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Abstract

The recent availability of huge, many-
dimensional data sets, like those arising from
genome-wide association studies (GWAS),
provides many opportunities for strengthen-
ing causal inference. One popular approach
is to utilize these many-dimensional measure-
ments as instrumental variables (instruments)
for improving the causal effect estimate be-
tween other pairs of variables. Unfortunately,
searching for proper instruments in a many-
dimensional set of candidates is a daunting
task due to the intractable model space and
the fact that we cannot directly test which
of these candidates are valid, so most exist-
ing search methods either rely on overly strin-
gent modeling assumptions or fail to capture
the inherent model uncertainty in the selec-
tion process. We show that, as long as at
least some of the candidates are (close to)
valid, without knowing a priori which ones,
they collectively still pose enough restrictions
on the target interaction to obtain a reliable
causal effect estimate. We propose a gen-
eral and efficient causal inference algorithm
that accounts for model uncertainty by per-
forming Bayesian model averaging over the
most promising many-dimensional instrumen-
tal variable models, while at the same time
employing weaker assumptions regarding the
data generating process. We showcase the effi-
ciency, robustness and predictive performance
of our algorithm through experimental results
on both simulated and real-world data.
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1 INTRODUCTION

Causal inference is a fundamental topic of research in
the biomedical sciences, where the relationship between
an exposure to a putative risk factor and a disease out-
come or marker is often studied. The gold standard
for answering causal questions — e.g., does an intake
of vitamin D supplements reduce the risk of developing
schizophrenia? — is to perform a randomized controlled
trial (RCT), in which the exposure (treatment) is as-
signed randomly to the participants. The purpose of ran-
domization is to eliminate potential confounding due to
variables influencing both the exposure and the outcome.
Unfortunately, performing an RCT is often unfeasible
due to monetary, ethical, or practical constraints (Ben-
son and Hartz, 2000). On the other side of the fence,
there are vast amounts of medical data available from
observational studies, but estimating a causal effect from
such data is prone to confounding, reverse causation, and
other biases (Sheehan et al., 2008).

With the advent of high-throughput genomics, an enor-
mous amount of observational genetic data has been
collected in large-scale genome-wide association studies
(GWAS). There is great potential in using this genetic
information for strengthening causal inference in obser-
vational designs, where the causal effect is obfuscated
by potentially unmeasured confounding (Visscher et al.,
2017). One popular and powerful systematic approach
that can be exploited is to make use of so-called instru-
mental variables or instruments (Angrist et al., 1996). In
recent years, instrumental variable analysis has become
prevalent in the field of genetic epidemiology under the
moniker Mendelian randomization. Mendelian random-
ization (MR) refers to the random segregation and as-
sortment of genes from parent to offspring, as stated
by Mendel’s laws, which can be seen as analogous to
the randomization induced in an RCT (Hingorani and
Humphries, 2005). In MR studies, genetic variants, such
as the allele at a particular location in the genome, ful-



fill the role of instruments (Lawlor et al., 2008). For
example, a gene encoding a major enzyme for alcohol
metabolism (ALDH?2) has been used as a proxy mea-
sure for alcohol consumption with the goal of investi-
gating the latter’s effect on the risk of coronary heart dis-
ease (Davey Smith and Hemani, 2014).
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Figure 1: Graphical description of the causal model as-
sumed in instrumental variable analyses. In the figure
above, X is the exposure, Y is the outcome variable, G
is the instrument, and U represents potentially unmea-
sured confounding. Note that the association between G
and X need not be causal, but we can assume it here for
simplicity without losing any generality.

Formally, an instrumental variable (IV) is a third variable
in regression analysis that is correlated with both expo-
sure and outcome, but affects the outcome only through
its association with the exposure. A valid instrument fol-
lows the causal model depicted in Figure 1. An IV thus
acts as a proxy for the exposure that is not susceptible
to the same degree of confounding. A key challenge in
instrumental variable methods is finding the right instru-
ment(s) for performing the analysis (John et al., 2019).
Due to the unmeasured confounding of the X — Y asso-
ciation, this model cannot be elucidated from observed
data unless we are willing to make strong assumptions
about the generating process (Cornia and Mooij, 2014;
Silva and Shimizu, 2017).

Genetic variants are particularly suitable as candidate in-
strumental variables, since they are fixed at conception
and more robust against confounding due to environmen-
tal factors (Davey Smith et al., 2007). Nevertheless, the
validity of genetic instruments is also not easily testable
from data. To make matters worse, many genes affect
multiple traits, meaning that the outcome variable Y
could be influenced by G via different causal pathways.
This violation of the instrumental variable assumptions
is known in the Mendelian randomization literature as
horizontal pleiotropy (Chesmore et al., 2018). Horizon-
tal pleiotropy, to which we will refer from now simply as
pleiotropy, is usually shown as a directed arrow from ge-
netic variant (G) to outcome (Y’) and the implied (direct)
causal effect from G to Y is called a pleiotropic effect.

Searching for instruments in a haystack of potentially rel-
evant genetic variants with unknown biological function

is akin to a many-dimensional variable selection prob-
lem. To solve this problem, we adopt a spike-and-slab
prior on the pleiotropic effects (G — Y') to encourage
sparse solutions through selective shrinkage (Ishwaran
and Rao, 2005). The ‘spike’ captures the prior distribu-
tion of coefficients that are close to zero, corresponding
to valid instruments, while the ‘slab’ models the prior
distribution of coefficients that are significantly different
from zero. Even though we do not know a priori which
of the genetic variants are (close to being) valid instru-
ments, by using the wisdom of the crowd (Surowiecki,
2005), where the crowd is the many-dimensional set of
potential candidates, we are able to separate the wheat
from the chaff, as we will later see in Section 5. We show
that, as long as there are at least some valid instruments
to be found in the haystack, the causal effect of interest
can be reasonably estimated by using the proposed prior.

In this work, we consider a general Bayesian causal
model subsuming the IV model in which a large num-
ber of (genetic) covariates have the potential to act as in-
strumental variables. We assume a hierarchical discrete
scale mixture (spike-and-slab) prior on the pleiotropic
effects to consider every possible combination of valid
and invalid instruments. We then introduce an algorithm
(MASSIVE) which we use to perform Bayesian model
averaging (BMA) over this mixture space so as to prop-
erly handle the uncertainty in choosing the covariates
to be used as instruments. The algorithm features two
components: (1) a Markov Chain Monte Carlo Model
Composition (MC3) stochastic search procedure (Madi-
gan et al., 1995) and (2) an approximation procedure
based on Laplace’s method (Bishop, 2006) for determin-
ing the model evidence (marginal likelihood). We show
the robustness and tractability of our approach in both
simulated studies and real-world examples.

2 RELATED WORK

A number of methods have been suggested for select-
ing instrumental variables out of a rich set of candi-
dates. Swerdlow et al. (2016) have outlined a set of
principles for selecting instruments in MR analyses us-
ing a combination of statistical criteria and relevant bi-
ological knowledge. Belloni et al. (2012), on the other
hand, have proposed a data-driven approach for model
selection based on Lasso methods. Agakov et al. (2010)
have built an approach for extracting the most reliable in-
struments by using approximate Bayesian inference with
sparseness-inducing priors on linear latent variable mod-
els. Finally, Berzuini et al. (2020) have developed a
Bayesian solution in which the horseshoe shrinkage prior
is imposed on potential pleiotropic effects. These meth-
ods, however, are designed to select the most likely IV



model and do not account for potential model uncer-
tainty. Moreover, some of these methods require indi-
vidual patient data, which is often unavailable, as input.

A number of model averaging solutions have also been
proposed. Eicher et al. (2009) have used BMA to aver-
age over the set of potential models in the first stage of
two-stage least squares (2SLS), which means that the se-
lection of instruments is based on the strength of their
association with the exposure. The model evidences
are approximated using the Bayesian information cri-
terion (Schwarz, 1978). Eicher et al. (2009) later ex-
tended their approach in (Lenkoski et al., 2014) by also
accounting for model uncertainty in the second stage of
2SLS. In a similar vein, Karl and Lenkoski (2012) devel-
oped the TVBMA algorithm to incorporate model uncer-
tainty into IV estimation by exploring the model space
using stochastic search guided by analytically derived
conditional Bayes factors. More recently, Shapland et
al. (2019) have proposed using the TVBMA approach for
Mendelian randomization with dependent instruments.
The above-mentioned methods, however, work under the
assumption that the chosen candidates are all valid in-
struments. This means that the algorithms are no longer
consistent if any of the IV assumptions are violated.

Gkatzionis et al. (2019) have introduced a comparable
Bayesian model averaging method (JAM-MR) in which
genetic variants likely to exhibit horizontal pleiotropy,
thereby violating the IV assumptions, are penalized via
a pleiotropic-loss function. JAM—MR implements a stan-
dard reversible-jump MCMC stochastic search scheme
for exploring the model space. However, the estimated
causal effect for each model is obtained using the classi-
cal inverse-variance weighted (IVW) estimator (Burgess
and Thompson, 2015), meaning that there is no complete
description of the parameter uncertainty.

3 MODEL

Currently no published method offers a complete
Bayesian solution for handling both the uncertainty in
selecting the most promising candidates out of a many-
dimensional set of potential instruments and the uncer-
tainty in estimating the causal effect using those instru-
ments. We propose to address this shortcoming with our
MASSIVE (Model Assessment and Stochastic Search for
Instrumental Variable Estimation) Bayesian approach,
which is designed to reliably estimate the studied causal
effect as long as at least one of the candidate instruments
is close to valid. This condition is weaker than causal as-
sumptions typically made in related work, e.g., a plural-
ity of the candidate instruments are valid (the most com-
mon pleiotropic effect is zero) or the pleiotropic effects
are balanced (on average they cancel each other out).

Our method incorporates Bayesian model averaging to
further relax the IV causal assumptions by searching for
the most plausible many-dimensional IV models, thereby
properly accounting for uncertainty in the model selec-
tion. Our algorithm provides as output a posterior dis-
tribution over the causal effect that appropriately reflects
the uncertainty in the estimate, as well as posterior inclu-
sion probabilities indicating which candidates are likely
to be valid instruments. Finally, our approach does not
rely on having access to individual-level data, and instead
can use publicly available summary data from large-scale
GWAS as input. This constitutes a significant practi-
cal advantage, as access to information about individu-
als is often restricted, for instance due to privacy con-
cerns (Pasaniuc and Price, 2017).

In our model, we assume that the data is generated from
the following structural equation model (Bollen, 1989):

U:=ey
Gj = g,
X = Z’YjGj +rxU +ex ) (1)

J

Y=Y ;G +ryU+BX +ey
J

The associated generating model is depicted graphically
in Figure 2. We are interested in estimating the (linear)
causal effect from exposure (X) to outcome (Y'), denoted
by 5. To aid estimation, we have measurements from
J covariates, denoted by G;, at our disposal. Each co-
variate is associated in the model with both the exposure
X, via the ~y; parameters, and the outcome Y, via the
o parameters. Finally, the unmeasured confounding is
characterized by the coefficients x x and Ky .

We assume that the noise terms of X, Y, and the unmea-
sured confounder U are normally distributed. We can as-
sume without loss of generality that ey ~ N(0, 1) by ap-
propriately rescaling the confounding coefficients. The
exposure and outcome terms are normally distributed
with unknown scale parameters, i.e., ex ~ N(0,0%)
and ey ~ N(0,02). The random vector (X,Y)|G
then follows the Conditional Gaussian distribution (CG-
distribution in (Lauritzen and Wermuth, 1989)):

V] e~ Aoz

where u(G) = [v By +q TGand T =

Blox + kX) + kxky
o3 + B2o% + (ky + Brx)?|”

ai +/¢§<
B(ok + kX) + kxky

We now assume that N independent and identically dis-
tributed observations D = (G, X;,Y;)1<i<n are drawn
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Figure 2: Graphical description of our assumed gener-
ative model. We denote the exposure variable by X
and the outcome variable by Y. We are interested in
the causal effect from X to Y, which is denoted by
8. The association between X and Y is obfuscated by
the unobserved variable U, which we use to model un-
measured confounding explicitly. The shaded plate indi-
cates replication across the J independent genetic vari-
ants G;,j € {1,2,..., J}. Note that the replication also
applies to the parameters -y; and c;.

from the structural equation model described in (1). The
conditional Gaussian observed data likelihood reads

c ( [ﬂ ‘ G) — (4n?|=) ¥ exp {—gtr(ﬁfls)}, @
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3.1 PRIORS

In order to avoid any scaling issues, we first divide each
structural equation in (1) by the scale of the noise term.
We then define priors on the scale-free interactions. The
scaled structural parameters are

- S 1,
Vi =0G;0x Vjy @ =0G;0y O

8= axo;lﬁ; Fx = U)_(l/ix; Ry = 0;1/11/.

For each scaled pleiotropic effect (&;), we propose a
scale mixture of two normal distributions (Ishwaran and
Rao, 2005), where the scale is determined by the value of
a latent indicator variable ¢;. The component with lower
(higher) variance encompasses our prior belief that the

pleiotropic effect is a priori ‘weak’ / irrelevant (‘strong’

/ relevant). This hierarchical prior is identical to the
one proposed by George and McCulloch (1993) for their
Stochastic Search Variable Selection (SSVS) algorithm.

The standard deviation of the ‘spike’ (lower variance)
component and of the ‘slab’ (higher variance) component
can be set based on our prior knowledge or assumptions
regarding the size of relevant and irrelevant parameters.
For example, George and McCulloch (1993) have pro-
posed a semiautomatic approach for selecting the spike-
and-slab hyperparameters based on the intersection point
of the two mixture components and the relative heights
of the component densities at zero. For the more general
situation when prior knowledge is not available, we pro-
pose a simple empirical approach for choosing these hy-
perparameters starting from the belief (assumption) that
the measured interactions between G and X are all rel-
evant, which we can expect in most analyses since the
first criterion by which potential instruments are chosen
is the relevance of their association with the exposure.
We describe the procedure for empirically determining
prior hyperparameters in the supplement.

For the scaled instrument strengths 7;, we propose a nor-
mal prior with the same variance as the slab component,
under the mild assumptions that genetic interactions with
different traits are of the same size and that the instru-
ment strengths correspond are strong (relevant) interac-
tions. For the causal effect (B) and the confounding co-
efficients (kx and Ky ), we choose a very weakly infor-
mative normal prior proposed by Gelman et al. (2020).
For the scale parameters (o0x and oy ), we propose an
improper uniform prior on the log-scale, corresponding
to Jeffreys’s scale-invariant prior (Gelman et al., 2013).
The final Bayesian generating model is

tj ~ Bernoulli(0.5);
dj ~ N(07 0521ab) + (1 - Lj) N(()? O's2pike);

’73' ~ N(O70521ab); B ~ N(O’ 10);
fix ~N(0,10); Ry ~ N(0,10);
p(logox) o< 1;p(log oy) o< 1;

e~ (e ere] =)

3.2 BAYESIAN MODEL AVERAGING

3)

In our approach we use the general framework of
Bayesian Model Averaging to incorporate the uncer-
tainty in instrument candidate validity by combining the
causal effect estimates from reasonable instrument com-
binations. Instead of relying on a single model for esti-
mating our causal effect 3, we average the estimates over
anumber (K) of promising models, weighing each result



by the model posterior

K
p(BD) =Y p(8| My, D)p(My|D).
k=1

Our assumed generating model in (3) has 2J + 5 param-
eters, @ = (ﬁ,a,ﬁ,kx,/?;y,log ox,logoy), where J
is the number of candidates. There are J latent indi-
cator variables ¢; corresponding to the parameters d;
which indicate whether each parameter is ‘weak’ (gen-
erated by the ‘spike’ component) or ‘strong’ (generated
by the ‘slab’ component). The full multivariate prior thus
is a mixture of K = 27 multivariate Gaussian priors (the
uniform prior on the log-scale parameters can be seen as
a limiting case of a Gaussian prior). We refer to each
mixture component as a different model. The difference
between these models lies solely in the prior beliefs we
assume on the pleiotropic effect strengths.

It is intractable to consider the entire space of 27 models
(multivariate indicator instances), so we instead search
for a subset that best fits the data using MCMC Model
Composition (MC3) (Madigan et al., 1995). If an un-
specified subset of the J candidates are close to being
valid instruments, then only a small number of models
will be a good fit to the data. We can thus obtain a good
approximation of the model posterior probabilities with-
out averaging over the entire model space. The idea of
MC3 is to construct a Markov chain that moves through
the class of models M = {0, 1}7. For each model M we
define a neighborhood consisting of the J models that
have only one indicator variable different than M, and
we allow transitions only into the set of neighbors, with
equal probability. A new model M’ in the neighborhood
is then accepted with probability

min{l,m},

where p(M|D) is the posterior probability of model M.
The posterior probability is given by Bayes’s theorem

DMV
PIMID) = S D)’

where
p(DIM) = /@ p(D|®, M)p(©|M) d®

is the model evidence. Here, the latent indicators ¢; are
part of the model definition and their choice determines
the parameter prior given the model, i.e., p(®|M). As
prior over the model space, we consider the simple uni-
form prior p(M) = 277, This prior corresponds to the
assumption that each parameter is as likely to be ‘rel-
evant’ as ‘irrelevant’ a priori, i.e., ¢; ~ Bernoulli(0.5)

in (3). Other priors on the model space could be easily
accommodated to indicate a prior belief in the presence
or absence of pleiotropic effects.

A key challenge when considering a general approach
such as the one proposed here is estimating the evidence
(marginal likelihood) for each model. Since the integral
is not analytically tractable for the proposed likelihood
and priors, we have to resort to approximation methods.
One idea would be to approximate the evidence with a
nested sampling algorithm (Skilling, 2006), but this pro-
cedure is relatively slow, so we instead propose to ap-
proximate the evidence more efficiently using Laplace’s
method, similar to Rue et al. (2009).

4 ALGORITHM

4.1 FINDING THE POSTERIOR OPTIMA

When sampling a certain combination of indicator vari-
ables, we need to compute the corresponding approxi-
mate model evidence using Laplace’s method. We need
to find local posterior optima over the 2J + 5 param-
eters @ = (¥,a, 5,logox,logoy,kx,Ry). Despite
the simplicity of our chosen priors, we are dealing with
a many-dimensional multimodal optimization problem.
We tackle the issue by first separating our model param-
eters into those pertaining to observed variables, denoted
by B = (7, &, 3,logox,log oy ), and those pertaining
to the unobserved variable, denoted by C= (Fx,FRy).

To guide the optimization, we use the fact that for each
value of the confounding coefficients in C, we can ana-
Iytically derive the maximum likelihood estimate for B.
For the details of deriving the ML estimate, please see
the supplement. Thus, if we attempt to perform inference
via maximum likelihood estimation, we arrive at a two-
dimensional manifold of equally good solutions for the
equation system. We propose to start the posterior opti-
mization procedure from the bivariate ML manifold, for
each considered model. We develop a smart procedure
for choosing starting points on the manifold, described
in the supplement, in which we look for (sparse) parame-
ter combinations where some of the parameters are close
to zero. The optimization initialization list £ is given as
input to the posterior approximation in Algorithm 1.

By analyzing the optimization results in the C space, we
have identified at most five local optima for each model.
Note that these optima constitute pairs that are symmetric
with respect to the origin. This is because the value of the
posterior does not change if we replace (Kx, Ry ) with
(—Kx,—FKy). One possible optimum occurs at the crit-
ical point corresponding to the no confounding scenario,
when the confounding coefficients are close to zero. We



can find this optimum efficiently, if it exists, by starting
the posterior optimization from the maximum likelihood
parameters obtained when setting kx = Ky = 0.

4.2 COMPUTING THE APPROXIMATION

Algorithm 1 Approximate Posterior
Input: data Z = [G;, X;, Yi]1<i<n, model M, opti-
mization initialization list £
for (ix,Ry)in L do
L

® =get ML estimate(Z,kx,Ry)
~ MAP . ~ ML
C] = optimize(posterior(Z,M),® )
~ MAP
LA =Laplace.approximation(® )
~MAP,_ ~ MAP
Save: ®  (kx,Ry),LA(®@ )

end for
Eliminate potential duplicates from optima list;
Compute total model evidence from LA list;

~ MAP
Output: Mixture of LA(® ), model evidence

We conjecture that there are at most five posterior local
optima for any choice of latent indicator variables, which
means that the mixture we intend to use as a posterior
approximation will consist of at most five Laplace ap-
proximations. We can simplify the optimization by using
only three preset initialization points (please see details
in supplement) and symmetry. This is typically sufficient
to find all the local optima in the full parameter space, or
at least the global posterior mode. In Figure 3, we show
an example of posterior surface for which all five local
optima are present. The posterior is projected in the con-
founder space by computing the optimal posterior value
for each pair of values (K x, Ky ). We use the results from
the posterior optimization described above to construct
an approximation to the posterior density using Laplace’s
method. We apply the method to each of the (at most
five) local optima and then approximate the model evi-
dence by computing the normalization constant for the
approximate (unnormalized) posterior, which is a mix-
ture of Laplace approximations (output of Algorithm 1).

4.3 SAMPLING OVER 1V MODELS

We use the approximated model evidence in a MC3
scheme to search over the different models. To improve
the sampling over causal models, we first run a greedy
search procedure to arrive at a good (high-evidence)
starting model. The approximations computed during
this phase are cached and passed on to the MC 3 stochastic
search, after which we prune the explored model list in
line with Occam’s window (Madigan and Raftery, 1994)
and average over the remaining IV models. By pruning
out very-low probabilities estimated models, we arrive at
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Figure 3: Surface of parameter posterior projected in
confounder space, in which five local optima (the black
X marks) can be observed.

a slimmer, less noisy, and more robust BMA posterior.
Finally, we sample the causal effect estimates from the
derived BMA posterior distribution. The full set of steps
are shown in Algorithm 2.

Algorithm 2 MASSIVE (Model Assessment and
Stochastic Search for Instrumental Variable Estimation)
Input: data Z = [Gl, X, Yvi]lSiSN
greedy_start = greedy_search (Z)
model list =MC3_search(Z, greedy_start)
pruned_list = prune(model list)
BM A_posterior = average (pruned_list)
posterior_samples = sample (BM A_posterior)
Output: BM A_posterior, posterior_samples

S EMPIRICAL RESULTS

In this experiment we show that our algorithm is accu-
rate in predicting the (lack of) causal effect from X to
Y when there are least some measured variables that can
act as potential instruments. The first and second order
statistics for the observed variables (G, X,Y") are suf-
ficient statistics for computing the likelihood specified
in Equation (2). If individual-level data is not available,
the sufficient statistics can also be derived from sum-
mary (regression) data, as shown in the supplement. This
means that our approach can leverage the public results
obtained from large-sample GWAS.



The selective shrinkage property of the Gaussian scale
mixture leads to an improved causal effect estimate in
the scenario under investigation. Without any priors on
the pleiotropic effects, the problem is undetermined and
for all values of (kx, Ky') we can find a set of parameters
that maximizes the data likelihood (please see supple-
ment). By introducing sparsifying priors on the param-
eters, however, the symmetry among these different sets
is broken, leading to a preference for smaller values. The
key advantage of the ‘spike-and-slab’ prior is the abil-
ity to distinguish between relevant and irrelevant effects.
We illustrate this difference in Figure 4. With the spike-
and-slab prior, we obtain a much more confident estimate
compared to when using a Gaussian prior. In practice, we
do not know which of the pleiotropic effects are relevant
and which are irrelevant, but with our MASSIVE BMA
approach, we can infer this distinction from data, thereby
significantly improving the causal effect estimate.

Prior [[] Gaussian[ | Oracle [ ] MASSIVE

200

100

Posterior density

-1.3 -1.2 -11 -1.0 -0.9

Figure 4: Comparison of estimated causal effect with
different sparsifying priors when five out of 50 candi-
dates are valid instruments. The true causal effect value
(B = —1.093) is indicated with a dashed vertical line.
Gaussian: We estimate a single model with fixed Gaus-
sian priors on the genetic associations. Oracle: We es-
timate a single model with a spike-and-slab prior, where
the latent indicators on the pleiotropic effects are chosen
to correspond to the ground truth, i.e., ¢; = 0 if the effect
is irrelevant and ¢; = 1 if it is relevant. MASSIVE: We
use a spike-and-slab prior over the pleiotropic effects and
learn the latent indicators with BMA.

We simulated two different scenarios starting from the
setup described in (Gkatzionis et al., 2019): one in which
there is no causal effect (8 = 0), and one in which there
is a strong positive causal effect (5 = 0.3). The other
simulation parameters we varied are the number of gen-
erated observations /N and the noise o, which character-
izes the degree of both intrinsic noise and confounding.
We considered three simulation configurations: (1) N =
103,0 = 1 (less data, less noise); (2) N = 10%,0 = 4

Algorithm JAM-MR — MASSIVE
beta: 0 beta: 0.3
0.8 _
0.6 R N, =
. =~y N '5
0.4- 8
. RN RN -
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0.0
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Figure 5: Comparison of MASSIVE and JAM-MR
results averaged over one hundred simulated data
sets. MASSIVE returns a posterior distribution, unlike
JAM-MR which outputs point estimates. For MASSTVE,
we took the median value as the causal point estimate for
each data set. We then computed the root mean squared
error (RMSE) of the different point causal estimates for
both algorithms, as well as the bootstrapped RMSE con-
fidence interval. We ran JAM-MR using the default set-
tings, according to which a grid search is used to set the
tuning parameter w (Gkatzionis et al., 2019).

(less data, more noise); and (3) N = 10°,0 = 4 (more
data, more noise). The full parameters specifications for
the linear SEM from Equation (1) used in the simulated
experiments are outlined in (4).

N € {10%,10°};J =10; K e€{1,2,..,J};
Vi pj ~ U(0.1,0.9);
Vi v, ~ 0.5+ [N(0.0,0.5%)];
Vi a; ~ £1,<N(0,0.2%);
B € {0,0.3};

kx =Ky =o0x =oy =0 € {1,4}.

4)

We illustrate the simulation results in Figure 5, where we
compare our approach against the competing JAM-MR
algorithm (Gkatzionis et al., 2019). We report the root
mean square error (RMSE) as a measure of estimation
precision. As expected, the estimate generally improves
with the number of valid instruments and with noise re-
duction for both algorithms. In the first configuration, the
(potential) instruments are strong, accounting for about



60% of the variability in X, while in the other two con-
figurations, they are weak, accounting for around 10% of
the variability. The last configuration is typical for MR
studies, which are characterized by large sample sizes but
small genetic associations (Davey Smith and Hemani,
2014). Our approach is competitive in the first (less data,
less noise) and third (more data, more noise) configura-
tion, and much more robust than JAM—MR for the second
configuration (less data, more noise).

6 REAL-WORLD APPLICATIONS

6.1 DETERMINANTS OF MACROECONOMIC
GROWTH

Algorithm [] ivoma [] MASSIVE

2 225

2 2

8 15' % 20-
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Figure 6: Left: Estimated effect of institutions (rule of
law) on macroeconomic growth Right: Estimated effect
of economic integration on macroeconomic growth. We
used empirically determined values for the MASSIVE
hyperparameters oy, and ogpike.

In this experiment, we use MASSIVE to model un-
certainty in macroeconomic growth determinants on a
data set compiled by Rodrik et al. (2004). This data
set has been previously analyzed by Karl and Lenkoski
(2012) using the IVBMA approach. The goal of the
analysis was to find the best determinants (markers) of
macroeconomic growth. Karl and Lenkoski (2012) found
strong evidence indicating institutions, as measured by
the strength of rule of law, and economic integration as
the leading determinants of macroeconomic growth. In
their analysis, they split the data into the two endogenous
variables (exposures), rule of law and integration, four
potential instrumental variables and 18 additional covari-
ates. The authors treat these two types of variables dis-
tinctly in their model: the instrumental variables are only
associated with the exposure, while the covariates are as-
sociated with both exposure and outcome. In our model,
these two types of variables are considered the same as
we do not make any assumptions regarding the candi-
dates’ validity a priori, but instead attempt to learn it

from the data. Since the TVBMA model does not include
location parameters, an intercept term is included in the
data set, which we also use when running MASSIVE. In
Figure 6 we compare the results obtained with MASSIVE
and IVBMA on the macroeconomic growth data set. The
output of MASSIVE is in line with previously computed
estimates and provides further evidence for a significant
causal effect of institutions (rule of law) and economic
integration on macroeconomic growth.

6.2 INVESTIGATING THE RELATIONSHIP
BETWEEN BMI AND PSORIASIS

40-

Posterior density
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Figure 7: The posterior estimate of the causal effect of
BMI, measured in kg m~2, on the log-odds of psoria-
sis risk obtained when running the MASSIVE algorithm
with empirically determined hyperparameters. The ver-
tical lines correspond to the results (estimate and error
bars) from the IV analysis performed by Budu-Aggrey
et al. (2019) on the UK Biobank data set.

Psoriasis is a common, chronic inflammatory skin dis-
ease, which affects approximately 2-4% of the popula-
tion. Psoriasis is presumed to be influenced by both ge-
netic and environmental risk factors, as there are a num-
ber of recognized determinants such as family history,
smoking, stress, obesity, and alcohol consumption (Parisi
et al., 2013). Establishing a causal link between obe-
sity and psoriasis would be of great clinical interest both
for understanding the precise mechanism underlying the
association and for guiding treatment recommendations.
Recently, Budu-Aggrey et al. (2019) have attempted to
quantify this putative causal relationship by perform-
ing an instrumental variable analysis using 97 single-
nucleotide polymorphisms (SNPs) associated with the
Body Mass Index (BMI), a common measure of obesity,
as genetic instruments. Their study provides evidence
that higher BMI leads to a higher risk of psoriasis. The



authors report that “higher BMI causally increased the
odds of psoriasis by 9% per 1 unit increase in BMI”.

In this experiment, we have reproduced their analysis us-
ing the MASSIVE algorithm. We have applied our ap-
proach on the UK Biobank data set analyzed in (Budu-
Aggrey et al., 2019), containing 5,676 psoriasis cases
and 372,598 controls. Our algorithm returned 58 mod-
els, which were used to compute the model mixture pos-
terior approximation. We then sampled 105 parameter
posterior samples from the mixture. In Figure 7 we show
the posterior density estimate for the causal effect 3. The
result obtained is very similar to that reported in (Budu-
Aggrey et al., 2019). It provides further evidence for in-
creased BMI leading to a higher occurrence of psoriasis.

7 DISCUSSION

It is crucial to take model uncertainty into account when
making inferences so as to mitigate the pitfalls of model
misspecification (Hoeting et al., 1999). Bayesian Model
Averaging (BMA) is a principled approach of incorpo-
rating this uncertainty into the analysis, but it is lim-
ited in scope due to the intractability of evaluating the
model evidence for a considerable number of interest-
ing models. In light of the computational limitations,
the researcher often turns to approximating the evidence,
but common solutions such as the BIC approximation
might not be suitable for complex models (Fragoso et al.,
2018). Through a combination of clever model choices
and a hybrid inference scheme, combining MC 3 stochas-
tic search with fast Laplace approximations, MASSIVE
is the first algorithm that can provide a reliable posterior
estimate of the causal effect in IV settings with hundreds
of candidate instruments.

Our proposed model provides a flexible and general so-
lution for instrumental variable analyses. Thanks to the
‘spike-and-slab’ type prior on the interaction strengths,
potential background knowledge regarding the sparsity
and effective size of interactions can easily be incorpo-
rated into the model in an intuitive fashion. In this work,
we have chosen to model the confounding coefficients
explicitly in order to provide a unified view of causal in-
teractions. Another possibility would have been to model
the confounding effect as variance terms in a correlated
errors model (Jones et al., 2012), a possibility we leave
for future work.

In our Bayesian approach, we have proposed simple but
flexible priors both over the model and parameter space
to permit a more accurate approximation of the poste-
rior using Laplace’s method. This approach allows for
a tractable search through the model space, and param-
eter samples can be immediately derived from the ap-

proximation. The approach also lends itself to straight-
forward parallelization. In future work we plan to re-
fine and speed up the process by, for example, includ-
ing more starting points in the optimization procedure
and distributing them across multiple cores. Further-
more, there is great potential in combining our approach
with other means of (pre-)selecting instruments such as
Lasso-based methods (Belloni et al., 2012) or the sparse
IV (SP1IV) approach (Agakov et al., 2010).
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