
Sensor Placement for Spatial Gaussian Processes with Integral Observations

Krista Longi1, Chang Rajani1, Tom Sillanpää2, Joni Mäkinen2,
Timo Rauhala3, Ari Salmi2, Edward Hæggström2, Arto Klami1
1Department of Computer Science, University of Helsinki, Finland

2Electronics Research Laboratory, Department of Physics, University of Helsinki, Finland
3Altum Technologies, Finland

Abstract

Gaussian processes (GP) are a natural tool for
estimating unknown functions, typically based
on a collection of point-wise observations. In-
terestingly, the GP formalism can be used also
with observations that are integrals of the un-
known function along some known trajecto-
ries, which makes GPs a promising technique
for inverse problems in a wide range of phys-
ical sensing problems. However, in many real
world applications collecting data is laborious
and time consuming. We provide tools for op-
timizing sensor locations for GPs using inte-
gral observations, extending both model-based
and geometric strategies for GP sensor place-
ment. We demonstrate the techniques in ultra-
sonic detection of fouling in closed pipes.

1 INTRODUCTION

GPs are widely used for modeling unknown functions,
thanks to the closed-form posterior inference conditional
on noisy observations. Importantly, this property holds
also for observations corresponding to any linear opera-
tor of the function, such as derivatives and integrals [Ras-
mussen and Williams, 2006]. Derivative observations are
frequently used in modeling dynamical systems [Solak
et al., 2003], whereas use of integral observations has
been limited to a few recent applications [O’Callaghan
and Ramos, 2011, Jidling et al., 2018, Purisha et al.,
2019, Jidling et al., 2019, Tanaka et al., 2019, Law et al.,
2018, Hamelijnck et al., 2019].

We consider problems where the goal is to estimate an
unknown spatial (in our case two-dimensional) function
based on a collection of observations that are integrals of
that function (Figure 1), computed along some known
paths defined by the sensing configuration. Examples
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Figure 1: Solving a spatial inverse problem with line in-
tegral observations. Left: An unknown function is mon-
itored by a collection of 9 sensors, each transmitting a
signal that can be recorded by each of the other sensors.
Middle: Illustration of two slices of the function along
two example integration paths. Right: Mean estimate of
the function, conditional on noisy observations of all 36
line integrals induced by the 9 sensors.

that map to this general problem formulation include
laser scanners [O’Callaghan and Ramos, 2011], tomo-
graphic reconstruction [Jidling et al., 2018, Purisha et al.,
2019], and ultrasonic structural health monitoring [Lu
and Michaels, 2009] and fouling detection. For example,
in the case of X-ray computed tomography, the observa-
tions measure the attenuation of the x-rays when trans-
mitted through an object [Purisha et al., 2019].

In most cases the observations are collected by pairs of
transmitting and receiving sensors: each observation cor-
responds to a signal originating from the transmitter that
is recorded at the receiver, and the underlying function
has point-wise effect on some property of the propagat-
ing signal, e.g., modulating its amplitude, frequency con-
tent, phase or velocity. For a practical inverse problem,
a critical question concerns the placement of the sensors.
Individual sensors are often expensive and setting up the
sensors can be laborious and time consuming. In the case
of CT scans, each additional measurement also increases
the patient’s radiation exposure. In this work we focus
on selecting optimal sensor locations before any mea-



surements are made, as required in typical scenarios that
require engineering effort for setting up the sensing con-
figuration, but note that the techniques could be extended
for active selection on additional sensors conditional on
current measurements [Krause and Guestrin, 2007].

Sensor placement has been extensively studied for point
observations [Krause et al., 2008, Sakiyama et al., 2016].
Model-based solutions evaluate the expected improve-
ment of the function estimate for possible locations, mea-
suring e.g. reduction of entropy or increase in mutual
information as a proxy. Model-independent solutions ig-
nore the GP and optimize for locations using geomet-
ric arguments [González-Banos, 2001] or black-box op-
timization of an objective characterizing the quality of
the sensor set [Garnett et al., 2010]. The latter are often
computationally more efficient, but naturally disregard
information about the underlying model.

We extend both strategies of sensor placement for inte-
gral observations. Now each sensor induces several ob-
servations corresponding to multiple propagation paths,
determined by the type of the sensors and the underlying
geometry. The model-based solutions build directly on
the earlier results, extended here to support multiple new
observations being induced by individual sensors. The
geometric approaches build on the line arrangement (see
Agarwal and Sharir [2010] for an overview) that char-
acterizes the sensor configurations in terms of intersec-
tions (vertex) of the lines and the segments (edges) and
polygons (faces) induced by those, and optimize fitness
functions derived for the arrangement.

We empirically characterise the behavior of the various
sensor placement strategies for a few 2D geometries.
The main experiment considers ultrasonic localization of
fouling in closed metal pipes [Sillanpää et al., 2019]. Ul-
trasonic Lamb waves sent from a transmitter propagate
along the pipe with group velocity depending on the ma-
terial properties and thickness, and any fouling on the
(inner) surface influences the velocity. Hence, time-of-
flight difference between measurements of fouled and
clean sections of a pipe can be analyzed as line integrals
over the spatial fouling distribution. For practical use we
want to minimize the number of sensors. As a sensor op-
timization problem this is interesting since each receiver
records multiple integrals corresponding to different he-
lical paths along the surface, as illustrated in Figure 2.
Here we study the problem on simulated data, but the
feasibility of ultrasonic fouling localization with line-
integral GPs has been demonstrated for real measure-
ment data on one sensor setting [Sillanpää et al., 2019].

2 BACKGROUND

A Gaussian process [Rasmussen and Williams, 2006]
f ∼ GP (m(x), k(x,x′)) is specified by a prior mean
function m(x) and a prior symmetric positive-definite
kernel function k(x,x′). Most kernels have hyperparam-
eters that determine the prior correlation structure, typi-
cally learned by maximizing the marginal likelihood.

We want to predict the function at test points x∗ by con-
ditioning on the observed data, and for conjugate normal
likelihood we obtain the distribution in closed form. For
observations yi = f(xi) + εi, where εi ∼ N (0, σ2), the
predictive distribution is a normal N (µ,K) with

µ = Kx∗x(Kxx + σ2I)−1y,

K = Kx∗x∗ −Kxx∗(Kxx + σ2I)−1KT
xx∗

(1)

where [Kxx]ij = k(xi, xj), [Kxx∗ ]ij = k(xi, x
∗
j ) and

[Kx∗x∗ ]ij = k(x∗i , x
∗
j ).

2.1 GP WITH INTEGRAL OBSERVATIONS

GPs are closed under linear operators [Rasmussen and
Williams, 2006]: If L is a linear operator and f ∼
GP (m(x), k(x, x′)), then Lf is GP with

E[Lf(x)] = Lm(x),

cov(Lf(x),Lf(x′)) = LxLTx′K(x, x′).

Consequently, we can make predictions of the function
f(x) based on observations of linear operators, such as
derivatives [Solak et al., 2003, Wahlström, 2015] or inte-
grals [Jidling et al., 2018, Law et al., 2018].

We consider setups where the observations yi are noisy
values for line integrals

yi = ||wi||
∫ 1

0

f(wit+ pi)dt+ εi,

where pi is the start point of the line and wi defines its
direction and length, so that the set of points along the
line is provided by pi+twi for t ∈ [0, 1]. Throughout the
work we assume εi ∼ N (0, σ2) to retain conjugacy, and
denote by li the line corresponding to the observation.

The covariance between a line li and a point x∗i is

k(li, x
∗
i ) = ||wi||

∫ 1

0

k(wit+ pi, x
∗
i )dt, (2)

and the covariance between two lines li and lj is

k(li, lj) = ||wi||||wj ||
∫ 1

0

∫ 1

0

k(wit+pi,wjs+pj)dtds.

(3)
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Figure 2: Illustration of the measurement setup of the ultrasonic fouling detection task (left, with additional high-power
transducers attached for eventual cleaning), and the corresponding line integral GP formulation operating on flattened
surface of the pipe (right). Ultrasonic waves are transmitted from, here, a single transducer on the left and the arrival
times of the waveform is recorded at receiving sensors, so that a single line integral observation is obtained for each
possible helical path along the surface, here shown up to 2nd order (solid: direct, dashed: 1st order, dotted: 2n order)
for one receiver. A virtual copy of the 5th sensor is drawn on a virtual continuation of the surface to illustrate how the
helical paths are formed. The task is to select a small number of sensor locations that allow accurate estimation of the
location and thickness of potential fouling. The left figure is reproduced from [Sillanpää et al., 2019] with permission.

Given these quantities, the posterior GP can be com-
puted by (1) simply using li in place of xi. However,
evaluating these integrals is challenging. For arbitrary
kernels pure numerical integration can be used, but for
(3) it has quadratic complexity in terms of the number
of evaluation points L along the line [O’Callaghan and
Ramos, 2011]. For special cases more efficient strategies
are possible: Hendriks et al. [2018] provides algorithm
with linear complexity in L for the RBF kernel by ana-
lytical integration of the inner integral, and in the Sup-
plement we derive fully analytic expressions for rational
quadratic kernel with α = 2, useful for cases that require
extremely fast computation. For sufficiently smooth sta-
tionary kernels a practical alternative to direct evaluation
is using a finite spectral approximation on a Hilbert space
[Solin and Särkkä, 2014, Jidling et al., 2017].

2.2 SENSOR PLACEMENT FOR GP

The question of sensor placement for spatial functions
is widely studied for direct point observations [Krause
et al., 2008, Krause and Guestrin, 2007, Zhu and Stein,
2006, Seo et al., 2000, Garnett et al., 2010]. The sensor
locations can be selected before making any measure-
ments [Krause et al., 2008], or by sequentially selecting
the next location based on observations for previously se-
lected sensors [Krause and Guestrin, 2007]. We focus on
the former case because for most physical applications
setting up the sensors is time-consuming and needs to be
carried out in advance, but note that the strategies pre-
sented here could be extended for sequential procedures.

Next, we outline the research on model-based methods

and geometric approaches for point observations, as nec-
essary for understanding the rest of the paper.

2.2.1 Model-based approaches

An optimal sensor configuration maximizes some mea-
sure of information content. For most measures solving
for optimal combination is NP-complete [Ko et al., 1995,
Krause et al., 2008], and practical algorithms are typi-
cally greedy, selecting one sensor at a time from a finite
subset of possible locations V .

Various selection criteria have been presented. The en-
tropy criterion [Cressie, 1991, Shewry and Wynn, 1987]
measures the conditional entropy of a set of sensors A
for the unobserved locations V\A, providing sensors A
that are most uncertain about each other:

A∗ = argminA⊂V:|A|=N H (V\A|A)
= argmaxA⊂V:|A|=N H(A)

In practice, the sensor locations y are added sequentially
to maximize the increase in conditional entropy:

y∗ = argmaxyH(y|A) = argmaxy
1

2
log(2πeσ2

y|A).

(4)

Algorithms maximizing mutual information I(·, ·) (MI)
[Caselton and Zidek, 1984] search for sensors A that are
most informative about the unsensed locations V\A:

A∗ = argmax I(A;V\A).



In practice, we solve for [Krause et al., 2008]:

y∗ = argmaxyH(y|A)−H(y|V\(A ∪ y))

∝
σ2
y|A

σ2
y|V\(A∪y)

. (5)

Entropy only considers the selected locations, and thus
tends to place sensors far from each other (often along
the borders of the area of interest) [Ramakrishnan et al.,
2005]. MI often leads to higher prediction accuracies,
but also requires more computation and becomes unfea-
sible with large sets of possible locations, although com-
putational tricks like lazy evaluation with priority queues
can help [Krause et al., 2008].

2.2.2 Geometric approaches

Geometric approaches use the geometric properties of
the measurement space and heuristics characterizing the
receptive field to select the sensors, and provide arrange-
ments independent of the modeling approach. For exam-
ple, González-Banos [2001] assumed every sensor can
sense perfectly within a fixed radius while providing no
information outside of it, leading to art-gallery optimiza-
tion problem of covering the area with as few sensors as
possible. For such formulations there often exist clas-
sical geometric analysis and algorithms, here the disk
model of Kershner [1939].

3 OPTIMIZING LINE SENSORS

In this section we discuss aspects that need to be ac-
counted for with integral observations. Eventually we
will be able to utilise much of the mathematical machin-
ery already developed for point-observation sensors, but
the details depend on the sensing configuration and ge-
ometry, characterized by the following aspects illustrated
in Figure 3: (a) The set of possible transmitter and re-
ceiver locations, provided either as discrete sets (Vt and
Vr) or continuous areas (Tt and Tr). (b) The type of sen-
sors; see Section 3.1 for details. (c) The area of interest
I, typically a subset of some simple Euclidean geometry,
for which we want to estimate the function.

The solution also depends on choices such as the opti-
mization principle (model-based or model-independent)
and its details (e.g. information measure and choice of
kernel for model-based). We start with the general as-
pects, and then proceed to elaborate the possibilities of
how the problem can be solved in Sections 4 and 5.

3.1 SENSING CONFIGURATION

Each point-observation sensor provides one observation.
For line integral observations, instead, each measure-
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Figure 3: The task is to select small number of transmit-
ters (blue) and receivers (green), amongst discrete sets
(nodes) or along a continuous curve (colored line), with
possible locations either outside or inside the area of in-
terest I. The solid lines indicate observations induced by
the selected sensors (darker color) for the Paired Sensors
type. The dashed lines indicate additional observations
obtained if using Separate Transmitters and Receivers,
and the dotted lines further observations recorded by
Universal Sensors.

ment is induced by a pair of sensors, one transmitting
the signal and the other receiving it. The relationship
between sensors and measurements depends on the spe-
cific sensing setup, with three distinct alternatives as il-
lustrated in Figure 3:

1. Paired Sensors: Each receiver listens to only one
transmitter. Each observation matches a single pair
and hence 2N sensors induceM = N observations.

2. Separate Transmitters and Receivers: The sen-
sors are split into two groups and each receiver lis-
tens to all transmitters. For Nt and Nr sensors in
the two groups, we get M = NtNr observations.

3. Universal Sensors: We have a collection of N sen-
sors, each acting in turn both as transmitter and re-
ceiver, listening to all other sensors. This results in
a total of M = N(N − 1) observations.

The first case applies e.g. to cases where physically mov-
ing an object from one location is required for making a
single observation. For example, to study the friction of
a surface we might slide a disk across the surface, and
separate measurement is required for each observation.
This scenario is analogous to the point-observation case,
since each choice (of two sensors) independently induces
a measurement. Consequently, classical algorithms can
be used as such, by simply making choices amongst the
tuples of transmitters and receivers.



Most sensing systems based on wave propagation map to
the second case. An example most readers can relate to
would be a set of microphones (receivers) recording au-
dio signals originating from a set of loudspeakers (trans-
mitters). Every microphone receives all signals (but at
different times and amplitudes), and the loudspeakers
can be scheduled so that only one of them sends a signal
at any given time. The third case generalizes the second
one, by using sensors that can both transmit and receive
a signal, e.g. because they consist of multiple physical
devices (microphone and loudspeaker) or they can inher-
ently perform both tasks (e.g. human observer). Again
the signals can typically be encoded in time so that all
measurements corresponding to one transmitter can be
recorded simultaneously, without inference from others.

For the latter two cases, the optimization problem does
not reduce to that of point-observation sensors. The op-
timization is carried out in the space of sensors, but the
evaluation depends on the measurements that depends on
multiple sensors. That is, we are optimizing for sensors
via a set of measurements induced by them.

3.2 LINE ARRANGEMENT

For analysing the set of lines induced by the sensors, the
geometric concept of line arrangements is useful. In-
stead of a collection of start- and endpoints, any set of
line segments can equivalently be represented by the set
of vertices, edges and faces formed by the geometric pat-
tern, a partitioning of the space, they induce [Agarwal
and Sharir, 2010]. Here vertex refers to an intersection
of two lines, an edge is a line segment between two ver-
tices, and a face is a polygon induced by edges and ver-
tices. The arrangement can be constructed, starting with
the sensor locations, in O(M2) time for M lines using
various algorithms, such as topological sweeping [Edels-
brunner and Guibas, 1989] that constructs the arrange-
ment one line at a time.

The arrangement provides e.g. the locations of line inter-
sections and the number and length distribution of edges,
which can be useful: Intuitively, covering the area with
many lines, vertices and short edges could be good. The
computational geometry literature also has pre-computed
arrangements (or families of arrangements) for exam-
ple with maximal number of triangle faces [Grunbaum,
2009] that can be used. In other words, line arrangements
provide computationally feasible basis for determining
sensor locations based on geometric arguments.

3.3 AREA OF INTEREST

The optimal placement is naturally relative to the area
of interest I, in our case some subset of the 2D space,

and its geometry. Even though we limit the analysis here
to 2D surfaces, they may be wrapped in 3D spaces (e.g.
surface of an object), which influences the line arrange-
ment induced by the sensors. The set of possible sen-
sor locations V (or T ) can be outside or inside the area;
the case of sensors outside the area is more common in
physical sensing configurations, but all of the algorithms
presented here are applicable also for cases where (some
of) the sensor locations can be within the area.

An important aspect regarding I concerns the assumed
support S of the function f(x), the area for which f(x)
can be non-zero. The case of S ∈ I is easy, requiring
sensor arrangement that covers S ∩ I. For cases where
f(x) can be non-zero outside I it is important to remem-
ber that the sensors correspond to integral over the whole
line li, and hence sensors outside I are influenced also by
the points for which pi + twi ∈ S but pi + twi 6∈ I.
Consequently, we need to estimate f(x) also outside I
to make sure we can estimate it within it.

4 MODEL-BASED APPROACHES

Section 2.2.1 reviewed the greedy optimization for point
sensors based on entropy and MI criteria. For Paired Sen-
sors the equations (4) and (5) can be used as is, by simple
re-formulation of the notation. Now the set of all possi-
ble sensors V is formed by a cartesian product of Vt and
Vr – the sets of possible locations for transmitters and
receivers – and we denote the line induced by any partic-
ular choice of s1 ∈ Vt and s2 ∈ Vr by l. We denote by B
all the lines induced by already selected sensors, and the
next optimal sensor pair can be solved by

(s1, s2)
∗ = l∗ = argmaxlH(l|B)

in the case of entropy criterion and analogously for MI.

For the Universal Sensors case every new sensor s in-
duces M ′ new line observations lsm ∈ J s, one for all
other sensors (separate transmitters and receivers is spe-
cial case of this). We can compute the uncertainty reduc-
tion for each of these independently, but in order to select
the best new sensor we need to summarize the informa-
tion provided by all M ′ new observations. We consider
three intuitive alternatives:

s∗a = argmaxs argmaxlH(lsm|B),
s∗b = argmaxs argminlH(lsm|B),

s∗c = argmaxs
1

M ′

M ′∑
m

H(lsm|B).

The first one favors sensors that induce one new obser-
vation we are maximally uncertain of, the middle one
favors sensors for which all new observations are at least
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Figure 4: Example of different summaries resulting in
different choices. In the case of universal sensors and
square area, the 5th sensor is placed differently when we
use minimum as the summary (left) compared to mean
and maximum (right).

somewhat uncertain, and the last one makes a compro-
mise by simply taking the mean. As these optimize for
different things, different summaries might work better
in different situations. Figures 4 and 9 show examples
where the summary strategy makes a difference.

The above formulas are for the entropy criterion, but the
MI criterion is completely analogous, replacing H(ls|B)
with H(lsm|B)−H(lsm|P\(B ∪ J sm)), where P denotes
the set of all possible lines – the need to compress M ′

new observations into a single quantity remains. How-
ever, the computational complexity of MI is much higher
than the entropy as it requires comparisons against all
possible line induced by the allowed sensor locations.

5 GEOMETRIC APPROACHES

Geometric approaches for line integral sensor placement
build on line arrangements explained in Section 3.2. The
idea is to find such a sensor set that the arrangement
spans I well, at least by edges but ideally also by ver-
tices that help in localizing the function along the lines.

Next, we describe a particular geometric optimization al-
gorithm designed for cases where the sensors are to be
placed on one-dimensional surfaces Tt and Tr, without
discretizing the set of options1. This is done for two
reasons: (1) Model-based solutions necessarily require
discrete locations and we want to demonstrate sensor op-
timization for a scenario not supported by them, and (2)
optimizing over discrete locations reduces to binary pro-
gramming and is easy to implement (but slow to optimize
due to exponential complexity) with generic solvers.

For one-dimensional optimization surface T we can for-
mulate a continuous optimization problem: All locations
are parameterized by a real-valued scalar θi that indicates
the distance along the curve from some starting point.

1We present the details for Universal Sensors with Tt = Tr;
the other cases are analogous but require two parameter vectors.

For convenience of notation, we assume the length of the
curve to be 1, such that the parameters all fall into [0, 1].
A collection of N sensors can then be parameterized in
identifiable manner using unconstrained parameter vec-
tor φ ∈ RN+1 representing the gaps between ordered
sensors, such that

θi =

∑
j≤i e

φj∑N+1
j=1 eφj

for i ∈ 1, . . . , N. (6)

The last element in φ is required since there are N + 1
gaps between N sensors and the two end points.

We can now optimize for arbitrary functions d(·) of the
line arrangement induced by the placements. For dif-
ferentiable functions (e.g. distances of points and lines)
we can use gradient-based optimization with automatic
differentiation, but for more general cases (functions in-
volving vertices) we resort to black-box global optimiza-
tion methods, specifically, Bayesian optimization (BO)
[Pelikan et al., 1999] that has previously been used for
sensor set optimization by Garnett et al. [2010]. Since
box constraints are easy in BO, we use φi ∈ [0, 1] and
drop the exponent in (6).

Besides directly optimizing for the objective, one can
also build regular grid arrangements based on intuitive
reasoning or predetermined line arrangements with de-
sirable properties [Grunbaum, 2009]. One interesting op-
tion for the case T being a circle is to use regular n-gons
that place theN sensors evenly. This reduces the number
of parameters to be deteremined to one, the orientation of
the n-gon, resulting in extremely fast optimization that
still finds good sensor configurations (Section 6.1.1).

6 EXPERIMENTS

We conduct a range of experiments to characterize the
differences of the algorithms and illustrate the value of
sensor selection. We start with artificial data examples
for a simple geometry, and then apply the methods for
selecting sensor locations for two practical applications
of CT scans and ultrasonic fouling detection.

6.1 ARTIFICIAL DATA

We compare both model-based and geometric algorithms
for a simple geometry where I is a square with 0 ≤
x, y ≤ 5 and Universal Sensors are used. We consider
two separate sensor placement settings: (a) the space is
discretized into a 5x5 grid of evenly spaced points, allow-
ing sensors to be placed at 25 different locations inside
the area. (b) the sensors are placed on a smallest circle
(T ) surrounding the area of interest, which is discretized
into 48 locations for model-based algorithms. We use



the rational quadratic kernel amenable to closed-form in-
tegrals (Supplement), with lenghtscale = 1, σ2

f = 1, and
the noise variance σ2

noise = 1. We present here the re-
sults for estimating one particular f(x), measuring the
quality by root mean squared error (RMSE); see Supple-
ment for results on multiple functions.

6.1.1 Model-based Sensor Optimization

Figure 5 (left) compares the entropy and MI criteria us-
ing different summary strategies (mean, min, max) in set-
ting (a). Here entropy criterion, which prefers long lines,
is more accurate, and the different summary strategies
provide very similar results. We also compared the two
strategies (using mean summary) against simple base-
lines of random choices (averaged over three runs) and
placing the sensors according to the same criteria but
evaluated for point sensors (Fig. 5 (middle)). It clearly
pays off to explicitly search for sensors good for line in-
tegral observations, instead of simpler heuristics.

6.1.2 Geometric Sensor Optimization

We demonstrate two geometric algorithms for setting
(b): (1) directly optimizing all the locations using the
parametrization proposed in Section 5 (denoted by Ge-
ometric), and (2) placing sensors evenly (n-gon), while
only optimizing for the rotation (denoted by Optimized).
We experiment on two different heuristic loss functions
d(·): the largest euclidean distance to the closest line, and
the largest distance to the closest vertex (intersection of
two lines), to illustrate possible arrangement-based ob-
jectives. Figure 6 gives the surrogate losses as a function
of sensors (N ), and illustrates how the two algorithms
differ in their placement. Both losses provide similar
placements, but the vertex one is slower since forM lines
there are O(M2) vertices.

Finally, Figure 5 (right) compares the results against
model-based solution, applying the entropy criterion for
discretized locations along the circle (Entropy (circle)) as
well as to the sensor configuration (a) that allows place-
ment also within the area (Entropy). Allowing sensors
everywhere in the area results in highest accuracy, as
expected, but the geometric algorithms outperform the
model-based ones in setting (b) due to the discretization
of possible locations for the latter.

6.2 SIMULATED CT SCAN

In X-ray computed tomography (CT) X-rays are sent
through an object, and the measured observations repre-
sent the attenuation of the x-rays. Purisha et al. [2019]
demonstrated that line-integral GPs improve on tradi-
tional methods such as filtered back projection (FBP)

[Purisha et al., 2019], for fixed sensor configuration of
nine imaging angles (see Supplement for details).

Sensor placement here corresponds to optimizing the an-
gles from which the beams are sent. We let the model-
based algorithm with Entropy (mean) select nine sensors
amongst a set of 18 evenly based possible angles, and
show that the inference result matches in accuracy (mea-
sured by peak-signal-to-noise ratio, PSNR, and relative
error, RE) the one computed for commonly used configu-
rations for CT scan (Figure 7). That is, we demonstrated
we can find essentially an optimal sensor configuration
without requiring any knowledge of the problem domain.

6.3 ULTRASOUND PROPAGATION

We demonstrate the techniques in a cleantech applica-
tion. The task is to non-invasively estimate a spatial map
characterizing the thickness of fouling inside a closed
structure, here a pipe, used for determining when the
structure has to be cleaned (Fig. 2). We have previously
shown the feasibility of line-integral GPs for this task
on real physical sensing configuration for one manually
chosen sensor setting [Sillanpää et al., 2019].

A transducer attached to the outer surface of the pipe
transmits an ultrasonic Lamb wave, which travels along
the pipe and can be measured at any location with an-
other transducer. The group velocity of the wave packet
for a given material and geometry is known, and hence
time of arrival y0i at any location for a clean pipe can
be computed numerically (see, e.g., Lowe [1995]). Any
fouling at the surface of the pipe changes the velocity at
that location. If we denote by y1i the arrival time cor-
responding to a wave traversing along a path li, then
yi = y1i − y0i corresponds to a line integral of the as-
sumed fouling f(x) with noise induced e.g. by the arrival
time detection and physical coupling of the sensors2. For
details on ultrasound propagation on layered metal struc-
tures, see e.g. Rose [2014] and Brekhovskikh [2012].

We want to minimize the number of transducers, to re-
duce the cost and manual labor required for coupling the
transducers. The configuration corresponds to Separate
transmitters and receivers, but with additional observa-
tions induced due to the cylinder geometry – each re-
ceiver can record the arrival times for all helical paths up
to some reasonable order (for high-order paths detecting
arrival times becomes difficult).

We use here simplified simulated data that directly mod-
els the velocity changes induced by fouling, since col-
lecting physical measurements or full simulatitons of

2The sensor records waveform, which can be converted into
arrival time by detecting peaks of the envelope of the signal.



Figure 5: Estimation errors for different sensor placement strategies for one example function (depicting also the GP
mean for 12-sensor solution). Left: Comparison of the summary strategies for entropy and MI. Middle: Comparison
of entropy and MI for baseline methods. Right: Comparison of model-based and geometric approaches.
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Figure 6: Illustration of geometric arrangements for setup where the gray square is the area of interest I and sensors
are placed on the black circle T . Left: Optimizing the rotation of a n-gon (orange) matches the solution of freely
optimized sensor placements (blue) for even number of sensors, but for odd numbers we can find better placements
by explicitly optimizing for each sensor. Middle and Right: The optimal sensor arrangements for N = 5 for two
optimization criteria; the first covers the area with lines, whereas the latter does it with vertices. For the latter case the
two methods give identical results – only one is shown.

Figure 7: Means of the GP fit for nine sensor locations
chosen using entropy (middle) and the even spacing typ-
ically used for CT scans (left). The true image (right)
is reconstructed with comparable accuracy, with the pro-
posed method here having slight edge.

the acoustic field for extensive set of possible locations
would be infeasible. We generated six functions sim-
ulating possible fouling in a pipe with radius 35mm
and length 300mm. We use the Matern32 kernel (l =
15, σ2

f = 0.5, σ2
noise = 0.001) with numerical integra-

tion to allow evaluation of the higher order paths; we use
paths up to 2nd order.

For model-based sensor placement we allow for 20 pos-
sible transducer locations at five angular placements on
four circles around the pipe, split so that two circles are
dedicated for transmitters and the other for receivers, and
consider two sensing configurations: In one we only use
one transmitter, corresponding to the setup of Sillanpää
et al. [2019], whereas in the other the algorithm can al-
ways decide whether the next sensor is transmitter or re-
ceiver. Figure 8 shows the RMS error for both settings,
with intuitive results. Increasing the number of sensors
always helps, and allowing for multiple transmitters pro-
vides significant advantage. It turns out to be optimal to
maintain roughly balanced number of transmitters. Fig-
ure 9 shows the optimal placements for six transducers
for different algorithms, including the result of geometric
placement when allowing free placement of the sensors
along two belts around the pipe.
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Figure 8: Mean function estimation accuracy over six
functions for alternative sensor configurations optimized
with the entropy criterion. The dashed lines assume only
one transmitter, whereas the solid lines can freely select
how many of the sensors are transmitters and receivers.
For N = 6 the geometric algorithm can match the best
model-based result.
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Figure 9: Optimal placements for six sensors for differ-
ent algorithms. Entropy (max) selects also sensors within
the area, while others favor sensors at the border.

7 DISCUSSION

Even though posterior inference of Gaussian pro-
cesses for integral observations is relatively straightfor-
ward, they have been used only in few applications
[O’Callaghan and Ramos, 2011, Purisha et al., 2019,
Tanaka et al., 2019]. For increasing use of the promis-
ing machinery in empirical sciences, an important prac-
tical question concerns the choice of sensors used for
gathering the information. This work is the first one
considering this problem, characterizing the various as-
pects that need to be accounted for while selecting the
sensors, including identification of possible sensor types
and their relationship to the integral observations for a
given geometry. We covered the concept of line arrange-
ments [Agarwal and Sharir, 2010] as basis for model-
independent selection strategies, and extended classical
model-based strategies [Krause et al., 2008] for line in-
tegral sensors. For model-based strategies we demon-
strated how the entropy criterion favors longer lines than
mutual information, and in our experiments typically re-
sulted in better configurations while also having clear
speed advantage. We also showed qualitative differences

in final configuration corresponding to how the infor-
mation for different observations induced by the sensor
configuration is combined, but cannot draw clear conclu-
sions on which strategy is to be preferred since it depends
on the geometry and assumptions on the underlying func-
tion.

We illustrated how both approaches find good sensor
configurations for example 2D geometries, and demon-
strated their use in two practical applications. For CT
scanning we found a configuration providing equally
good reconstructions as the commonly used one (expect-
ing to outperform it would be unreasonable), and for ul-
trasonic fouling detection we demonstrated how using
balanced number of transmitters and receivers helps.

In this work we focused on pre-selection of sensors inde-
pendent of the measurement data, matching typical ap-
plication needs. However, the model-based techniques
could be extended for active selection. In addition, exist-
ing knowledge of the physical properties are easy to ac-
count for similar to the point-observation sensors, such
as different costs depending on the location or the type
of the sensor [Krause et al., 2008] or weighting of lines
based on measurement quality.
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Supplementary material for Sensor Placement for Gaussian Processes with
Integral Observations

1 EXPERIMENTS

In this section we provide more detailed descriptions of
some of the experiments presented in the paper as well
as additional results.

1.1 ARTIFICIAL DATA

We perform experiments on nine additional functions to
show that the results are consistent to the ones presented
in the paper. The results replicating comparisons be-
tween different model-based methods are presented in
Figure 1, and results replicating experiments for geomet-
ric approaches are presented in Figure 2.

The functions evaluated are

f1(x, y) = −
1

2
|sin(x) cos(y)e|1−

√
x∗∗2+y∗∗2/π||

f2(x, y) =
1

600

(
x+ y2 − 7

)2
+

1

600

(
x2 + y − 11

)2
f3(x, y) =

1

50
(sin2 3πx+ (x− 1)2(1 + sin2 2πy)+

(y − 1)2(1 + sin2 2πy))

f4(x, y) = 0.26(x2 + y2)− 0.48xy

f5(x, y) =
1

120
(x+ 2y − 7)

2
+

1

120
(2x+ y − 5)

2

f6(x, y) = sin(x/2)2 sin(y/2)2

f7(x, y) = cos(x/2)2 sin(y/2)

f8(x, y) =
1

600

(
x− y2 − 7

)2
+

1

600

(
x2 − y − 11

)2
f9(x, y) = −20 exp

[
−0.2

√
0.5 (x2 + y2)

]
− exp [0.5 (cos 2πx+ cos 2πy)] + e+ 20

f10(x, y) = sin(x) cos(y)

where f1 is the Hölder table function, f4 Matyas function
and f8 is the Ackley function[Ackley, 1987], f5 is based
on the Booth function, f3 on the Lévi function and f2
on the Himmelblau’s function [Himmelblau, 1972]. The

observations are line integral values computed for these
functions with added Gaussian noise (with 0 mean and
0.01 variance).

1.2 CT SCAN

In this experiment we follow the setup of Purisha et al.
[2019]. As ground truth, we use one slice (128 × 128)
of 3D Chest dataset [Matlab], which is shown in Fig-
ure 3 (right). We use 9 projections, and for each pro-
jection we get 128 lines, yielding a total of 1152 lines.
The measurements are computed using the radon com-
mand in scikit-image and by adding Gaussian noise
with zero mean and 0.001 variance. We use the Hilbert
space approximation of the Matern kernel with ν = 1
and amount of basis functions m = 104. For more infor-
mation on GPs for CT scan see Purisha et al. [2019].

For the sensor placement, we use a kernel with
lenghtscale l = 8.5, and σ2

f = 0.03, σ2
noise = 0.15.

We let the entropy algorithm select nine sensors amongst
a set of 18 evenly based possible angles with differ-
ent summary strategies. Filtered back projection (FBP)
baseline is computed using the iradon command in
scikit-image.

We show that the result corresponds roughly with the
commonly used configurations for CT scan (even place-
ment) (Figure 3). In fact, in this geometry even ran-
dom placement performs fairly well when considering
the measurements, however, the picture is clearly blur-
rier. The angles we retrieve with for example using en-
tropy (mean) are [0, 90, 40, 130, 70, 160, 20, 110, 60].

1.3 ULTRASOUND PROPAGATION

In this experiment, the area of interest (I) is a surface of
a pipe with length 300mm and radius 35mm. We use the
Matern32 kernel (l = 15, σ2

f = 1, σ2
noise = 0.1) with

numerical integration to allow incorporating the second
and/or third order flight paths. In practice, in the numeri-



Figure 1: RMS error for different sensor placements for the true function presented in the left. Middle: Comparing
strategies for computing MI and entropy. Right: Comparing MI and entropy to other baseline strategies.

cal integration, we move the points that are outside of the
circumference of the pipe ([−35π, 35π]) inside this area
by adding/subtracting the period length (70π). Another
option would be to have a periodic kernel that takes these
second and third order paths into account.

As artificial data we generated functions simulating pos-
sible fouling in the pipe. For this purpose, the fouling is
represented by 5 relatively smooth continuous functions
(scaled to [0,1]):

f1(x, y) = cos(x/50)2 sin(y/100)

f2(x, y) = sin(x/90)2 sin(y/90)2

f3(x, y) = sin(x/35)2 sin(y/35)2

f4(x, y) = cos(x/100)2 sin(y/150)

f5(x, y) = sin(x0.02857) cos(y ∗ 0.01)
f6(x, y) = sin(x0.02857) sin(y ∗ 0.02857)

To study the behaviour of the entropy criterion, we con-
sider two different cases: 1) we allow transducers to be
placed at 20 different locations at five angular placements
on four circles around the pipe, so that transmitters are
located on the two first circles and receivers on the two
last. 2) By placing one transmitter at [0, 0], and allowing
the algorithm to place receivers on 20 different locations
on two circles around the pipe.

Figure 4 shows the root mean squared error between the
mean of a GP fit and the true function for the six function
described above for these two different cases. Clearly al-
lowing the algorithm to decide which type of sensors to
place is beneficial. We also include the result of geomet-
ric placement, where the locations were optimized using
the parametrization proposed in Section 5. We allowed 3
transmitters and 3 receivers to be placed on two continu-
ous lines (the (T ) in this case) at the ends of the pipe.

In addition, we simulate cases where fouling is repre-
sented as different sized rectangles placed at different po-



sitions in the pipe. The true functions as well as the GP fit
for these with six sensors using the described strategies
are presented in Figure 6.

2 ANALYTIC COMPUTATION OF THE
KERNEL

We consider setups where the observations y are noisy
values for line integrals

yi = ||wi||
∫ 1

0

f(wis+ pi)ds+ εi,

where pi is the start point of the line and wi defines its
direction and length, so that the set of points along the
line is provided by pi + twi for t ∈ [0, 1].

Then, the covariance between an line observation li and
a test point x∗ with a kernel function k is defined as

k(li,x
∗) = ||wi||

∫ 1

0

k(wit+ pi,x
∗)dt, (1)

and the covariance between two line observations li and
lj is defined as

k(li, lj) = ||wi||||wj ||
∫ 1

0

∫ 1

0

k(wit+pi,wjs+pj)dtds.

(2)

For a configuration of K observations and L evaluation
points for the function, we need to compute integral (1)
KL times and the integral (2)K(K−1) times in order to
obtain the posterior GP. The core challenge in practical
applications of line integral GPs is efficient computation
of these. As the line-vs-line case involves a double inte-
gral, it is in general considerably more challenging, but
for large L also efficient evaluation of the simpler case is
important.

Avoiding approximations and numerical integration
would be ideal, but no analytic solutions for the line-vs-
line case have been presented. The question of whether
this can be done depends integrally on the kernel, and
there are no clear indicators on when it is possible. In
this work we show that for the special case of ratio-
nal quadratic kernel with α = 2 we can do it, and
later make remarks on possible other alternatives. Ta-
ble 1 illustrates the practical effect of this, by compar-
ing the relative computational costs of the proposed ana-
lytic computation against semi-analytic [Hendriks et al.,
2018] and numeric evaluation [O’Callaghan and Ramos,
2011]. Already for s = 10 the analytic solution has 40-
fold speedup compared to full numeric integration, and
for the more accurate s = 100 (which would be needed
for accurate integration of e.g. near-parallel lines – see
Table 1 in Hendriks et al. [2018]) the analytic integral is
also 17 times faster than the semi-analytic solution.

Table 1: Comparison of running times (in milliseconds
for each entry of the kernel matrix) for analytic, semi-
analytic and fully numeric integration.

Number Analytic Semi-Analytic Numeric
s=10 s=100 s=10 s=100

Kxx O(K2) 0.07 0.17 1.2 2.78 273.4
Kxx∗ O(KL) 0.02 0.02 0.02 0.25 2.45

2.1 RATIONAL QUADRATIC

In this section, we present the full analytical integrations
for the rational quadratic kernel (RQ) with α set to be 2:

k(xi,xj) = σ2

(
1 +

1

2α
rTijVrij

)−α
= σ2

(
1 +

1

4
rTijVrij

)−2
.

2.1.1 Line vs. Point

Following the notation of Hendriks et al. [2018], we de-
note the vector between an arbitrary point x∗ and a point
along the line pi + twi by ri, which results in

rTi Vri = (wi + vi)
TV(wi + vi),

where vi = pi − x∗. This further simplifies into c1t2 +
c2t+ c3, where

c1 = wT
i Vwi, c2 = 2wT

i Vvi, c3 = vTi Vvi.

Thus, we are solving the equation

K(xi,x
∗
k) = ||wi||

∫ 1

0

(1 +
1

4
(c1t

2 + c2t+ c3)−2dt,

for which the solution is given by

K(xi,x
∗
k) = 16||wi||(

2c1 + c2
A(c1 + c2 + c3 + 4)

− c2
A(c3 + 3)

+
4c1 tan

−1( 2c1+c2√
A

)

A
3
2

−
4c1tan

−1( c2√
A
)

A
3
2

),

where A = 4c1(c3 + 4)− c22

2.1.2 Line vs. Line

Again following the notation of Hendriks et al. [2018],
and writing uij = pi − pj , we get

rTijVrij = (wit−wjs+ uij)V(wit−wjs+ uij)

= a− bs+ ct− dst+ et2 + fs2,



where

a = uTijVuij , b = 2uTijVwj , c = 2uTijVwi

d = 2wT
j Vwi, e = wT

i Vwi, f = wT
j Vwj .

Then the equation we are solving for is

K(xi,xj) = ||wi||||wj ||
∫ 1

0

∫ 1

0

(1 +
1

4
rTijVrij)

−2dtds,

and the full result of the equation is given by

K(xi, xj) = 16||wi||||wj ||(
−B12tan

−1( c−d+2e
A12

)

A12
+

B22tan
−1( 2f−b−d

A22
)

A22

D

−
−B11tan

−1( c−d
A11

)

A11
+

B21tan
−1( 2f−b

A21
)

A21

D

−
−B12tan

−1( c−d
A12

)

A12
+

B22tan
−1( 2f−b

A22
)

A22

D

+

−B11tan
−1( c

A11
)

A11
+

B22tan
−1( −b

A21
)

A21

D
)

where

A11 =
√
−c2 + 4e(4 + a)

A12 =
√
−c2 + 2cd− d2 + 4e(4 + a− b+ f)

B11 = cd− 2be

B12 = B11 − d2 + 4ef

A21 =
√
−b2 + 4f(4 + a)

A22 =
√
−b2 − 2bd− d2 + 4f(4 + a+ c+ e)

B21 = bd− 2cf

B22 = B21 + d2 − 4ef

D = −bcd+ (4 + a)d2 + b2e+ (c2 − 4(4 + a)e)f

2.1.3 Lines with the same start point

Due to D becoming zero when the two lines start from
the same point, we need to give special consideration to
this case. We can then rewrite the equation as follows:

K(xi,xj) = ||wi||||wj ||
∫ 1

0

∫ 1

0

(1 +
1

4
(et2 −

dts+ fs2))−2dtds

=
tan−1( 2e−dA )

A
+
tan−1( 2f−dB )

B

−
tan−1(−dA )

A
−
tan−1(−dB )

B

where

A =
√
4e(f + 4)− d2 B =

√
4f(e+ 4)− d2

2.1.4 Parallel lines

We also need to give special consideration when the two
lines are parallel. In this case, we can write wi = γwj ,
and rewrite

c = 2γb d = 2γf, e = γ2f

The equation we are solving then becomes

K(xi,xj) = ||wi||||wj ||
∫ 1

0

∫ 1

0

(1 +
1

4
(a− bs+ 2

γbt− 2γfst+ γ2ft2 + fs2))−2dtds

= 32||wi||||wj ||
1

A( 3
2 )p

[

2f tan−1(
B11√
A
) + (b+ 2fp) tan−1(−B11√

A
)

+ b tan−1(
−B00√
A

)− 2f tan−1(
B10√
A
)

− b tan−1(−B10√
A

)− (b+ 2fp) tan−1(
−B01√
A

)],

where

A = −b2 + 4(4 + a)f

B11 = b− 2f + 2fp B01 = b+ 2fp

B10 = b− 2f B00 = b

2.2 ON OTHER KERNELS

The above derivations show that RBF kernel is amenable
to single integration in analytic fashion, whereas the RQ
kernel with α = 2 has analytic expression also for the
line-vs-line case. Here we briefly discuss the feasibility
of analytic integrals for other kernels of interest. We start
by noting that similar derivation could be carried out also
for e.g. α = 1 for the RQ kernel, but doing it for α > 2
seems difficult. The case of α → ∞ corresponds to the
RBF kernel and hence has no fully analytic solution for
the line-vs-line case.

Regarding other kernels, the first important observation
is that both RBF and RQ are parameterized by rTVr,
the squared distance. Many of the other frequently used
kernels, such as the Matern kernels, the exponential ker-
nel, and the Wendland’s piecewise polynomial kernels
[Wendland, 2005] are parameterized by |r| instead. The
integrands are then functions of

√
c1s2 + c2s+ c3 (for

line-vs-point) or
√
a− bs+ ct− dst+ et2 + fs2 (for

line-vs-line), where the square root considerably com-
plicates analytic integration.

For the Matern kernel we have not been able to compute
even the line-vs-point scenario analytically, and hence



recommend using the spectral approximation by Purisha
et al. [2019] and Jidling et al. [2018]. The exponential
kernel e−|r|/l, in turn, is similar to the RBF kernel: it has
closed-form solution for line-vs-point but only allows for
semi-analytic solution for the line-vs-line case because
of the error function.

Finally, for the low-order instances of the Wendland’s
piecewise polynomial kernels with compact support
[Wendland, 2005], such as (1 − |r|)bD/2c+q+1

+ , we can
compute both the line-vs-point and the line-vs-line cases
analytically. However, the expressions are lengthy poly-
nomials, reaching several dozens of terms for the latter
case. Combined with the fact that geometric analysis
would be needed to determine the area of integration due
to the compact support, we do not recommend using an-
alytic integrals; it would likely be less efficient than nu-
merical integration.
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Figure 2: RMS error computed for different amount of sensors on 9 different functions using geometric and model-
based sensor placement strategies.



Figure 3: Means of the GP fit for 9 sensor locations chosen using entropy (mean, max, min), evenly spaced sensors as
well as random selection. We also compare against filtered back projection (FBP).
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Figure 4: RMSE computed between a true functions and a GP mean with different sensor placement settings using the
entropy criterion. One transmitter refers to a setting where we allow only one transmitter, whereas in the second case
we let the algorithm to decide whether to add new transmitters or receivers at each step.



Figure 5: Mean of a GP fit with six sensors. The locations of the sensors have been obtained using entropy criterion
with different summary strategies, as well as with the geometric approach. We also include the case where we allowed
only one transmitter while optimizing for the receiver locations (One transmitter)).



Figure 6: Mean of a GP fit with six sensors, where the locations have been obtained using the entropy criterion with
different summary strategies.


