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Abstract

Causal inference quantifies cause effect rela-
tionships by means of counterfactual responses
had some variable been artificially set to a con-
stant. A more refined notion of manipulation,
where a variable is artificially set to a fixed
function of its natural value is also of inter-
est in particular domains. Examples include
increases in financial aid, changes in drug dos-
ing, and modifying length of stay in a hospital.

We define counterfactual responses to manip-
ulations of this type, which we call shift inter-
ventions. We show that in the presence of mul-
tiple variables being manipulated, two types of
shift interventions are possible. Shift interven-
tions on the treated (SITs) are defined with re-
spect to natural values, and are connected to
effects of treatment on the treated. Shift in-
terventions as policies (SIPs) are defined re-
cursively with respect to values of responses
to prior shift interventions, and are connected
to dynamic treatment regimes. We give sound
and complete identification algorithms for both
types of shift interventions, and derive efficient
semi-parametric estimators for the mean re-
sponse to a shift intervention in a special case
motivated by a healthcare problem. Finally, we
demonstrate the utility of our method by using
an electronic health record dataset to estimate
the effect of extending the length of stay in the
intensive care unit (ICU) in a hospital by an ex-
tra day on patient ICU readmission probability.

1 INTRODUCTION

Establishing cause effect relationships is a fundamental
goal in data-driven empirical science and decision mak-
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ing. An influential approach to causal inference quan-
tifies causal effects by means of responses to an inter-
vention operation, which manipulates variables to attain
specified values, possibly contrary to fact. This interven-
tion operation is denoted by do(.) in (Pearl, 2009), and
is used to define potential outcome random variables in
wide use in statistics and public health (Neyman, 1923;
Rubin, 1976).

Other kinds of intervention operations have been con-
sidered in the literature. Dynamic treatment regimes
(DTRs), used in precision medicine and related applica-
tions (Chakraborty and Moodie, 2013), manipulate vari-
ables to values that depend on causally prior variables.
Edge and path interventions (Shpitser and Tchetgen Tch-
etgen, 2016) manipulate variables to distinct values with
respect to different causal pathways the variables are in-
volved in. These interventions have been used to quan-
tify direct, indirect, and path-specific effects in mediation
analysis. Soft interventions (Eberhardt, 2014) “nudge”
variables (or the data-generating process for variables)
away from their natural state, rather than manipulating
them to attain specific constant values. A recent type of
intervention of this sort that manipulates the propensity
score was considered in (Kennedy, 2019).

In this paper we consider a particular type of soft inter-
vention where variables are manipulated to attain values
given by fixed functions of their existing values. We call
such interventions shift interventions. Shift interventions
arise in settings where the counterfactual change of in-
terest is most naturally expressed in terms of existing re-
alizations of variables to be manipulated. Examples of
such settings include changes in drug dosing, increases
in financial aid, or policy deviations from an existing
standard in medical, social, or economic domains. We
show that in the presence of multiple variables being ma-
nipulated, two types of shift interventions are possible.
Shift interventions on the treated (SITs) are defined with
respect to their naturally observed values, and are con-
nected to effects of treatment on the treated (ETTs) (Sh-
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Figure 1: (a) A causal graph representing a single treatment cross-sectional study. (b) A causal graph representing
a two stage observational study, with a first line treatment A, and a second line treatment B. (c) A causal graph
representing a two stage observational study, where the second line treatment B is not assigned using intermediate
outcomesW . (d) The latent projection representing the front-door causal model. (e) The latent projection representing
the bow arc causal model. (f) A class of latent projections representing failure of identification of SITs in Theorem 4.

pitser and Pearl, 2009). Shift interventions as policies
(SIPs) are defined recursively with respect to values of
responses to prior shift interventions, and are connected
to dynamic treatment regimes. Despite these connec-
tions, responses to shift interventions are distinct types
of counterfactuals, and we show their identification gives
rise to subtleties not present in identification of either
DTRs or ETTs.

We give sound and complete identification algorithms
for both types of shift interventions, and derive an ef-
ficient semi-parametric estimator for the response to a
shift intervention in a special case motivated by a health-
care problem. Finally, we demonstrate the utility of our
method by using an electronic health record dataset to
estimate the effect of extending the length of stay in the
intensive care unit (ICU) in a hospital by an extra day on
patient ICU readmission probability.

2 PRELIMINARIES

Causal inference aims to establish a link between ob-
served random variables V ≡ {V1, . . . , Vk} and coun-
terfactual random variables Vi(a), which denote the re-
sponse of Vi had variables A ⊆ V been manipulated,
possibly contrary to fact, to obtain values a. The dis-
tribution over Vi(a) is denoted by p(Vi|do(a)) in (Pearl,
2009). Counterfactuals quantify causal effects as con-
trasts defined by two manipulations, representing treat-
ment and control arms of a hypothetical randomized con-
trolled trial (RCT). For example, the average causal ef-
fect (ACE) is defined as E[Y (a)]−E[Y (a′)], where Y is
an outcome variable, and A are one or more treatment
variables manipulated to values a representing treat-
ments of interest, or values a′ representing the baseline
treatments in the control group.

An elegant formalism for defining causal models uses
directed acyclic graphs (DAGs). A DAG is a directed
graph with no directed cycles. In a causal model repre-
sented by a DAG G, each vertex in G corresponds to a

variable (we will use the same letter, e.g. Vi, for both).
For each Vi, the set of variables with directed arrows into
Vi in G, denoted as parents of Vi, or pa(Vi), is the set of
direct causes of Vi, in the following sense. We assume
the existence of atomic counterfactual random variables
of the form Vi(a), for each value set a in Xpa(Vi), the
state space of pa(Vi). We use these random variables
to define other counterfactuals by means of the recursive
substitution definition. For any Vi ∈ V,A ⊆ V , we have

Vi(a) ≡ Vi(apa(Vi), {W (a) :W ∈ pa(Vi) \A}). (1)

As an example, consider the DAG G in Fig. 1 (a), repre-
senting an observational study with a single treatment A
(representing a drug dose), an outcome Y , and a vec-
tor of baseline covariates L. Given G, atomic coun-
terfactuals are of the form L, A(l), Y (a, l), for any
values a, l in X{A,L}. Further, we define Y (a) using
(1) as Y (a, L). Note that (1) allows definitions of the
form A(a, L) ≡ A(L) ≡ A, since A 6∈ pa(A), and
A 6∈ pa(L).

Causal models are defined by restrictions on counter-
factual random variables. We will work with a popular
model called the structural causal model (Pearl, 2009),
which asserts the following marginal independences:

{V1(a1) : a1∈Xpa(V1)} ⊥⊥ . . . ⊥⊥ {Vk(ak) : ak∈Xpa(Vk)}.

In our example, these assert

L ⊥⊥ {A(l) : l ∈ XL} ⊥⊥ {Y (a, l′) : a, l′ ∈ X{A,L}}.

Causal models such as the structural causal model al-
low counterfactual quantities such as p(Y (a)) to be ex-
pressed in terms of the observed data distribution. If
all variables in the causal model are observed, every
p(V (a)) is identified by the following functional:

p(V (a)) =
∏
Vi∈V

p(Vi| pa(Vi) \A, apa(Vi)), (2)

known as the extended g-formula. If A is empty, we
have

p(V ) =
∏
Vi∈V

p(Vi| pa(Vi)), (3)



which is the well-known Bayesian network factorization
of the observed data distribution p(V ) (Pearl, 1988). In
other words, assuming a causal model on a DAG G im-
plies the observed data distribution p(V ) factorizes ac-
cording to G as in (3), and all interventional distributions
p(V (a)) are identified by modified versions, as in (2), of
this factorization.

In our example, p(V (a)) = p(Y (a), A, L) is identi-
fied as p(Y |a, L)p(A|L)p(L). If we are only interested
in p(Y (a)), we simply marginalize the modified fac-
torization appropriately to yield the adjustment formula∑
L p(Y |a, L)p(L).

Generalized Interventions and Targets of Inference

Before describing shift interventions, we consider two
related counterfactual quantities considered in the causal
inference literature. Aside from the example in Fig. 1 (a),
we will also consider the causal model in Fig. 1 (b) repre-
senting an observational study with two treatments A,B
given in stages. A is given based on a set of baseline
characteristics L, and would represent the primary treat-
ment in healthcare contexts. W represents an intermedi-
ate outcome, whileB, given based on values of L,A,W ,
would represent salvage therapy or second line treatment
in cases of poor response to A. Y represents the final
outcome of interest.

For a single treatment A, the effect of treatment on
the treated (ETT) is defined as E[Y (a)|A = a] −
E[Y (a′)|A = a]. Such an effect can be viewed as a
version of the ACE among the set of people naturally
exposed to a particular level of the treatment. For ex-
ample, ETT compares the effect of smoking one pack of
cigarettes a day to smoking nothing in the set of people
who happen to smoke one pack of cigarettes a day. In
the causal model represented by Fig. 1 (a), the ETT is
identified as E[Y |a]−∑

C E[Y |a′, C]p(C|a).
For multiple treatments, the effect of treatment
on the multiply treated is defined similarly. In
Fig. 1 (b), this effect is defined as E[Y (a, b)|a, b] −
E[Y (a′, b′)|a, b]. While it can be shown that in
Fig. 1 (b) the ACE E[Y (a, b)] − E[Y (a′, b′)] is
identified as

∑
L,W E[Y |W,L, a, b]p(W |b, L)p(L) −

E[Y |W,L, a′, b′]p(W |a′, L)p(L), the ETT is not iden-
tified. This is due to the fact that the second term of the
ETT is a function of variables Y (a′, b′) andB, where the
former is defined via (1) as Y (a′, b′,W (a′, L), L), while
the latter is defined via (1) as B(W (A,L), A(L), L). In
other words, the ETT is a function of a joint distribu-
tion containing p(W (a′),W ) as a marginal, which is not
identified under the structural causal model. This issue is
described in detail in (Shpitser and Tchetgen Tchetgen,

2016).

The ACE and the ETT, where variables are manipulated
to constants in order to mimic RCTs, are contrasts of
substantive interest in applied settings such as econo-
metrics and public health. In settings such as precision
medicine, variables are manipulated based on observed
patient characteristics, with the aim of improving posi-
tive outcomes or minimizing harmful ones. The result-
ing counterfactuals are defined as follows. For every
Ai ∈ A to be manipulated, define a set Li ⊆ V \ A to
be some set of variables not causally determined by Ai
(graphically, this means there is no directed path from
Ai to any element in Li in G). Given a set of functions
f ≡ {fi : XLi

7→ XAi
|Ai ∈ A}, we define the response

Y (f) to setting values of each Ai ∈ A according to its
corresponding function fi as

Y({Ai=fi(Li(f)):Ai∈pa(Y )∩A},{W(f) :W∈pa(Y )\A}),

by analogy with (1). As an example, in the model
shown in Fig. 1 (a), given a function fA : XL 7→ XA,
Y (fA) ≡ Y (A = fA(L), L). Similarly, in the model
shown in Fig. 1 (b), given functions fA : XL 7→ XA,
and fB : XL,W 7→ XB , Y (fA, fB) ≡ Y (L,A =
fA(L),W (L,A = fA(L)), B = fB(L,W (L,A =
fA(L)))). Here the second response of Y is defined ac-
cording to value ofB set by fB using values ofW recur-
sively determined by counterfactually setting A accord-
ing to fA. Functions in the set of f above are also known
as dynamic treatment regimes (DTRs).

As before, if all variables in a causal model are observed,
p(V (f)) is identified for any set A ⊆ V , and set of func-
tions fA ≡ {fi : Ai ∈ A} by the following variation of
(2):∏
Vi∈V

p(Vi|{Ai = fi(Li) : Ai ∈ pa(Vi) ∩A}, pa(Vi) \A).

Responses of specific variables in V to A being set
according to f is obtained from the above formula by
marginalization, as before. As an example, p(Y (fA)) =∑
L p(Y |A = fA(L), L)p(L) in Fig. 1 (a).

Having described the ETT and responses to DTRs, we
are now ready to describe shift interventions. Assume
we are interested, in Fig. 1 (a), in the outcome Y had
the drug dose A been changed from its given value a by
a known function fA. We define such a counterfactual,
by analogy with (1) as Y (A = fA(A), L). Note that
unlike Y (a), each person in the data is assigned a poten-
tially different dose, as would be the case for responses to
DTRs. However, unlike DTR counterfactuals, the func-
tion only uses values of A as inputs.

Assuming A,B in Fig. 1 (b) also represent drug doses
administered over time, we may be interested in how the
outcome Y changes had drug doses been changed from
their values by known functions fA, fB . Note that there
are two ways to define such a counterfactual, which di-
verge in how the second treatment A2 is manipulated.



One definition might consider the response of Y to the
first treatmentA being given by a fixed function fA of the
observed treatment A, and the second treatment B being
given by a fixed function fB of the observed treatmentB.
This response Y (A = fA(A), B = fB(B)) is defined as
Y (A = fA(A), B = fB(B),W (A = fA(A), L), L).
Another definition might consider the response of Y to
the first treatment A being given by a fixed function fA
of the observed treatment A, and the second treatment
B being given by a fixed function fB of the treatment
B observed in the world where the first treatment A was
counterfactually shifted according to fA. This response
Y (A = fA(A), B = fB(B(A = fA(A)))) is defined
as Y (L,A = fA(A),W (L,A = fA(A)), B = fB(B̃)),
where B̃ ≡ B(L,A=fA(A),W (L,A=fA(A))).

We call the first definition shift interventions on the
treated (SITs), and the second definition shift interven-
tions as policies (SIPs). Unsurprisingly, identification
theory for SITs bears some similarity to that of ETTs,
while identification theory for SIPs bears some similar-
ity to that of DTRs, although in both cases new subtleties
present themselves.

SITs are of interest whenever deviations from current
best practices are investigated. For instance, responses to
SITs would be the correct counterfactual to use in health-
care settings to investigate the effect of dosing changes
from an existing standard. SIPs are of interest when vari-
able manipulations have a compound effect, and there-
fore effects of prior shift interventions on intermediate
outcomes must be taken into account. For instance, re-
sponses to SIPs could be used to evaluate changes to
financial aid, or a medical treatment administered over
time with a compound effect. SIPs have been described,
under a different name, in section 5.1 in (Richardson and
Robins, 2013).

Before describing identification theory for SITs and
SIPs, we give their general definitions, using a modifi-
cation of (1). Fix f ≡ {fi : XAi

7→ XAi
|Ai ∈ A}. By

analogy with (1), we define for any Y ∈ V , the counter-
factual response Y (f(A)) to SITs on A as

Y({Ã=f̃(Ã) :Ã∈A∩pa(Y )},{W(f(A)) :W∈pa(Y )\A}),

and the counterfactual response Y (f) to SIPs on A as

Y({Ã=f̃(Ã(f)) :Ã∈A∩pa(Y )},{W(f) :W∈pa(Y )\A}).

3 IDENTIFICATION UNDER FULL
OBSERVABILITY

We first describe identification theory for SITs and SIPs
in cases where all variables in a causal model are ob-

served. Identification for SIPs in fully observed models
is given by the following result.

Theorem 1 Fix A ⊆ V , and a set of functions f ≡ {fi :
XAi 7→ XAi |Ai ∈ A} in a fully observed functional
causal model given by the DAG G. Then p(V (f)) is iden-
tified and equal to∏
Vi∈V

p(Vi | {Ai = fi(Ai) : Ai ∈ pa(Vi)}, pa(Vi) \Ai).

For example, given fA, fB in Fig. 1 (b),
p({L,A,W,B, Y }(fA, fB)) is identified as
p(L)p(A|L)p(W |A = fA(A), L)p(B|W,A =
fA(A), L) p(Y |B = fB(B),W,A = fA(A), L),
and so p(Y (fA, fB)) is equal to∑

L,W,A,B

p(Y |B=fB(B),W,A=fA(A),L)p(L)p(A|L)

p(B|W,A = fA(A), L)p(W |A=fA(A),L).

That is, identification of responses to SIPs in fully ob-
served models resembles identification of DTRs.

Now let us consider identification of responses to SITs. It
turns out that even if the causal model is fully observed,
SITs may not be identified if multiple treatments are ma-
nipulated simultaneously, due to the same issue that pre-
vents identification of ETTs. We have the following re-
sult.

Theorem 2 Fix disjoint A, Y ⊆ V , and a set of unre-
stricted functions f ≡ {fi : XAi

7→ XAi
|Ai ∈ A} in a

fully observed functional causal model given by the DAG
G.

Fix the set of all directed paths π in G which start with
Ai ∈ A, end in some element inA∪Y , and which do not
intersect elements inA∪Y otherwise. Then p(Y (f(A)))
is identified if and only if there are no two elements in π
which share the first edge and where one path ends in an
element in A, and another path ends in an element in Y .
Moreover, if p(Y (f(A))) is identified, it is equal to∑

Y ∗\Y

∏
Vi∈Y ∗\Ỹ

p(Vi|pa(Vi))×

∏
Vi∈Ỹ

p(Vi|{Ai = fi(Ai) : Ai ∈ A ∩ pa(Vi)}, pa(Vi) \A),

where Y ∗ is the set of ancestors of Y in G, and Ỹ is the
set of variables not in A which lie on a path in π that
ends in Y .

For example, given fA, fB , p(Y (fA(A), fB(B))) is not
identified in Fig. 1 (b), since the set of directed paths
in π will contain B → Y , A → Y , A → W → Y ,
A → W → B, and A → B. Since A → W → Y
and A → W → B share the first edge, and have final
elements in Y andB, the condition of theorem 2 applies.



However, if we consider identification of the same dis-
tribution p(Y (fA(A), fB(B))) in Fig. 1 (c), where the
edge W → B is absent, we obtain identification:∑
L,A,W,B

(p(B|W,A,L)p(A|L)p(L))× (4)

(p(Y |B=fB(B),W,A=fA(A), L)p(W |A=fA(A),L))

Note that while identification of ETTs and SITs in fully
observed DAGs runs into a similar difficulty having to
do with recanting witnesses (Avin et al., 2005), iden-
tification results for these two types of counterfactuals
are nevertheless quite different. This is because ETTs
are defined as functions of counterfactual conditionals
p(Y (a)|A = a′) for some set A, while SITs are defined
as counterfactual marginals.

4 IDENTIFICATION WITH HIDDEN
VARIABLES

Most causal inference problems of practical importance
contain hidden but relevant variables, motivating the use
of causal models of a DAG where some variables are not
observed. As we now show, identification theory implied
by the structural causal model of DAGs with hidden vari-
ables is more involved for both SIPs and SITs.

Identification theory of a causal model of a DAG G with
vertices V ∪ H , where V corresponds to observed vari-
ables and H corresponds to hidden variables is often
phrased on an acyclic directed mixed graph (ADMG)
called a latent projection (Verma and Pearl, 1990). By
an ADMG we mean a graph with directed (→) and bidi-
rected (↔) edges and no directed cycles.

Given a DAG G(V ∪H) where V are observed variables
and H are hidden variables, we define the latent projec-
tion ADMG G(V ) with vertices V as follows. For every
Vi, Vj ∈ V , if there exists in G a directed path from Vi to
Vj with all intermediate vertices in H , an edge Vi → Vj
exists in G(V ). For every Vi, Vj , if there exists a collider-
free path from Vi to Vj in G with the first edge on the path
of the form Vi ← and the last edge on the path of the form
→ Vj , an edge Vi ↔ Vj exists in G(V ). For example,
if L is unobserved in Fig. 1 (a), then the resulting latent
projection is shown in Fig. 1 (e). This example illustrates
that latent projections are not always simple graphs.

Latent projections are used because for any two distinct
DAGs G1(V ∪ H1), G2(V ∪ H2) that share the same
latent projection G(V ) ≡ G1(V ) = G2(V ) also share
non-parametric identification theory (Richardson et al.,
2017).

Before describing this theory, we introduce a few ad-
ditional definitions we will need. Given an ADMG G,

and S ⊆ V , define the induced subgraph GS to be a
graph containing vertices in S, and any edge in G con-
necting elements of S. Given an ADMG G, a district
of G is a bidirected-connected component. The set of
districts of G forms a partition of vertices in G, and is
denoted by D(G). Finally, given a set S in G, define
pa(S) ≡ ⋃

Si∈S pa(Si).

Identification theory in hidden variable models uses AD-
MGs in an analogous way identification theory in fully
observed models uses DAGs. Just as the structural causal
model defined on a fully observed DAG G(V ) implies the
DAG factorization on the observed data distribution with
respect to G(V ), and identification of all interventional
distributions p(V (a)) in terms of a modified factoriza-
tion of G, so does the structural causal model defined
on a hidden variable DAG G(V ∪H) implies the nested
Markov factorization (Richardson et al., 2017) on the ob-
served data distribution with respect to the latent projec-
tion ADMG G(V ), and identification of certain marginal
interventional distributions p(Y (a)) in terms of a modi-
fied nested factorization of G(V ) given by the ID algo-
rithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006).

The nested Markov factorization of p(V ) with respect to
an ADMG G(V ) is defined in terms of Markov kernels of
the form qS(S |WS), with a single kernel for each subset
S ⊆ V that is an intrinsic set. A Markov kernel qS(S |
WS) is any map from XWS

to normalized densities over
S. For any A ⊆ S, conditioning and marginalization in
Markov kernels is defined in the usual way as:

qS(A|WS) ≡
∑
S\A

qS(S|WS); qS(S|A,WS) ≡
qS(S|WS)

qS(A|WS)
.

A set S is intrinsic in G if GS contains a single district
and is reachable in G. A set S is said to be reachable in
G if there exists a sequence of ADMGs G1, . . . ,Gk such
that G1 ≡ G, Gk ≡ GS , each Gi is obtained from Gi+1

by removing a specific vertex Vi and all edges with Vi
as one endpoint. Finally, for each Gi+1, the vertex Vi to
be removed to obtain Gi has no directed and bidirected
(consisting entirely of↔ edges) path to any other vertex
Vj in Gi+1.

The Markov kernels defining the nested Markov models
are always functionals of p(V ). For example, in Fig. 1
(d), the Markov kernels corresponding to all intrinsic sets
are:

qA(A) = p(A); qM (M |A) = p(M |A);
q{Y,A}(Y,A|M) = p(Y |A,M)p(M);

qY (Y |M) =
∑
A

p(Y |M,A)p(A).

We describe the general scheme for deriving functionals
for intrinsic Markov kernels from p(V ) in the Supple-
ment.



The nested Markov factorization expresses p(V ) and any
kernel qR(R | WR) where R is a reachable set in terms
of Markov kernels corresponding to intrinsic sets, as fol-
lows:

p(V ) =
∏

D∈D(G(V ))

qD(D |WD),

qR(R |WR) =
∏

D∈D(G(V )R)

qD(D |WD).

For instance, the nested Markov factorization for
the ADMG in Fig. 1 (d) implies p(Y,M,A) =
q{Y,A}(Y,A|M)qM (M |A), which is sometimes called
the district or c-component factorization of an ADMG.

Given disjoint subsets Y,A of V , the nested Markov fac-
torization naturally leads to the following reformulation
of the complete algorithm for identification of p(Y (a)),
sometimes called the ID algorithm (Shpitser and Pearl,
2006). This algorithm can be expressed as a modified
nested Markov factorization as follows:

p(Y (a)) =
∑
Y ∗\Y

∏
D∈G(V )Y ∗

qD(D |WD)|{Ai=ai:Ai∈WD∩A},

where Y ∗ is ancestors of Y in GV \A. This factoriza-
tion is defined provided each D on the right hand side
is intrinsic, otherwise it is undefined and p(Y (a)) is not
identified given the structural causal model for any hid-
den variable DAG G(V ∪ H) that yields the latent pro-
jection G(V ).

For example, in the graph shown in Fig. 1 (d), we have:

p(Y (a)) =
∑
M

(∑
A

p(Y |M,A)p(A)

)
︸ ︷︷ ︸

qY (Y |M)

p(M |a)︸ ︷︷ ︸
qM (M|A=a)

,

known as the front-door formula, while p(Y (a)) is not
identified in Fig. 1 (e).

Identification of SIPs can be characterized in terms of the
nested Markov factorization, with an additional subtlety,
by the following result.

Theorem 3 Fix disjoint subsets A, Y ⊆ V , and a set of
unrestricted functions f ≡ {fi : XAi

7→ XAi
|Ai ∈ A}

in a functional causal model given by the DAG G(V ∪H)
that yields the latent projection ADMG G(V ). Define Y ∗
as the set of ancestors of Y in G(V ). Then p(Y (f)) is
identified if and only if for some district D ∈ D(GY ∗),
no element ofA inD has children inD in GD. Moreover,
if p(Y (f)) is identified, it is equal to∑

Y ∗\Y

∏
D∈D(GY ∗ )

qD(D|WD)|{Ai=fi(Ai):Ai∈A∩pa(D)}

As an example, the distribution p(Y (f)) in Fig. 1 (d)
is identified, since the districts of ancestors of Y are

{A, Y }, and {M}, and no district contains a child of A
in the induced subgraph for that district. The identify-
ing formula is

∑
M,A p(Y |A,M)p(A)p(M |A = f(A)).

On the other hand, the distribution p(Y (f)) in Fig. 1 (e)
is not identified, even though the single district among
the ancestors of Y , namely {A, Y }, is intrinsic. This is
because this district contains a child of A.

Identification of SITs is a little more involved, as we
must also ensure the difficulty described with the ETT,
where the counterfactual is a function of a non-identified
marginal of the form p(W (Ai = fi(Ai)),W ) is avoided.

Theorem 4 Fix disjoint subsets A, Y ⊆ V , and a set of
unrestricted functions f ≡ {fi : XAi

7→ XAi
|Ai ∈ A}

in a functional causal model given by the DAG G(V ∪H)
that yields the latent projection ADMG G(V ). Fix the set
of all directed paths π in G(V ) which start with Ai ∈ A,
end in some element inA∪Y , and which do not intersect
elements in A ∪ Y otherwise. Define Y ∗ as the set of
ancestors of Y in G(V ). Then p(Y (f(A))) is identified
if and only if

• There are no two paths in π which start with the
same edge, and where one path ends in an element
of Y , and another in an element of A.

• Every element of A that lies in a district D in
G(V )Y ∗ does not have children in D in GD.

• For any two paths in π where the second vertex on
the path is in district D, either both paths have the
final element in A or both paths have the final ele-
ment in Y .

Moreover, if p(Y (f(A))) is identified, it is equal to∑
Y ∗\Y

∏
D∈D(GY ∗ )

qD(D|WD)|{Ai=fi(Ai):Ai∈A∩paY (D)},

where paY (D) are parents of D along edges that are
first edges on paths in π that end in Y .

As an example of the application of this theorem, con-
sider Fig. 1 (f), where we are interested in identifying
p(Y (A1 = f1(A1), A2 = f2(A2))). If all green edges
are absent, the conditions of the theorem are satisfied,
and this distribution is identified, in fact by the same
functional as in (4). If the edge (1) is present, iden-
tification fails because of the presence of paths A →
W → B and A → W → Y , as in Theorem 2. If the
edge (2) is present, there exists a district in Y ∗, namely
{A,L,W, Y } with an element A in the district that also
has a child in the district (W ). If the edge (3) is present,
a path A → B ends in a treatment, while a path A → Y
ends in an outcome, and both paths have a second vertex
in the same district.
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Figure 2: An example where SITs and SIPs give differ-
ent identifying functionals for p(Y (f)) and p(Y (f(A)))
respectively.

A Note On Completeness

Completeness results in this section have specified an un-
restricted set of shift functions f ≡ {fi : XAi

7→ XAi
|

Ai ∈ A}, and only hold under a sufficiently large class of
shift functions that allow counterexamples in our proofs
to be constructed. Results of this type are in the spirit
of non-parametric identification theory in the sense that
shift functions act as a kind of user-specified structural
equation, and identification theory results are often stated
in a way that does not restrict structural equations. A
similar notion of completeness for Tian’s identification
algorithm for responses to dynamic treatment regimes
(Tian, 2008), was shown to hold in (Shpitser and Sher-
man, 2018).

Identification theory for sufficiently restricted classes of
shift functions becomes considerably more complicated
than stated here, and indeed it may be possible identi-
fication may be shown to hold even if the response to
an unrestricted class of shift functions is not identified.
The situation is similar to one where semi-parametric re-
strictions are placed on structural equations in a causal
model.

It is also worth noting we will always have identification
when shift functions are specified as identity functions,
in which case the interventional distributions of p(Y (f))
or p(Y (f(A))) are equal to p(Y ).

Differences In Identifying Functionals

We now give another example that illustrates that when
SITs and SIPs that involve multiple treatments are iden-
tified, they will in general give different identifying func-
tionals. Consider the hidden variable causal model rep-
resented by a graph in Fig. 2, where Y is the outcome
of interest, and we are interested in its response to both
SITs and SIPs on treatment variables A0 and A1.

Here, Y ∗ = {Y, T,A1, Z,W,A0}, and the set of districts
in D(GY ∗) are D1 = {A0}, D2 = {W,A1, Y }, D3 =
{Z}, D4 = {T}. We first note that the SIP p(Y (f))
is identified because no elements of A in some dis-
trict D have children in that district. In particular, for
A0 ∈ D1 = {A0}, chGD1

(A0) = ∅, and for A1 ∈ D2 =

{W,A1, Z, T}.
The corresponding sets pa(D) for each district D
are pa(D1) = ∅,pa(D2) = {A0, Z, T},pa(D3) =
{W,A0},pa(D4) = {A0, A1}, and therefore A ∩
pa(D1) = ∅, A ∩ pa(D2) = {A0}, A ∩ pa(D3) =
{A0}, A ∩ pa(D4) = {A0, A1}.
The identifying functional from applying theorem 3 is
therefore∑

A0,W,Z,A1,T

{p(A0)}{p(Y |A0 = f0(A0), Z,W,A1, T )

× p(W )p(A1|A0=f0(A0), Z,W )}
× {p(Z|W,A0=f0(A0))}
× {p(T |A0=f0(A0), A1=f1(A1))},

with each term corresponding to the districts in Y ∗ en-
closed in braces.

Next, consider the SIT p(Y (f(A))) for A = {A0, A1}.
We note that A ∪ Y = {A0, A1, Y }. Y ∗ is unchanged,
and all three identification conditions are satisfied. The
set of paths π are

π = {(A0, T, Y ), (A0, Z,A1), (A1, T, Y ), (A0, Y )}

paY (D) for each district are paY (D1) = ∅,paY (D2) =
{A0},paY (D3) = ∅,paY (D4) = {A1}. paY (D2)
only includes A0, as there is only one path ending in Y
whose first edges are parents of D2 – namely, A0 → Y .
paY (D3) is empty since no such paths exist. A∩paY (D)
for each D gives A ∩ paY (D1) = ∅, A ∩ paY (D2) =
{A0}, A ∩ paY (D3) = ∅, A ∩ paY (D4) = {A1},
which means that the identifying functional is changed
in exactly one place – p(Z|W,A0 = f0(A0)) is replaced
with p(Z|W,A0), yielding:∑

A0,W,Z,A1,T

{p(A0)}{p(Y |A0 = f0(A0), Z,W,A1, T )

× p(W )p(A1|A0 = f0(A0), Z,W )}
× {p(Z|W,A0)}
× {p(T |A0 = f0(A0), A1 = f1(A1)}.

Once again, each term corresponding to the districts in
Y ∗ is enclosed in braces.

5 PARAMETRIC AND
SEMI-PARAMETRIC INFERENCE

Assessing the impact of responses to SIPs and SITs en-
tails evaluating functions of counterfactual distributions
p(Y (f)) and p(Y (f(A))) from data. Here we concen-
trate on estimating expected value parameteres β in cases
where these distributions are identified, e.g. E[Y (f)],
and E[Y (f(A))].

If a parametric model for the observed data distribution
p(V ), or a sufficiently large part of the distribution, can



be correctly specified, maximum likelihood plug-in es-
timators are used for efficient statistical inference for
β. In the fully observed model, plug-in estimators may
be straightforwardly derived from a DAG observed data
likelihood. For example, E[Y (fA(A), fB(B))] with re-
spect to the distribution in (4) may be estimated via

1

n

∑
i

∑
B,W

p(B|W,Ai, Li; η̂B)p(W |A=fA(Ai), Li; η̂W )

E[Y |B=fB(B),W,A=fA(Ai), Li; η̂Y ],

where η̂B , η̂W , η̂Y are maximum likelihood estimates of
parameters for parametric models above.

If β is identified in a hidden variable model with a latent
projection ADMG G(V ), parametric statistical inference
is sometimes possible using plug-in estimators that max-
imize nested Markov likelihoods, which are known for
discrete data (Evans and Richardson, 2018), and multi-
variate normal distributions (Shpitser et al., 2018). We
do not discuss these estimators further in the interests of
space.

If a parametric likelihood cannot be assumed, statistical
inference must proceed within a semi-parametric or non-
parametric model, where a part of the likelihood or the
whole likelihood is infinite-dimensional. In such cases,
plug-in estimators are known to have non-negligible first
order bias. A principled alternative approach to obtain-
ing high quality consistent estimators is based on the
semi-parametric theory, and influence functions (Tsiatis,
2006).

The resulting regular asymptotically linear (RAL) esti-
mators take the form

√
n(β̂ − β) = 1√

n

n∑
i=1

φ(Zi) + op(1),

where φ ∈ Rq with mean zero and finite variance, op(1)
denotes a term that approaches to zero in probability, and
φ(Zi) is the influence function (IF) of the ith observation
for the parameter vector β. RAL estimators are consis-
tent and asymptotically normal (CAN), with the variance
of the estimator given by its IF:

√
n(β̂ − β) D−→ N (0, φφT ).

Thus, there is a bijective correspondence between RAL
estimators and IFs.

We now derive the IF for β in a single treatment setting
given by Fig. 1 (a), where SITs and SIPs coincide.

Theorem 5 Fix β=
∑
C,A E[Y |a= f(A), C]p(A|C)p(C),

which is equal to E[Y (f(A))] = E[Y (f)] under the
model in Fig. 1 (a). The efficient influence function for β
under the non-parametric observed data model is given

by

U(β) =

∑
A′ I(A = f(A′))p(A′ | C)

p(A | C)
{Y − E[Y | A,C]}

+ E[Y | a = f(A), C)]− β (5)

The influence function U(β) leads to a RAL estima-
tor which solves the estimating equation E[U(β)] =
0, and which resembles augmented inverse probability
weighted (AIPW) estimators derived in other contexts
in causal inference (Scharfstein et al., 1999). As is of-
ten the case with these estimators, our estimator exhibits
the property of double robustness, where the estima-
tor remains consistent in the union model where either
E[Y |A,C] or p(A|C) is correctly specified.

Theorem 6 The estimator of β which solves the estimat-
ing equation E[U(β)] = 0 is consistent, and asymptot-
ically normal (CAN) in the union model where one of
π(C; ηA) = p(A|C), m(A,C; ηY ) = E[Y |A,C] is cor-
rectly specified.

In the Supplement we also derive the efficient influence
function for the shift intervention p(Y(f)) in a variant of
the causal model shown in Fig. 1 (d) that also contains a
vector of baseline covariates.

6 SIMULATIONS AND A DATA
APPLICATION

We now present a simulation study that demonstrates our
estimator is doubly robust to misspecification of either
the E[Y |A,C] model or the p(A|C) model. The precise
data generating process is described in the Supplement.

Based on the simulation above, our parameter of interest
β = E[Y (f(A))], where f(A) = A + 0.5, is equal to
6.5. We simulated datasets of size 500 and used 5000
replicates. The results are seen in Fig. 3a, whereMy,a

denotes the correctly specified models for E[Y |A,C],
and p(A|C), My,a∗ denotes the model where only
E[Y |A,C] is specified correctly, My∗,a denotes the
model where only p(A|C) is specified correctly, and
My∗,a∗ denotes the model where both E[Y |A,C] and
p(A|C) are specified incorrectly. As expected, the esti-
mates show no bias forMy,a,My,a∗ , andMy∗,a, while
bias is introduced in the modelMy∗,a∗ .

Data Application

We now describe our data application. Intensive care unit
(ICU) readmission (“bounceback”) after cardiac surgery
is costly and associated with worse mortality and mor-
bidity outcomes (Benetis et al., 2013). We used our
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Figure 3: (a) Estimation of E[Y (f(A))] using (6) under various types of model misspecification. (b) Empirical
distribution (N = 500) of β̂f(A)−β̂A, with 95% confidence interval (-0.0043, 0.0047). (c) The bounceback probability
(Y axis) learned by the random forest model for E[Y |A,C] vs discretized length of stay (X axis) for all patients in the
data set. Blue values denote bounceback actually occurred, red values indicate bounceback did not actually occur.

methods to estimate shift interventions to investigate
whether increasing length of stay may influence the prob-
ability of bounceback. Data from 5242 patient visits to
our institution who had undergone a surgical procedure
on the heart, entered the hospital ICU at any point, and
did not die during the visit were curated from our in-
stitution’s contribution to the Society of Thoracic Sur-
geon Adult Cardiac Surgery database, and our internal
electronic health records. 151 discrete and continuous
variables covering patient demographics, medications, as
well as pre-, inter- and post-operative status were used.

We partitioned variables in the dataset into three types:
the treatment variable A which is the number of initial
ICU hours, discretized into 12-hour time intervals, the
binary outcome Y representing bounceback, and a vec-
tor C of covariates representing potential confounders.
We discretized A to avoid issues with lack of sup-
port. Specifically, we avoid unstable or invalid inferences
which occur if p(A|C) = 0. We are interested in the
change in probability of bounceback after a hypothetical
increase of length of stay by 24 hours. We estimate this
probability by using (6), where the outer expectation is
evaluated empirically, and the required nuisance models
p(A|C) and E[Y |A,C] are estimated via a negative bino-
mial regression (in case of overdispersion) and a random
forest classifier, respectively. We are interested in a pol-
icy where patients receive an additional 24 initial ICU
hours, denoted f(A) = A+ 2.

We compare the total effect under the shift intervention
β̂f(A) = E[Y (f(A))] against the total effect under the
observed distribution of A, β̂A = E[Y (A)] = E[Y ]. The
distribution for β̂f(A)− β̂A under 500 bootstrap samples
is given in Fig. 3b. As the 95% bootstrap confidence
interval contains 0, we fail to reject the null of no sta-
tistically significant effect of the shift intervention of in-
creased initial ICU hours on ICU readmission rates.

To explore why the null hypothesis was not rejected, we
considered the behavior of the learned outcome regres-

sion function E[Y |A,C] with respect toA. Fig. 3c shows
the predicted bounceback probabilities for each unit in
our data, plotted vs their observed discretized length of
stay. Red values denote no bounceback (the significantly
more common case), while blue values denote bounce-
back. The response to the shift intervention that we es-
timated via (6) can be viewed as a modified empirical
average of this regression, augmented with an inverse
weighted term. The learned regression function appears
to indicate that our data contains two types of patients:
the significantly more common low risk patients, and the
rarer high risk patients. Both types of patients occur at
all durations of length of stay, and variations of length of
stay are not a significantly predictive feature for type. In
particular, variations in A do not significantly alter pa-
tient’s risk from its level predicted from other features.

7 CONCLUSIONS

In this paper we define a type of soft intervention where
a set of variables are manipulated to obtain values which
are fixed functions of their previous values. We call this
type of intervention shift intervention. We showed that
if multiple variables are manipulated, shift interventions
may be defined with respect to naturally occurring values
of manipulated variables, or with respect to recursively
defined values of manipulated variables responding to
previous shift interventions. We gave a sound and com-
plete identification algorithm for both types of shift in-
terventions in fully observed and hidden variable causal
models.

In addition, we derived an efficient semi-parametric es-
timator based on efficient influence functions for a spe-
cial case of responses to shift interventions motivated by
a clinical problem. We demonstrated the utility of our
method by a simulation study, and applied it to consider
how the readmission probability to the intensive care unit
(ICU) of a hospital changes if the duration of the pa-
tients’ stay in the ICU is manipulated to be longer.
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8 Supplement

The supplement is organized as follows. Part A contains
a description of the nested Markov model, and describes
the functionals of the observed data distribution for ev-
ery intrinsic Markov kernel that forms the factorization
of this model. Part B contains details of our simulation
study. Part C contains detailed proofs of all claims.

8.1 A. The Nested Markov Model, and Intrinsic
Markov Kernels

We reproduce the standard definition of the nested
Markov model found in Richardson et al. (2017). In
particular, we show that every every Markov kernel
qS(S|WS) corresponding to an intrinsic set S in an
ADMG G(V ) is a functional of the observed data dis-
tribution p(V ) in the nested Markov model for G(V ).

A conditional ADMG (CADMG) G(V,W ) is an ADMG
where a set of vertices in V are considered random, and
a set of vertices in W are considered fixed. Any vertex
Wi ∈ W may not have edges with arrowheads into Wi

in G(V,W ). By convention, districts in a CADMG are
defined with respect to random vertices only.

A variable Vi ∈ V is said to be fixable in G(V,W )
if no element Vj 6= Vi in the district of Vi is a de-
scendant of Vi. Given Vi fixable in G(V,W ), define
the graphical fixing operator φVi(G(V,W )) that yields
a new CADMG G(V \ {Vi},W ∪ {Vi}) obtained from
G(V,W ) by changing the status of Vi from random to
fixed, and removing all edges adjacent to Vi with arrow-
heads into Vi. We define fixable sequences of vertices in
a CADMG G(V,W ), as follows. The empty sequence
〈〉 is fixable in any graph. Given a non-empty sequence
of the form σ = 〈V1, V2, . . . , Vk〉, define the tail of the
sequence τ(σ) ≡ 〈V2, . . . , Vk〉. A sequence σ is fixable
in G(V,W ) if V1 is fixable in G(V,W ), and τ(σ) is a
sequence fixable in φV1

(G(V,W )).

Given a CADMG G(V,W ), a kernel qV (V |W ), and
Vi fixable in G(V,W ), define the kernel fixing operator
φVi(qV (V |W );G(V,W )) as:

φVi(qV (V |W );G(V,W )) ≡ qV (V |W )

qV (Vi| nd(Vi),W )

= q̃V \{Vi}(V \ {Vi}|W ∪ {Vi}),

where nd(Vi) is the set of non-descendants of Vi in
G(V,W ), and the kernel in the denominator is obtained
from qV (V |W ) by marginalization and conditioning.

Given a fixable sequence σ = 〈V1, V2, . . . , Vk〉 in
G(V,W ), and a kernel qV (V |W ), define

φ〈〉(G(V,W )) ≡ G(V,W ),

φσ(G(V,W )) ≡ φτ(σ)(φV1(G(V,W )).

Similarly, define

φ〈〉(qV (V |W );G(V,W )) ≡ qV (V |W ),

φσ(qV (V |W );G(V,W )) ≡
φτ(σ)(φV1(qV (V |W );G(V,W ));φV1(G(V,W ))).

p(V ) is said to reside in the nested Markov model
of the ADMG G(V ) if for every fixable sequence
σ, φσ(p(V );G(V )) obeys the global Markov prop-
erty with respect to the CADMG φσ(G(V,W )), de-
scribed in Richardson et al. (2017). If p(V ) is in the
nested Markov model of G(V ), then any two fixable
sequences σ1, σ2 on a set W yield the same CADMG
G(V \ W,W ) = φσ1

(G(V )) = φσ2
(G(V )), and the

same kernel qV \W (V \W |W ) = φσ1(p(V );G(V )) =
φσ2(p(V );G(V )). Thus we define, in the natural way,
the fixing operators φS(G(V )), φS(p(V );G(V )) on sets
S ⊆ V if any fixable sequence exists for S in G(V ).

If S is intrinsic in G(V ), then the intrinsic Markov
kernel qS(S|WS) associated with the nested Markov
model of G(V ) is defined, in terms of p(V ), as
φV \S(p(V );G(V )), which is a functional of p(V ) by
definition of φ().

8.2 B. The Data Generating Process for the
Simulation Study

The data generating process for the simulation was a lin-
ear structural equation model. Specifically, the parame-
ters and f(A) were defined as

C ∼ N(0, 1),

A = 4.5 + 2C + εA,

Y = 1.5 + 4C +A+ εY ,

f(A) = A+ 0.5,

where both εA and εY are drawn from standard normal
distributions.

8.3 C. Proofs

Here we give proofs of all claims stated in the main body
of the paper.

Theorem 1 Fix A ⊆ V , and a set of functions f ≡
{fi : XAi

7→ XAi
|Ai ∈ A} in a fully observed func-

tional causal model given by the DAG G. Then p(V (f))
is identified and equal to∏
Vi∈V

p(Vi | {Ai = fi(Ai) : Ai ∈ pa(Vi)},pa(Vi) \Ai).

Proof: The assumptions of the functional model
(in fact a subset of assumptions encoding the weaker



FFRCISTG model Richardson and Robins (2013))
imply that for any Vi ∈ V , Vi(a, b) is independent of
A(b) for any B ∈ V \ pa(Vi) if A = pa(Vi). We
apply this independence restriction, along with the
consistency property stating that A(b) = a implies
Vi(a, b) = Vi(b), inductively to any term in the factor-
ization of p(V (f)) of the form p(Vi({Ai = fi(Ai(f)) :
Ai ∈ pa(Vi)}, {W (f) : pa(Vi) \ Ai)}) to yield our
conclusion. See also a structurally similar proof of
the soundness of the extended g-formula under the
assumptions of the FFRCISTG model in Richardson and
Robins (2013). �

Theorem 2 Fix disjoint A, Y ⊆ V , and a set of unre-
stricted functions f ≡ {fi : XAi 7→ XAi |Ai ∈ A} in a
fully observed functional causal model given by the DAG
G.

Fix the set of all directed paths π in G which start with
Ai ∈ A, end in some element inA∪Y , and which do not
intersect elements inA∪Y otherwise. Then p(Y (f(A)))
is identified if and only if there are no two elements in π
which share the first edge and where one path ends in an
element in A, and another path ends in an element in Y .
Moreover, if p(Y (f(A))) is identified, it is equal to∑

Y ∗\Y

∏
Vi∈Y ∗\Ỹ

p(Vi|pa(Vi))×

∏
Vi∈Ỹ

p(Vi|{Ai = fi(Ai) : Ai ∈ A ∩ pa(Vi)},pa(Vi) \A),

where Y ∗ is the set of ancestors of Y in G, and Ỹ is the
set of variables not in A which lie on a path in π that
ends in Y .
Proof: Assume there exist two paths in π which share
the first edge and where one path ends in an element
in A, and another path ends in an element in Y . Con-
sider the submodel of the causal model represented by
ADMG G(V ) where all bidirected edges are absent (in
other words, in this submodel, unobserved confounders
do not actually influence observed variables in any way,
and it can be represented by a DAG G† which is an
edge subgraph of the ADMG G(V ) containing only →
edges). Then in this submodel, either the preconditions
of Lemma 4.2 in Shpitser and Tchetgen Tchetgen (2016)
hold, or p(Y (a), A), for any fixed assignment a given by
f(A), is expressible as a path-intervention, but cannot be
rephrased as an edge intervention. A generalization of
(1) that defines path and edge interventions is given as
(3) and (4), respectively in Shpitser and Tchetgen Tchet-
gen (2016).

If p(Y (a), A) is expressible as a path intervention, but
not an edge intervention, then by Theorem 5.2 in Sh-
pitser and Tchetgen Tchetgen (2016), p(Y (a), A) is not
identifiable. Regardless of whether the preconditions of

Lemma 4.2 in Shpitser and Tchetgen Tchetgen (2016)
hold, or the preconditions of Theorem 5.2 in Shpitser and
Tchetgen Tchetgen (2016) hold, the non-identification is
established for p(Yi(ai), Aj), for a specific Ai, Aj ∈ A,
Yi ∈ Y , in a subgraph G∗ of G† containing two (possibly
overlapping) directed paths from Ai to Aj and Ai to Yi.
By definition of SIPs,Aj must be ancestral of some Yj ∈
Y , via a directed path Aj →W1 → . . .→Wk → Yj .

Since f are unrestricted, we consider fi to be a func-
tion that simply sets Ai to ai and ignores natural val-
ues of Ai, and fj to be a function that sets Aj to the
value Aj assumes naturally. This immediately implies
that p(Yj(fi, fj), Yi(fi, fj)) is not identified in G∗ by
the proof of Theorem 5.2, which implies p(Y (f)) is not
identified in G† and thus also in G.

If no two paths in π exist with the given properties,
then p(Y (a), A) is expressible as an edge intervention
for any value a given by f . The result then follows by
definition of π, Y ∗ and Ỹ , and Theorem 5.2 in Shpitser
and Tchetgen Tchetgen (2016). �

Theorem 3 Fix disjoint subsets A, Y ⊆ V , and a set of
unrestricted functions f ≡ {fi : XAi

7→ XAi
|Ai ∈ A}

in a functional causal model given by the DAG G(V ∪H)
that yields the latent projection ADMG G(V ). Define Y ∗
as the set of ancestors of Y in G(V ). Then p(Y (f)) is
identified if and only if no element ofA inD has children
inD in GD. Moreover, if p(Y (f)) is identified, it is equal
to ∑

Y ∗\Y

∏
D∈D(GY ∗ )

qD(D|WD)|{Ai=fi(Ai):Ai∈A∩pa(D)}

Proof: Fix disjoint subsets A, Y ⊆ V , define Y ∗ as
the set of ancestors of Y in G(V ), and assume for every
D ∈ D(G(V )Y ∗), no element in D ∩A has a child in D
in G(V )D.

Fix a particular set of values of y∗, and for each Ai ∈ A,
define ãi ≡ fi(y

∗
Ai
), the value of ai that fi ∈ f maps

Ai to, if given the value of Ai in y∗ as input. Define
ã ≡ {ãi : Ai ∈ A}. Note that if we can identify proba-
bilities p(Y ∗(ã) = y∗) for all values of y∗, we can obtain
p(Y (f)) as a function of those probabilities.

The fact that p(Y ∗(ã) = y∗) is identified follows from
Proposition 17 in Richardson and Robins (2013) applied
to any hidden variable DAG G(V ∪H) yielding the latent
projection G(V ), as well as an inductive argument using
Lemmas 52 and 55 that follows the proof of Theorem 60
in Richardson et al. (2017). The key observation here is
that the proof of Theorem 60 (that establishes the sound-
ness of the ID algorithm) never requires that setsA and Y
remain disjoint to obtain identification of p(Y (a)), pro-
vided that the above precondition holds, specifically that
no district containing Ai ∈ A also contains a child of A.



To prove the converse, assume that some element in
D ∩ A has a child in D in G(V )D. This immediately
implies p(D(ai)) is not identified, by the standard hedge
construction. This then implies p(D(ai), Ai) is not iden-
tified, since otherwise p(D(ai)) would be. This further
implies that p(Y (ai), Ai) is not identified, by a standard
argument based on one to one mappings on a subgraph
G∗(V ) containing D, a subset Y ′ of Y , and a set of di-
rected paths from D to Y ′. See, for instance, the proof
of Theorem 6 in Shpitser and Sherman (2018).

To show that p(Y (Ai = fi(Ai))) is not identified in
G∗(V ), we proceed as follows. Fix a directed path
Ai → W1 → . . . → Wk → Yj ∈ Y ′, where W1 ∈ D.
Augment the graph G∗(V ) with an extra set of copy ver-
tices Ãi, W̃1, . . . , W̃k, Ỹj , along with a edges forming a
directed path from Ãi to Ỹj along these copy vertices, to
yield a graph G†(V ).

We now augment the two counterexample models show-
ing non-identifiability of p(Y (ai), Ai) in G∗(V ) to show
p(Y (ai, Ãi = f̃i(Ãi)), Ỹj(ai, Ãi = f̃i(Ãi))) is not iden-
tified in G†(V ). We do so by simply choosing f̃i, as well
as p(W̃1|Ãi), p(W̃i+1|W̃i) for i = 1, . . . , k − 1, and
p(Ỹj |W̃k) in both counterexample models to yield one to
one mappings, as in the proof of Theorem 6 in Shpitser
and Sherman (2018).

We conclude the proof by noting that by Lemma 1
in Shpitser and Sherman (2018), if p(Y (ai, Ãi =
f̃i(Ãi)), Ỹj(ai, Ãi = f̃i(Ãi))) is not identified in any
causal model represented by G†(V ), then p(Y (Ai =
f∗i (Ai))) is not identified in G∗(V ), where variables
Ai × Ãi, Wi × W̃i, for i = 1, . . . , k, and Yj × Ỹj are
treated as single variables, and a function f∗i is defined
as mapping a′i × ãi values of Ai × Ãi to ai × f̃i(ãi). �

C M A Y

We illustrate the proof of non-identifiability with the fol-
lowing example, where we are interested in identifying
the SIP p(Y (A = f(A))). In the above graph, A has a
child Y in the district {A,C, Y }, hence our SIP should
not be identified. To show this, note that p(Y (a), C(a))
is not identified, which is witnessed by a hedge contain-
ing sets {C, Y }, and {C,A, Y }. We now augment the
graph G(V ) = G∗(V ) above with extra vertex copies Ã,
and Ỹ , and an appropriate function f̃Ã represented be-
low by a dashed edge from Ã to ã. We extend the proof
of non-identification from the graph above to the graph
below, and finally treat verticesA, Ã and Y, Ỹ as a single
vertex by taking a Cartesian product.

C M A Y

Ã ã Ỹ

Theorem 4 Fix disjoint subsets A, Y ⊆ V , and a set of
unrestricted functions f ≡ {fi : XAi

7→ XAi
|Ai ∈ A}

in a functional causal model given by the DAG G(V ∪H)
that yields the latent projection ADMG G(V ). Fix the set
of all directed paths π in G(V ) which start with Ai ∈ A,
end in some element inA∪Y , and which do not intersect
elements in A ∪ Y otherwise. Define Y ∗ as the set of
ancestors of Y in G(V ), and Ỹ is the set of variables
not in A which lie on a path in π that ends in Y . Then
p(Y (f(A))) is identified if and only if

• There are no two paths in π which start with the
same edge, and where one path ends in an element
of Y , and another in an element of A.

• Every element of A that lies in a district D in
G(V )Y ∗ does not have children in D in GD.

• For any two paths in π where the second vertex on
the path is in D, either both paths have the final
element in A or both paths have the final element in
Y .

Moreover, if p(Y (f(A))) is identified, it is equal to∑
Y ∗\Y

∏
D∈D(GY ∗ )

qD(D|WD)|{Ai=fi(Ai):Ai∈A∩paY (D)},

where paY (D) are parents of D along edges that are
first edges on paths in π that end in Y .
Proof: Assume the preconditions above that allow identi-
fication hold. To simplify the identification argument, we
consider extended graphs, as described in Malinsky et al.
(2019). We construct an extended graph Ge for G(V ),
as follows. Ge contains all vertices in V . In addition,
for each Ai ∈ A that is ancestral of both A and Y , we
construct two copies AAi , and AYi that inherit the chil-
dren of A as follows. AAi inherits children of Ai along
edges that start directed paths from Ai into A, while AYi
inherits children of Ai along edges that start directed
paths from Ai into Y . Vertices AAi and AYi only have
Ai as a parent. Ai itself only has AAi and AYi as chil-
dren. The structural equations corresponding to Ge are
inherited from the models represented by G(V ), except
the structural equations for added variables AAi and AYi ,
which are identity functions.

The advantage of extended graphs is they allow us to
rephrase mediation analysis problems defined in terms



of edge interventions in terms of standard intervention
operations on added copy variables. This was shown in
Propositions 9 and 10 in Malinsky et al. (2019). In our
case, we proceed as follows.

Let AY ≡ {AYi : Ai ∈ A}. Fix a particular set of
values of y∗ in Y ∗ in Ge, and for each AYi ∈ AY , de-
fine ãi ≡ fi(y

∗
AY

i
), the value of ai that fi ∈ f maps

AYi to, if given the value of AYi in y∗ as input. De-
fine ãY ≡ {ãYi : AYi ∈ AY }. Note that if we can
identify probabilities p(Y ∗(AY = ãY ) = y∗) for all
values of y∗ in Ge, we can obtain p(Y (f(A))) as a
function of those probabilities. Note that the counter-
factual Y ∗(AY = ãY ) only intervenes on elements of
AY , and leaves all AAi for Ai ∈ A at their natural val-
ues. The fact that p(Y ∗(AY = ãY ) = y∗) is identified,
given the preconditions, follows from Theorem 4, and
the last pre-condition, which guarantees each intrinsic
kernel qD(D|WD) has positive support in the observed
data distribution.

Assume the preconditions above that allow identification
do not hold. If the first precondition does not hold, non-
identification follows by Theorem 2, even in the edge
subgraph of G(V ) containing only directed edges, and
thus also in G(V ).

If the first precondition holds, but the second precondi-
tion does not hold, fix a district D containing Ai and a
child of Ai in GD. We then consider a SIT that sets ev-
ery element in A \ {Ai} to their natural value (which
is allowed since the set f is unrestricted functions), and
follow the proof of non-identification in Theorem 3.

If the first two preconditions hold, but the last precondi-
tion does not hold, fix Ai with two edges into a district
D with the required property. Then consider the SIT that
sets every element in A \ {Ai} to their natural value,
and that sets Ai to ai. The distribution p(Y (AYi = ai))
is not identified in Ge as a simple corollary of Theorem
5 in Shpitser and Sherman (2018), and Proposition 10 in
Malinsky et al. (2019). To see that p(Y (AYi = fi(A

Y
i )))

is also not identified in Ge, we follow the argument
in Theorem 3 that uses vertex copies and Cartesian
products. �

Theorem 5 Fix β =
∑
C,A E[Y |a =

f(A), C]p(A|C)p(C), which is equal to E[Y (f(A))] =
E[Y (f)] under the model in Fig. 1 (a). The efficient
influence function for β under the non-parametric
observed data model is given by

U(β) =

∑
A′ I(A = f(A′))p(A′ | C)

p(A | C)
{Y − E[Y | A,C]}

(6)

+ E[Y | a = f(A), C)]− β

Proof: The model imposes no restrictions on the ob-
served data distribution, hence it is non-parametric satu-
rated and has a unique (and thus efficient) influence func-
tion for β. This influence function is given by the solu-
tion to the following integral equation

∂

∂t
β(Ft)|t=0 = E[S(C,A, Y )ψ(β)],

where S(C,A, Y ) is the observed data score.

Using the product rule of differentiation, we have

∂

∂t
β(Ft) =

∑
C,A,Y

y
∂

∂t
p(Y | a = f(A), C)p(A | C)p(C)

+
∑
C,A,Y

yp(Y | a = f(A), C)
∂

∂t
p(A | C)p(C)

+
∑
C,A,Y

yp(Y | a = f(A), C)p(A | C)
∂

∂t
p(C)

Starting with the first term and using properties of scores
and the chain rule of differentiation, we have∑
C,A,Y

yS(Y |a = f(A), C)p(Y |a = f(A), C)p(A|C)p(C)

We introduce an indicator and multiply and divide by
p(A′|C) to obtain

=
∑
A

EY,A′,C
[
I(A′ = f(A))

p(A′|C)
p(A|C)yS(Y |A′, C)

]

Then, introducing a term that is constant w.r.t. the condi-
tional score S(Y | A′, C), and using the tower law gives

=
∑
A

E
[
E
[
I(A′ = f(A))

p(A′ | C)
p(A|C){y − E[Y |A′, C]}S(Y |A′, C)|A′, C

]]

=
∑
A

E
[
E
[
I(A′ = f(A))

p(A′ | C)
p(A|C){y − E[Y |A′, C]}S(Y,A′, C)

]]

= E

∑
A

I(A′ = f(A))

p(A′|C)
p(A|C){y − E[Y |A′, C]}S(Y,A′, C)



The contribution to the influence function from the first
term is therefore

U1(β) =
∑
A

I(A′ = f(A))

p(A′ | C)
p(A | C){y − E[Y | A′, C]}

For the second term, we have∑
C,A,Y

yp(Y | a = f(A), C)S(A | C)p(A | C)p(C)

=
∑
C,A

E[Y | a = f(A), C]S(A | C)p(A | C)p(C)



Introducing a term constant w.r.t. S(A | C) gives

∑
C,A

(
E[Y |a = f(A), C]−

∑
A

E[Y |a = f(A), C)]p(A|C)

)
S(A|C)p(A|C)p(C).

Since the term in (·) is mean zero given C, we can in-
troduce the required score S(C) to obtain

∑
C,A

(
E[Y | a = f(A), C]−

∑
A

E[Y | a = f(A), C]p(A | C)

)
S(A,C)p(A,C)

Since the above expression is not a function of Y , so we
can sum over Y to obtain∑
C,A,Y

(
E[Y |a = f(A), C]−

∑
A

E[Y |a = f(A), C]p(A|C)

)
S(Y,A,C)p(Y,A,C)

The contribution to the influence function from the sec-
ond term is therefore

U2(β) = E[Y |a = f(A), C)]−
∑
A

E[Y |a = f(A), C]p(A|C)

Moving on to the third term, we have∑
C,A,Y

Y p(Y |a = f(A), C)p(A|C)
∂p(C)

∂dt

=
∑
C,A,Y

Y p(Y |a = f(A), C)p(A|C)S(C)p(C)

=
∑
C,A

E[Y |a = f(A), C]p(A|C)S(C)p(C)

= EC

[∑
A

E[Y |a = f(A), C]p(A|C)S(C)

]

We can now introduce a term independent of S(C):

EC [{
∑
A

E[Y |a′ = f(a), C]p(A|C)

− EC [
∑
A

E[Y |a = f(A), C]p(A|C)]}S(C)]

= EC [EY,A|C [{
∑
A

E[Y |a = f(A), C]p(A|C)

− EC [
∑
A

E[Y |a = f(A), C]p(A|C)]}S(C)|C]]

= EC [EY,A|C [{
∑
A

E[Y |a = f(A), C]p(A|C)

− EC [
∑
A

E[Y |a = f(A), C]p(A|C)]}{S(C)

+ S(Y,A|C)}|C]]

= EY,A,C [{
∑
A

E[Y |a = f(A), C]p(A|C)

− EC [
∑
A

E[Y |a = f(A), C]p(A|C)]}S(Y,A,C)],

which implies the contribution to the influence function
of the third term is

U3(β) =
∑
A

E[Y |a = f(A), C]p(A|C)− β

Putting all three terms together, the final influence func-
tion is:

U(β) =
∑
A

I(A′ = f(A))

p(A′ | C)
p(A | C){Y − E[Y | A′, C]}

+ E[Y | a = f(A), C)]− β

�

Theorem 6 The estimator of β which solves the esti-
mating equation E[U(β)] = 0 is consistent, asymptot-
ically normal (CAN) in the union model where one of
π(C; ηA) = p(A|C), m(A,C; ηY ) = E[Y |A,C] is cor-
rectly specified.

Proof: Assume p(A | C) is specified incorrectly as
p∗(A | C). Then the estimator for β is given as

E[U(β)] =
∑
A

I(A′ = f(A))

p∗(A′ | C)
p∗(A | C){Y − E[Y | A′, C]}

+ E[Y | a = f(A), C)]− β]

Since U(β) is linear in β, we can solve for β explicitly
as an expectation with two terms. The first term is

E

[∑
A

I(A′ = f(A))

p∗(A′ | C)
p∗(A | C){Y − E[Y | A′, C]}

]

which is mean zero, since E[Y |A,C] is specified cor-
rectly. The second term is E[E[Y | a = f(A), C)]]
which is equal to β by definition if E[Y |A,C] is spec-
ified correctly.

Assume E[Y | A,C] is specified incorrectly as E∗[Y |
A,C]. The estimator for β is then

E[U(β)] =

∑
A I(A′ = f(A))p(A | C)

p(A′ | C)
{Y − E∗[Y | A′, C]}

+ E∗[Y | a = f(A), C)]− β]

which can be rewritten as a sum of two terms. The first
is

E[E∗[Y |a = f(A), C)]−∑
A I(A′ = f(A))p(A|C)

p(A′|C)
E∗[Y |A′, C]],

which is mean zero. The second term is

E
[∑

A I(A′ = f(A))p(A|C)

p(A′|C)
Y

]
,

which evaluates to β if p(A|C) is correctly specified.



All of the above estimators are special cases of the RAL
estimator for β based on the efficient influence function.
As a result, standard regularity assumptions Robins et al.
(1992), and properties of maximum likelihood estimators
imply both estimators are CAN. �
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Figure 4: The front-door model with a vector of baseline
covariates C

Theorem 7 Fix β=
∑
C,M,A E[Y |a=A,C]p(A,C)p(M |

a= f(A), C), which is equal to E[Y (f(A))] = E[Y (f)]
under the model in the figure 4. The efficient influence
function for β under the non-parametric observed data
model is given by

U(β) =
p(M | a = f(A), C)

p(M | A,C)
{Y − E[Y |M,A,C]} (7)

+
∑
M

E[Y |M,A,C]p(M | a = f(A), C)− β

∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

q · p(M | A,C)}

where q ≡ E[Y |M,A′, C]p(A′ | C).

Proof: The model imposes no restrictions on the ob-
served data distribution, hence it is non-parametric sat-
urated and has a unique (and thus efficient) influence
function for β. This influence function is given by the
solution to the following integral equation

∂

∂t
β(Ft)|t=0 = E[S(C,A,M, Y )ψ(β)],

where S(C,A, Y ) is the observed data score.

Using the product rule of differentiation, we have

∂

∂t
β(Ft) =

∑
Y,C,M,A

Y
∂p(Y | M,A,C)

∂t
p(A,C)p(M | a = f(A), C)

∑
C,M,A

E[Y | M,A,C]
∂p(A,C)

∂t
p(M | a = f(A), C)

∑
C,M,A

E[Y | M,A,C]p(A,C)
∂p(M | a = f(A), C)

∂t

Starting with the first term and using properties of scores
and the chain rule of differentiation, we have

∑
Y,C,M,A

Y S(Y |M,A,C)p(Y |M,A,C)

p(A,C)p(M | a = f(A), C)

Multiplying and diving by p(M | A,C), we get

∑
C,M,A

p(M | a = f(A), C)

p(M | A,C)
E[Y | M,A,C]S(Y | M,A,C)p(M,A,C)

=EY,M,A,C [
p(M | a = f(A), C)

p(M | A,C)
Y S(Y | M,A,C)]

Since

E[
p(M | a = f(A), C)

p(M | A,C)
E[Y |M,A,C]S(Y |M,A,C)] = 0,

the previous equation can be rewritten as

E[
p(M | a = f(A), C)

p(M | A,C)
{Y − E[Y |M,A,C]}S(Y |M,A,C)]

Finally, using

E[p(M | a = f(A), C)

p(M | A,C)
{Y−E[Y |M,A,C]}S(M,A,C)] = 0

gives us

E[p(M | a = f(A), C)

p(M | A,C)
{Y − E[Y |M,A,C]}S(Y,M,A,C)]

The contribution to the influence function from the first
term is

U1(β) =
p(M | a = f(A), C)

p(M | A,C)
{Y − E[Y |M,A,C]}

For the second term, we have:∑
C,M,A

E[Y |M,A,C]S(A,C)p(A,C)p(M | a = f(A), C)

=EA,C [
∑
M

E[Y |M,A,C]p(M | a = f(A), C)S(A,C)]

Using [EA,C [
∑
M E[Y | M,A,C]p(M | a =

f(A), C)]S(A,C)] = 0, along with properties of the
score, the above is equal to

E[{
∑
M

E[Y |M,A,C]p(M | a = f(A), C)− β}S(Y,M,A,C)]

The contribution of the second term to the influence func-
tion is:

U2(β) =
∑
M

E[Y |M,A,C]p(M | a = f(A), C)− β

Finally, moving on to the third term. Using similar steps
as before, the third term can be written as∑

C,M,A

E[Y |M,A,C]p(A,C)

S(M | a = f(A), C)p(M | a = f(A), C)



Introducing another random variable A′ distributed as
A, and using the indicator function

∑
C,M,A,A′

I(A
′
= f(A))E[Y | M,A,C]p(A,C)S(M | A′, C)p(M | A′, C)

∑
C,M,A,A′

I(A′ = f(A))

p(A′ | C)
E[Y | M,A,C]p(A | C)S(M | A′, C)p(M,A

′
, C)

EC,M,A′ [
∑
A

I(A′ = f(A))

p(A′ | C)
E[Y | M,A,C]p(A | C)S(M | A′, C)]

Interchanging the labels of A′ and A for clarity, the pre-
vious expectation is rewritten as:

EC,M,A[
∑
A′

I(A = f(A′))

p(A | C)
E[Y | M,A′, C]p(A

′ | C)S(M | A,C)]

Denoting E[Y | M,A′, C]p(A′ | C) by q, and utilizing
E[
∑
A′

I(A=f(A′))
p(A|C)

∑
M qp(M | A,C)S(M | A,C)] = 0,

we have

E[
∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}S(M | A,C)]

=E[
∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}S(M,A,C)]

=E[E[
∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}{S(Y,M,A,C)} |M,A,C]]

=E[
∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}S(Y,M,A,C)]

Hence the contribution of the third term to the influence
function is:

U3(β) =
∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}

Putting it all together, the influence function is given by:

U(β) =
p(M | a = f(A), C)

p(M | A,C)
{Y − E[Y |M,A,C]}

+
∑
M

E[Y |M,A,C]p(M | a = f(A), C)− β

∑
A′

I(A = f(A′))

p(A | C)
{q −

∑
M

qp(M | A,C)}
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