because u1 and u2, matched together
(as they are in the same box), have different values of Y .
These issues are absent when boxes are made adaptively
to the outcome function, as demonstrated in Panel b.

and are thus vulnerable to the two issues above.

2.2 THE ADAPTIVE HYPER-BOX
FRAMEWORK

Our proposed framework aims at creating bins for in-
terpretable adaptive matching, avoiding the issues dis-
cussed above. Instead of starting from a pre-specified
value of box size, ε, we learn unit-specific boxes from
the data itself, by directly minimizing quantities related
to the principles outlined previously. We aim for hyper-
boxes that solve the following optimization problem:

min
H1,...,Hn

n∑
i=1

Err(Hi) + Var(Hi)

Subject to: nHi ≥ m ∀ i,

where Err and Var are as in Eqs. (3)-(4). In words, we
would like to minimize bias and variability of each box,
while making sure that at least m units are contained
in each hyper-box. To minimize bias, we would like
boxes that contain units whose observed outcomes are
strongly predictive of the missing control outcome of in-
terest. This can be achieved by defining error as follows:

Err(Hi) =

∣∣∣∣f0(xi)− 1

nHi

∑
k∈MMG(Hi)

f0(xk)

∣∣∣∣
+

∣∣∣∣f1(xi)− 1

nHi

∑
k∈MMG(Hi)

f1(xk)

∣∣∣∣. (3)



For reliable estimates, we encourage boxes to contain (1)
a large number of units, and (2) to minimize variability
of predicted outcomes on the control units it contains:

Var(Hi) =

1

nHi

∑
k∈MMG(Hi)

f0(xk)− 1

nHi

∑
k∈MMG(Hi)

f0(xk)

2

+
1

nHi

∑
k∈MMG(Hi)

f1(xk)− 1

nHi

∑
k∈MMG(Hi)

f1(xk)

2

.

(4)

Minimizing Err(H) and Var(H) directly avoids Issues 1
and 2 outlined above. In the case of Issue 1, both Err(H)
and Var(H) will be small even if units are far apart in
terms of x, telling us that we can make boxes larger in
that part of the space. In the case of Issue 2 the opposite
will be true; even if units are close in terms of x, Err(H)
and Var(H) will be large, suggesting that boxes should
be smaller in that part of the space.

Our loss will be reliable if we have good estimates ft(x)
at many points within each bin, including all points
x1, . . . ,xn at a minimum. We preserve honesty in such
estimates by dividing the data into a training and a test
set, denoted by Dtr = {(xtri , Y tri , T tri )}ni=1 and Dts =
{(xtsi , Y tsi , T tsi )}ni=1 respectively, and assumed to each
be of size n for notational simplicity. Lastly, under these
conditions, the hyper-boxes are designed to provide bal-
ance on relevant covariates and thus lead to high quality
treatment effect estimates (Stuart et al. 2013). The test
set will contain the observations to be matched, while
the training set will be used to estimate ft(x) for each x

of interest. We will denote this estimate by f̂t(x): any
machine learning method can be used to estimate ft, as
predicted values of ft are only going to inform loss cal-
culations and not actual treatment effect estimates.

Adaptive Hyper-box MIP formulation. Here, we use
the triangle inequality to upper-bound the error term. We
consider treatment point i and points k ∈ MMG(Hi) for
an arbitrary treatment value, t and hyper-box Hi:

Err(Hi) =

∣∣∣∣ 1

nHi

∑
k∈MMG(Hi)

ft(xi)− ft(xk)
∣∣∣∣

≤ 1

nHi

∑
k∈MMG(Hi)

∣∣∣∣ft(xi)− ft(xk)∣∣∣∣. (5)

We minimize the bound instead of the error term, for both
treatment and control groups. We use a similar upper

bound for variability. For any value of Hi we have:

Var(Hi)

=
1

nHi

∑
k∈MMG(Hi)

ft(xk)− 1

nHi

∑
l∈MMG(Hi)

ft(xl)

2

≤ 1

nHi

∑
k∈MMG(Hi)

C

∣∣∣∣∣∣ 1

nHi

∑
l∈MMG(Hi)

(ft(xk)− ft(xl))

∣∣∣∣∣∣ ,
where the last line follows by setting C =

maxHi

∣∣∣ 1
nHi

∑
l∈MMG(Hi)

(ft(xk)− ft(xl))
∣∣∣ and us-

ing Hölder’s Inequality. Here C is a constant, and is not
affected by any optimization we will perform to obtain
Hi. We can now apply the triangle inequality twice:

Var(Hi)

≤ 1

nHi

∑
k∈MMG(Hi)

C

nHi

∑
l∈MMG(Hi)

|ft(xk)− ft(xi)|

+ |ft(xl)− ft(xi)|

=
2C

nHi

∑
k∈MMG(Hi)

|ft(xk)− ft(xi)|. (6)

Inequalities (5) and (6) show that minimizing∑
k∈MMG(Hi)

|ft(xi) − ft(xk)| will lower both Err(Hi)

and Var(Hi) through the upper bounds just introduced,
for fixed nHi . Minimizing this term also ensures that
treatment and control outcomes stay relatively constant
within each hyper-box.

In order to ensure that the denominator of the variance
(i.e., nHi

) stays large, we subtract it from the loss func-
tion. Hence, the loss now encourages larger matched
groups, while maintaining linearity of the objective:

min
Hi

∑
k∈MMG(Hi)

|ft(xk)− ft(xi)|+ βnHi
,

where β trades off between the terms.

These steps give rise to the following global MIP for our
entire sample. Here, decision variable Hi defines the box
for treatment unit i, and decision variable wik is an indi-
cator for whether k is in i’s box:

min
H1,...,Hn

n∑
i=1

{
γ1

n∑
k=1

wik

∣∣∣f̂1(xtsi )− f̂1(xtsk )∣∣∣
+γ0

n∑
k=1

wik

∣∣∣f̂0(xtsi )− f̂0(xtsk )∣∣∣− β n∑
k=1

wik

}
(7)



subject to: Hi ∈ Rp×p, wik ∈ {0, 1} ∀ k
xtsi ∈ Hi ∀ i (8)
wik = I[xts

k ∈Hi] ∀ i (9)
n∑
k=1

wik(1− Tk) ≥ m ∀ i. (10)

Constraint (8) forces unit i to be within its own box; (9)
defines an indicator wik for whether unit k falls into the
box for test unit i; (10) forces boxes to include at least m
control units. We require a minimum number of control,
but not treatment, units to be matched, because treatment
unit i is within MMG(Hi), and thus there is always at least
one treated unit in each box. This makes computing the
first term in the loss always possible, and excludes triv-
ial solutions with empty boxes. The loss in Eq. (7) is
made up of three terms: the first is the upper bound on
the estimation error and variability terms of our frame-
work derived in inequalities (5) and (6) for treated out-
comes. The second is the same bound, but for control
outcomes. We want these terms to be small to ensure
the outcome function does not vary much within a box.
The third term counts units in the box, encouraging more
matches. The supplement details an explicitly linear for-
mulation of the above problem. The hyperparameters γ1,
γ0, and β weight the three components of the loss. They
can be cross-validated, set to 1, or chosen intuitively by
normalizing them to the same scale as discussed in the
supplement.

The form of the MIP presented above directly suggests
that the optimization problem is separable in the 1 . . . , n
units. We take advantage of this property and solve one
MIP for each of the n units to be matched separately.

Adaptive Hyper-box Fast Approximation We now
describe a fast algorithm to approximate the MIP solu-
tion. For a unit i, we initialize its box to be a single point
at its covariate values. We then expand the box according
to the principles previously outlined: 1. we expand the
box along a single covariate at a time, so that the result-
ing box is always axis-aligned and interpretable; 2. we
expand along the covariate that extends the box into the
region with least outcome variation – ensuring high qual-
ity matches – and stop expanding the box once this vari-
ation increases too much, avoiding low quality matches;
and 3. we estimate the variation in the outcome via f̂0, f̂1
learned on a separate, training set, as for the MIP.

Algorithm 1 in the supplement provides pseudocode.
The main crux of the algorithm is to determine whether
a new, proposed box P is good. To do so, we examine
the outcome function in P\Hi (the region we propose to
add to our existing hyper-box). If the outcome in the new
region is relatively constant, we do not expect to incur

much bias from including units that lie inside. Therefore,
we look at how much f̂0, f̂1 vary on a grid in P\Hi and
choose to expand along the covariate yielding the lowest
variation. Further details are in the supplement.

Scalability and Parallelization Both MIP AHB and
Fast AHB create a box tailored to a specific unit i, inde-
pendently from boxes of other units. Both methods are,
therefore, embarassingly parallelizable. The supplement
shows runtime results for the methods: Fast AHB scales
well, especially in n, and can be applied to large datasets
on most machines, while MIP AHB is less suited for
large datasets due to its exponential nature. Discussion of
the methods’ computational complexity, and suggestions
for speeding them up, is included in the supplement.

Matching with Non-Continuous Covariates Our
method also handles non-continuous covariates, includ-
ing categorical and cardinal covariates. Categorical co-
variates that take on k discrete values can be binarized
into k − 1 indicator variables, after which MIP and Fast
can be run without modification to form matches. MIP
and Fast can also be run out of the box on cardinal vari-
ables without loss in performance. We demonstrate this
by matching on year-valued variables in our application.

Empirically, when we run MIP AHB and Fast AHB on
categorical data, they learn identical importance weights
for the covariates (see Section 3.2). That is, they either
construct boxes that exactly match units with identical
covariate values or prioritize matches on covariates con-
tributing more to the outcome. This is similar to the
characteristics of the FLAME and DAME algorithms de-
scribed by Wang, Morucci, et al. 2017 and Dieng et al.
2019, though AHB has the added benefit of adaptively
handling continuous covariates. It would not be possible
to extend FLAME and DAME to this case because they
rely on Hamming distance. Since AHB chooses only box
edges, it avoids having to use a parameterized distance
metric, allowing it to handle continuous covariates in the
same way that it handles discrete covariates.

3 EXPERIMENTS

We generate data independently for all units, with data
for unit i generated according to the following process:
1. Generate covariates: xij

ind∼ Fx, j = 1, . . . , p
2. Generate a propensity score: ei = expit(γxi)
3. Assign treatment: Zi ∼ Bernoulli(ei)
4. Generate the outcome: yi = g(xi) + h(xi)Zi + εi.

Here, γ is fixed. We consider various choices of con-
founding functions g and heterogeneous treatment func-



tions h, seen in Table 1, subject to which we evaluate
estimation of the ITE of treated units. All results are av-
erages across 10 simulations, each with n = 600 units.
The supplement contains additional simulations studying
higher dimensional settings, correlated covariates, and
coverage of ITE confidence intervals.

We compare the following estimators: BART - Bayesian
Additive Regression Trees (Chipman et al. 2010; J. L.
Hill 2011) estimates ITEi as f̂1(xi) − f̂0(xi), Best CF
- 1 : k matching of a treated unit i to the k control units
with outcomes closest to i’s true counterfactual (this is
cheating: one does not have this extra information in
practice), GenMatch - Genetic Matching of a treated
unit to at most k control units (Diamond and Sekhon
2013), CEM - Coarsened exact matching (Iacus et al.
2011; Iacus et al. 2012), Propensity Matching - 1 : k
propensity score matching, Prognostic Matching - 1 : k
prognostic score matching, Full Matching - Full match-
ing (Hansen and Klopfer 2006), Mahal - 1 : k matching
on the Mahalanobis distance between covariates, Fast -
Our proposed approximate algorithm for AHB, MIP -
Our proposed MIP for AHB.

For all 1 : k matching estimators, we consider k ∈
{1, 3, 5, 7, 10} and report the best results attained. All
nearest neighbor matching is performed with replace-
ment. BART, Prognostic Matching, Fast, and MIP first
split the data and fit BART on the training set to estimate
an outcome model. For AHB, boxes are then constructed
from the outcome model to be used on the test units. In
addition to using BART to power Prognostic, MIP, and
Fast, we include the BART estimator to directly predict
counterfactuals for units in the test set. In this way, we
compare our approach to the limits of predictive perfor-
mance attainable using a highly flexible – and highly un-
interpretable – method. Similarly, we include the Best
CF estimator to compare to performance attainable when
using counterfactual data that is unobserved in practice.
We defer details of implementations to the supplement.

3.1 CONTINUOUS COVARIATES

First, we assess our method’s performance in settings
where different functions of continuous covariates con-
found the outcome and modulate the treatment effect.
We simulate xij

ind∼ U(0, 1) and choose g (confound-
ing function) and h (heterogeneity function) as specified
in the first six rows of Table 2. Below, we label simula-
tion settings as “Confounding function / Treatment func-
tion”. MIP or Fast perform better than all other methods
in all but the None / Const and Linear / Const setups,
where BART outperforms us. This is reasonable given
its highly flexible (yet uninterpretable) nature.

Figure 3: The boxes formed by Adaptive Hyper-Boxes
for four example points (enlarged). The box widths span
most of the horizontal axis, associated with an irrelevant
covariate. The height of the boxes decreases moving up-
wards, as confounding increases. Black and red points
denote treatment and control units, respectively.

MIP and Fast perform well even when there is a hetero-
geneous treatment effect in addition to confounding (row
6 of Table 2). Actually, MIP and Fast tend to outperform
competing ones by greater margins when heterogeneous
treatment is introduced on top of confounding, as can be
seen by comparing the Box / Const and Box / Box setups.

When there are irrelevant covariates (e.g. row 5 of Table
2), CEM fails to make even a single match due to the high
dimensionality of the space. On the other hand, AHB
adapts to the irrelevant covariates; we can visualize this
by examining in Figure 3 some of the boxes it learns for
setup Quad / Const. The vertical axis represents the one
covariate relevant to the outcome and the horizontal axis
an arbitrary irrelevant covariate. We see that AHB learns
which covariate is important: it makes the boxes skinny
along one dimension – as they should be sensitive to the
changes in outcome along that axis – and expand fully
throughout the range of the other irrelevant dimension.
The height of the boxes also decreases along the vertical
axis, because the effect of confounding on unit i is given
by x2i1. Variation in xi1 therefore has greater impact on
the outcome near 1 than near 0 and the boxes reflect this.

3.2 DISCRETE AND MIXED COVARIATES

Here, we evaluate the performance of our method on dis-
crete and mixed (discrete and continuous) data. Abusing
notation slightly, we will use x to refer to continuous co-
variates, of which there will be pc, and we use w to re-
fer to discrete covariates, of which there will be pd. We
consider binary covariates, because we can binarize any
k-level discrete covariate into k − 1 indicator variables,
allowing us to match on any subset of the k levels. Bi-
nary covariates are simulated wij

ind∼ Bernoulli(0.5).



Choices of g and h and associated results are specified
in the last three rows of Table 2. We see that CEM and
AHB both perform exceedingly well when all covariates
are binary. Further analysis reveals: 1. that MIP and Fast
yield identical boxes and ITEs in this scenario, 2. that the
ITEs are the same as those generated via exact matching
on the one, true covariate, and 3. that CEM’s ITEs are
the same as those generated via exact matching on all co-
variates. Thus, while both methods yield unbiased ITE
estimates in this setting, CEM’s are of higher variance
because it constructs more granular boxes than necessary
due to its inability to adapt to irrelevant covariates. In-
deed, supplemental results show that as the number of ir-
relevant covariates increases, CEM’s performance deteri-
orates drastically, while AHB’s stay the same. In the sim-
ulation with mixed covariates, MIP AHB outperforms all
competitors but BART, and Fast AHB falls only behind
BART, Best CF, and Prognostic.

Similarity Between MIP AHB and Fast AHB To
compare MIP AHB and Fast AHB, we compare the over-
lap in units assigned to matched groups by MIP AHB
and Fast AHB, denoted by MMG(Hi)

MIP and MMG(Hi)
Fast.

We define a ‘mutual membership rate’ as the maximum
of the proportion of units in MMG(Hi)

MIP that are in
MMG(Hi)

Fast and vice versa. Across all units, we find
median mutual membership rates around 80% in our ex-
periments. Visual comparisons of the boxes output by
both methods also confirm they adapt similarly to vari-
ability in the outcome function, extending boxes where
the outcome is near-constant and shrinking them where
it changes rapidly. For experiments conducted entirely
with discrete data, MIP AHB and Fast AHB constructed
identical boxes. Lastly, ITE comparisons between the
methods show little to no difference in most simulations.

4 APPLICATION

We apply our methodology to replicating a study of the
effect of work training programs on future earnings orig-
inally conducted by (LaLonde 1986; R. H. Dehejia and
Wahba 1999; R. Dehejia and Wahba 2002). This dataset
includes an experimental sample (from the 1975-76 Na-
tional Supported Work (NSW) program where treatment
units received a work training program), and two ob-
servational samples (constructed by combining samples
from the Panel Study of Income Dynamics (PSID) and
from the Current Population Survey (CPS)). Further de-
tails about the datasets are in the Supplement. Matching
methods can be evaluated on how well they can recon-
struct the unbiased ATT estimate from the experimental
sample, by matching treated units from the experiment to
control units from the observational samples. Matching
covariates include income before the training program,

race, years of schooling, marital status, and age. We
focus on the task of estimating the in-sample ATT, and
therefore match each treated unit i to at least one control
unit from each dataset, and no other treated unit. The
resulting ITE estimates are then averaged to compute an
ATT estimate. We employ MIP AHB, as the data is small
enough to do so. Since we do not match any other treated
units to each unit i, we set γ1 = 0, and focus on finding
control matches.

We compare Adaptive Hyper-Boxes to other matching
methods estimating the ATT from the observational sam-
ples, shown in Table 3. The ATT estimates that AHB
produces using both observational datasets are compa-
rable to the estimate from the experimental sample. Most
other methods fail to produce estimates of the same qual-
ity as AHB on either dataset. Figure 4 displays sample
boxes constructed by MIP AHB on one of the matching
covariates, together with a smoothed version of the esti-
mated ITE and predicted outcome. Our method behaves
as expected, making many small and close boxes where
the predicted outcome function grows rapidly, and wider
boxes where it does not.

Figure 4: Relationship between pre-treatment income
and estimated ITE. The solid black line is a smoothed
estimate of the control response as a function of pre-
treatment income. The colored boxes are five sample
boxes created by Adaptive Hyper-Boxes.

Table 8 in the supplement also presents treatment effect
estimates at different values of pre-treatment years of
schooling. We see that years of schooling does indeed
moderate the treatment effect, as individuals with fewer
years of schooling are estimated to either benefit less
than individuals with more years of schooling, or even
lose income, after the work training program. Lastly, Ta-
ble 9 shows sample matched groups produced by AHB.

5 DISCUSSION

Adaptive Hyper-Boxes Matching is a useful al-
ternative to other matching methods. It learns



Table 1: Functions (up to a constant) used for treatment and confounding in experiments. Continuous covariates are
denoted by x and discrete covariates by w. There are pc continuous covariates and pd discrete covariates.

None Const Box Linear Quad Binary Mixed
g(xi) or h(xi) 0 1

∑
j I{0.5 < xij}

∑
j xij

∑
j x

2
ij wij

∑
j(xij + wij)

(pc, pd) (0, 0) (0, 0) (2, 0) (2, 0) (2, 0) (0, 1) (1, 1)

Table 2: Mean absolute error as proportion of ATT for estimating ITE of treated units under different confounding
regimes. The first column denotes the number of (confounding, treatment, irrelevant) covariates. The second column
denotes the confounding and treatment functions, g and h respectively. Either MIP or Fast performs best in almost all
simulation types. NA denotes inability to make any matches; bold denotes lowest error attained in that setting.

AHB Black Box Benchmark Matching

p
g / h

Method
MIP Fast BART Best CF CEM

Full
Matching GenMatch Mahal

Nearest
Neighbor Prognostic

(0, 0, 2) None / Const 0.09 0.05 0.04 0.25 1.01 0.32 0.36 0.34 0.37 0.25
(2, 0, 0) Box / Const 0.11 0.16 0.24 0.24 0.24 3.03 0.66 0.62 3.05 0.29
(2, 0, 0) Linear / Const 0.17 0.22 0.14 0.26 0.23 0.82 0.38 0.36 0.91 0.28
(2, 0, 0) Quad / Const 0.10 0.04 0.08 0.25 0.22 0.42 0.38 0.37 0.45 0.27
(2, 0, 4) Quad / Const 0.02 0.02 0.02 0.16 NA 0.21 0.12 0.11 0.24 0.04
(1, 1, 0) Box / Box 0.30 0.45 0.65 0.73 0.58 2.59 2.37 1.02 2.30 0.94
(1, 0, 1) Binary / Const 0.02 0.02 0.02 0.09 0.02 0.12 0.49 0.10 0.10 0.09
(1, 1, 6) Binary / Binary 0.06 0.06 0.09 0.17 0.20 0.71 0.97 0.27 0.61 0.18
(2, 0, 0) Mixed / Const 0.07 0.12 0.06 0.09 0.12 0.48 0.15 0.15 0.55 0.10

Table 3: US $ estimates of the effect of a training pro-
gram on future earnings from two observational control
samples. Methods estimate the ATT by matching treated
experimental units to observational control units. The
unbiased experimental ATT estimate is $1794. Estimates
closer to this value are better. Error in parentheses.

Method
Dataset

CPS PSID

Adaptive Hyper-box 1720 (-75) 1762 (-32)
Naive -7729 (-9523) -14797 (-16591)
Full Matching 708 (-1087) 816 (-978)
Prognostic 1319 (-475) 2224 (429)
CEM 3744 (1950) -2293 (-4087)
Mahalanobis 1181 (-614) -804 (-2598)
Nearest Neighbor 1576 (-219) 2144 (350)

matched groups adaptively, works for mixed cate-
gorical and continuous datasets, and produces low-
variance matched groups that can be described with in-
terpretable rules. Code implementing AHB is available
at github.com/almost-matching-exactly/
Adaptive-Binning. Hyper-boxes have a long his-
tory of successful usage in regression and classification
problems. They can produce interpretable predictions
which we have now leveraged to produce interpretable
matches in the context of causal inference.
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