
Generalized Bayesian Posterior Expectation Distillation
for Deep Neural Networks

Meet P. Vadera1, Brian Jalain2, and Benjamin M. Marlin1

1University of Massachusetts Amherst, 2US Army Research Laboratory
{mvadera, marlin}@cs.umass.edu, brian.a.jalaian.civ@mail.mil

Abstract

In this paper, we present a general framework
for distilling expectations with respect to the
Bayesian posterior distribution of a deep neu-
ral network classifier, extending prior work on
the Bayesian Dark Knowledge framework. The
proposed framework takes as input “teacher”
and “student” model architectures and a general
posterior expectation of interest. The distilla-
tion method performs an online compression
of the selected posterior expectation using it-
eratively generated Monte Carlo samples. We
focus on the posterior predictive distribution
and expected entropy as distillation targets. We
investigate several aspects of this framework
including the impact of uncertainty and the
choice of student model architecture. We study
methods for student model architecture search
from a speed-storage-accuracy perspective and
evaluate down-stream tasks leveraging entropy
distillation including uncertainty ranking and
out-of-distribution detection.1

1 INTRODUCTION

Deep learning models have shown promising results in
the areas including computer vision, natural language
processing, speech recognition, and more (Graves et al.,
2013; Huang et al., 2016; Devlin et al., 2018). However,
existing point estimation-based training methods for these
models may result in predictive uncertainties that are not
well calibrated, including the occurrence of confident
errors.

While Bayesian inference can often provide more ro-
bust posterior predictive distributions compared to point

1Our PyTorch implementation can be found at:
https://github.com/meetvadera/GPED

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

estimation-based training, the integrals required to per-
form Bayesian inference in neural network models are
well-known to be intractable. Monte Carlo methods pro-
vide one solution to represent neural network parameter
posteriors as ensembles of networks, but this requires
large amounts of both storage and compute time (Neal,
1996; Welling and Teh, 2011).

To help overcome these problems, Balan et al. (2015) in-
troduced a model training method referred to as Bayesian
Dark Knowledge (BDK). BDK attempts to compress (or
distill) the Bayesian posterior predictive distribution in-
duced by the full parameter posterior of a “teacher” net-
work (represented via a set of Mote Carlo samples) into a
significantly more compact “student” network. The major
advantage of BDK is that the computational complexity
of prediction at test time is drastically reduced compared
to directly computing predictions via Monte Carlo aver-
ages over the set of teacher network samples (the teacher
ensemble). As a result, such posterior distillation meth-
ods have the potential to be much better suited to learning
models for deployment in resource constrained settings.

However, the posterior predictive distribution is not the
only statistic of the posterior distribution that is of inter-
est. Indeed, recent work including Wang et al. (2018)
and Malinin et al. (2020) has investigated leveraging
multiple statistics of ensembles (both general ensembles
and Monte Carlo representations of Bayesian posteriors)
for performing tasks that leverage uncertainty quantifi-
cation and uncertainty decomposition including out-of-
distribution detection and uncertainty-based ranking.

In this paper, we propose a Bayesian posterior distillation
framework for the classification setting that generalizes
the BDK approach by directly distilling general posterior
expectations. We further generalize the BDK approach by
proposing methods for efficiently searching the space of
speed-storage-accuracy trade-offs for the student model,
enabling more fine grained control over model size, test
time, speed and predictive performance. The primary

empirical contributions of this work are (1) evaluating
the distillation of the posterior predictive distribution and
the posterior expected entropy across a range of models,
data sets, and levels of uncertainty; (2) evaluating the
impact of the student model architecture and architec-
ture search methods on distillation performance; and (3)
evaluating the utility of generalized expectation distilla-
tion through the study of down-stream tasks including
out-of-distribution detection and uncertainty ranking that
leverage entropy distillation. We show that distillation
performance can be very sensitive to student model ca-
pacity and that the proposed architecture search methods
effectively expose the space of speed-storage-accuracy
trade-offs. We further show that our direct generalized
posterior distillation framework outperforms an adapta-
tion of the approach of Malinin et al. (2020) both on
terms of distillation performance and in terms of several
downstream tasks that leverage uncertainty quantification.

In the next section, we present background material and
related work. In Section 3, we present the proposed frame-
work. In Section 4, we present experiments and results.
Additional details regarding data sets and experiments
can be found in Appendix A, with supplemental results
included in Appendix B.

2 BACKGROUND AND RELATED
WORK

In this section, we present background and related work.

Bayesian Neural Networks: Let p(y|x, ✓) represent the
probability distribution induced by a deep neural network
classifier over classes y 2 Y = {1, .., C} given feature
vectors x 2 RD. The most common way to fit a model
of this type given a data set D = {(xi, yi)|1  i  N}

is to use maximum conditional likelihood estimation, or
equivalently, cross entropy loss minimization (or their
penalized or regularized variants). However, when the
volume of labeled data is low, there can be multiple ad-
vantages to considering a full Bayesian treatment of the
model. Instead of attempting to find the single (locally)
optimal parameter set ✓⇤ according to a given criterion,
Bayesian inference uses Bayes rule to define the posterior
distribution p(✓|D, ✓

0) over the unknown parameters ✓

given a prior distribution P (✓|✓0) with prior parameters
✓
0 as seen in Equation 1.

p(✓|D, ✓
0) =

p(D|✓)p(✓|✓0)R
p(D|✓)p(✓|✓0)d✓

(1)

p(y|x,D, ✓
0) =

Z
p(y|x, ✓)p(✓|D, ✓

0)d✓

= Ep(✓|D,✓0)[p(y|x, ✓)] (2)

Posterior Expectations and Uncertainty Quantifica-
tion: For prediction problems in machine learning, the
quantity of interest is typically not the parameter pos-
terior itself, but the posterior predictive distribution
p(y|x,D, ✓

0) obtained from it as seen in Equation 2.

However, the posterior predictive distribution is not the
only statistic of the posterior distribution that is of inter-
est. The decomposition of posterior uncertainty has also
received recent attention in the literature. For example,
Depeweg et al. (2017) and Malinin et al. (2020) describe
the decomposition of the entropy of the posterior pre-
dictive distribution (the total uncertainty) into expected
data uncertainty and knowledge uncertainty. These three
forms of uncertainty are related by the equation shown
below:

I [y, ✓|x,D]| {z }
Knowledge Uncertainty

= H
⇥
Ep(✓|D) [p (y|x, ✓)]

⇤
| {z }

Total Uncertainty

� Ep(✓|D) [H [p (y|x, ✓)]]
| {z }

Expected Data Uncertainty

(3)

Total uncertainty, as the name suggests, measures the
total uncertainty in a prediction. Expected data uncer-
tainty measures the uncertainty arising from class overlap.
Knowledge uncertainty corresponds to the conditional
mutual information between labels and model parameters
and measures the disagreement between different models
in the posterior. However, it can be efficiently computed
as the difference between total uncertainty and expected
data uncertainty, both of which are (functions) of pos-
terior expectations. In recent work, Wang et al. (2018)
and Malinin et al. (2020) have leveraged this decomposi-
tion to explore a range of down-stream tasks that rely on
uncertainty quantification and decomposition.

Approximate Inference Methods for Bayesian Neural
Networks: The primary problem with applying Bayesian
inference to neural network models is that the distri-
butions p(✓|D, ✓

0) and p(y|x,D, ✓
0) are not available

in closed form, so approximations are required. We
briefly review Bayesian inference approximations includ-
ing variational inference (VI) (Jordan et al., 1999) and
Markov Chain Monte Carlo (MCMC) methods (Neal,
1996; Welling and Teh, 2011).

In VI, an auxiliary distribution q�(✓) is defined to approx-
imate the true parameter posterior p(✓|D, ✓

0). The varia-
tional parameters � are selected to minimize the Kullback-
Leibler (KL) divergence between q�(✓) and p(✓|D, ✓

0).
Hinton and Van Camp (1993) did early work applying
VI to neural networks. Graves (2011) later presented a
method based on stochastic VI with improved scalabil-
ity. In the closely related family of expectation propaga-
tion (EP) methods (Minka, 2001), Soudry et al. (2014)
present an online EP algorithm for neural networks with

the flexibility of representing both continuous and discrete
weights. Hernández-Lobato and Adams (2015) present
the probabilistic backpropagation (PBP) algorithm for
approximate Bayesian learning of neural network mod-
els, which is an example of an assumed density filtering
(ADF) algorithm that, like VI and EP, generally relies on
simplified posterior densities.

The main drawback of VB, EP, and ADF is that they
typically result in biased posterior estimates for complex
posterior distributions. MCMC methods provide an alter-
native family of sampling-based posterior approximations
that are unbiased, but are often computationally more
expensive to use. MCMC methods allow for drawing
a correlated sequence of samples ✓t ⇠ p(✓|D, ✓

0) from
the parameter posterior. These samples can then be used
to approximate the posterior predictive distribution as a
Monte Carlo average as shown in Equation 4.

p(y|x,D, ✓
0) ⇡

1

T

TX

t=1

p(y|x, ✓t) (4)

✓t ⇠ p(✓|D, ✓
0) (5)

Neal (1996) addressed the problem of Bayesian infer-
ence in neural networks using Hamiltonian Monte Carlo
(HMC) to provide a set of posterior samples. This method
uses the full dataset when computing the gradient needed
by HMC, which is problematic for larger data sets. While
this scalability problem has largely been solved for mid-
sized models by more recent methods such as stochastic
gradient Langevin dynamics (SGLD) (Welling and Teh,
2011), the problem of needing to compute over a large set
of samples when making predictions at test or deployment
time remains.

Distribution Distillation: As noted above, MCMC-
based approximations are expensive in terms of both com-
putation and storage. Bayesian Dark Knowledge (Balan
et al., 2015) is precisely aimed at reducing the test-time
computational complexity of Monte Carlo-based approx-
imations for neural networks. In particular, the method
uses SGLD to approximate the posterior distribution using
a set of posterior parameter samples. These samples can
be thought of as an ensemble of neural network models
with identical architectures, but different parameters.

This posterior ensemble is used as the “teacher” in a dis-
tillation process that trains a single “student” model to
match the teacher ensemble’s posterior predictive distri-
bution (Hinton et al., 2015). The major advantage of this
approach is that it can drastically reduce the test time com-
putational complexity of posterior predictive inference
relative to using a Monte Carlo average computed using
many samples. A shortcoming of this approach is that it
only distills the posterior predictive distribution, and thus,
loses access to other posterior statistics.

Ensemble distribution distillation (EnD2) is a closely re-
lated approach that aims to distill the collective outputs
of the models in an ensemble into a neural network that
predicts the parameters of a Dirichlet distribution (Ma-
linin et al., 2020). The goal is to preserve information
about distribution of outputs of the ensemble in such a
way that multiple statistics of the ensemble’s outputs can
be efficiently approximated. Our goal in this paper is
broadly similar, although we focus specifically on distill-
ing much larger Monte Carlo posterior ensembles and we
avoid the parametric distribution assumptions of (Malinin
et al., 2020) by directly distilling posterior expectations
of interest.

Finally, we note that with the advent of Generative Ad-
versarial Networks (Goodfellow et al., 2014), there has
also been work on generative models for approximating
posterior sampling. Wang et al. (2018) and Henning et al.
(2018) both propose methods for learning to generate
samples that mimic those produced by SGLD. However,
while these approaches may provide a speed-up relative
to running SGLD itself, the resulting samples must still
be used in a Monte Carlo average to compute a posterior
predictive distribution in the case of Bayesian neural net-
works. This is again a potentially costly operation and is
exactly the computation that distillation-based methods
seek to accelerate.

Model Compression and Pruning: As noted above, the
problem that Bayesian Dark Knowledge attempts to solve
is reducing the test-time computational complexity of
using a Monte-Carlo posterior to make predictions. In
this work, we are particularly concerned with the issue
of enabling test-time speed-storage-accuracy trade-offs.
The relevant background material includes methods for
network compression and pruning.

Previous work has shown that over-parameterized deep
learning models tend to show much better learnabil-
ity. Further, it has also been shown that such over-
parameterized models rarely use their full capacity and
can often be pruned back substatially without significant
loss of generality. Hassibi et al. (1993) use the second-
order derivatives of the objective function to guide prun-
ing network connections. More recently, Han et al. (2015)
introduced a weight magnitude-based technique for prun-
ing connections in deep neural networks using simple
thresholding. Guo et al. (2016); Jin et al. (2016); Han
et al. (2016) introduce thresholding methods which also
support restoration of connections.

A related line of work includes pruning neurons, channels
or filters instead of individual weights. Pruning these com-
ponents explicitly reduces the number of computations by
making the networks smaller. Group LASSO-based meth-
ods have the advantage of turning the pruning problem

into a continuous optimization problem with a sparsity-
inducing regularizer. Zhang and Ou (2018); Alvarez and
Salzmann (2016); Wen et al. (2016); He et al. (2017) are
some examples that use Group LASSO regularization at
their core. Similarly, Louizos et al. (2017) use hierarchical
priors to prune neurons instead of weights. An advantage
of these methods over connection-based sparsity methods
is that they directly produce smaller networks.

3 PROPOSED FRAMEWORK

In this section, we describe our proposed framework.

3.1 Generalized Posterior Expectations

As described in the previous section, different statistics
derived from the posterior distribution p(✓|D, ✓

0) may be
useful in different data analysis tasks. We consider the
general case of inferences that take the form of posterior
expectations as shown in Equation 6 where g(y,x, ✓) is
an arbitrary function of y, x and ✓.

Ep(✓|D,✓0)[g(y,x, ✓)] =

Z
p(✓|D, ✓

0)g(y,x, ✓)d✓ (6)

Important examples of functions g(y,x, ✓) include
g(y,x, ✓) = p(y|x, ✓), which results in the poste-
rior predictive distribution p(y|x,D, ✓

0) as used in
Bayesian Dark Knowledge. The choice g(y,x, ✓) =PC

y0=1 p(y
0
|x, ✓) log p(y0|x, ✓) yields the expected data

uncertainty introduced in the previous section. The choice
g(y,x, ✓) = p(y|x, ✓)(1 � p(y|x, ✓)) results in the pos-
terior marginal variance of class y given x. We use the
posterior predictive distribution and expected data uncer-
tainty as examples throughout this work.

3.2 Generalized Posterior Expectation Distillation

Our goal is to learn to approximate posterior expectations
Ep(✓|D,✓0)[g(y,x, ✓)] under a given teacher model archi-
tecture using a given student model architecture. The
method that we propose takes as input the teacher model
p(y|x, ✓), the prior p(✓|✓0), a labeled data set D, an unla-
beled data set D0, the function g(y,x, ✓), a student model
f(y,x|�), an expectation estimator, and a loss function
`(·, ·) that measures the error of the approximation given
by the student model f(y,x|�).2 Similar to Balan et al.
(2015), we propose an online distillation method based
on the use of the SGLD sampler. We describe all of the
components of the framework in the sections below, and
provide a complete description of the resulting method in
Algorithm 1 (presented in the appendix).

2Note that f(y,x|�) denotes the student’s output probability
for class y given input x and parameters �.

SGLD Sampler: The prior distribution over the param-
eters p(✓|✓0) is chosen to be a spherical Gaussian distri-
bution with mean µ = 0 and precision ⌧ (we thus have
✓
0 = [µ, ⌧]). We define S to be a minibatch of size M

drawn from D. ✓t denotes the parameter set sampled
for the teacher model at sampling iteration t, while ⌘t

denotes the step size for the teacher model at iteration t.
The Langevin noise is denoted by zt ⇠ N (0, ⌘tI). The
sampling update for SGLD is given b: ✓t+1 ✓t +�✓t

where �✓t is defined as:

�✓t =
⌘t
2

r✓ log p(✓|✓0) +

N
M

X

i2S

r✓ log p (yi|xi, ✓t)

!
+ zt

(7)

Distillation Procedure: For the distillation learning pro-
cedure, we make use of a secondary unlabeled data set
D

0 = {xi|1  i  N
0
}. This data set could use feature

vectors from the primary data set D, or a larger data set.
We note that due to autocorrelation in the sampled teacher
model parameters ✓t, we may not want to run a distillation
update for every Monte Carlo sample drawn. We thus use
two different iteration indices: t for SGLD iterations and
s for distillation iterations.

On every distillation step s, we sample a minibatch S
0

from D
0 of size M

0. For every data case i in S
0, we

update an estimate ĝyis of the posterior expectation us-
ing the most recent parameter sample ✓t, obtaining an
updated estimate ĝyis+1 ⇡ Ep(✓|D,✓0)[g(y,xi, ✓)] (we
discuss update schemes in the next section). Next, we
use the minibatch of examples S 0 to update the student
model. To do so, we take a step �s+1 �s + ↵s��s in
the gradient direction of the regularized empirical risk of
the student model as shown below where ↵s is the student
model learning rate at step s, R(�) is the regularizer, and
� is the regularization hyper-parameter. We next discuss
the estimation of the expectation targets ĝyis.

��s =
N 0

M 0

X

i2S0

X

y2Y

r�`
�
ĝyis+1, f(y,xi|�s)

�
+ �r�R(�s)

(8)

Expectation Estimation: Given an explicit collec-
tion of posterior samples ✓1, ..., ✓s, the standard Monte
Carlo estimate of Ep(✓|D,✓0)[g(y,x, ✓)] is simply ĝyis =
(1/S)

Ps
j=1 g(y,xi, ✓j). However, this estimator re-

quires retaining the sequence of samples ✓1, ..., ✓s, which
may not be feasible in terms of storage cost. Instead,
we consider the application of an online update func-
tion. We define mis to be the count of the number of
times data case i has been sampled up to and includ-
ing distillation iteration s. An online update function

U(ĝyis, ✓t,mis) takes as input the current estimate of the
expectation, the current sample of the model parameters,
and the number of times data case i has been sampled, and
produces an updated estimate of the expectation ĝyis+1.
Below, we define two different versions of the function.
Us(ĝyis, ✓t,mis), updates ĝyis using the current sample
only, while Uo(ĝyis, ✓t,mis) performs an online update
equivalent to a full Monte Carlo average.

Us(ĝyis, ✓t,mis) = g(y,xi, ✓t) (9)

Uo(ĝyis, ✓t,mis) =
1

mis+1

�
mis · ĝyis + g(y,xi, ✓t)

�
(10)

We note that both update functions provide unbiased es-
timates of Ep(✓|D,✓0)[g(y,x, ✓)] after a suitable burn-in
time B. The online update Uo(.) will generally result in
lower variance in the estimated values of ĝyis, but it comes
at the cost of needing to explicitly maintain the expecta-
tion estimates ĝyis across learning iterations, increasing
the storage cost of the algorithm. It is worthwhile not-
ing that the extra storage and computation cost required
by Uo grows linearly in the size of the training set for
the student. By contrast, the fully stochastic update is
memoryless in terms of past expectation estimates, so the
estimated expectations ĝyis do not need to be retained
across iterations resulting in a substantial space savings.

General Algorithm and Special Cases: We show a com-
plete description of the proposed method in Algorithm 1
in the appendix. The algorithm takes as input the teacher
model p(y|x, ✓), the parameters of the prior p(✓|✓0), a
labeled data set D, an unlabeled data set D0, the function
g(y,x, ✓), the student model f(y,x|�), an online expec-
tation estimator U(ĝyis, ✓t,mis), a loss function `(·, ·)
that measures the error of the approximation given by
f(y,x|�), a regularization function R(.) and regulariza-
tion hyper-parameter �, minibatch sizes M and M

0, the
thinning interval parameter H , the SGLD burn-in time
parameter B and step size schedules for the step sizes ⌘t
and ↵s.

We note that the original Bayesian Dark Knowledge
method is recoverable as a special case of this frame-
work via the the choices g(y,x, ✓) = p(y|x, ✓), `(p, q) =
�p log(q), U = Us and p(y|x, ✓) = f(y,x,�) (i.e., the
architecture of the student is selected to match that of the
teacher). The original approach also uses a distillation
data set D0 obtained from D by adding randomly gener-
ated noise to instances from D on each distillation itera-
tion, taking advantage of the fact that the choice U = Us

means that no aspect of the algorithm scales with |D
0
|.

Our general framework allows for other trade-offs, includ-
ing reducing the variance in the estimates of ĝyis at the
cost of additional storage in proportion to |D

0
|. We also

note that the loss function `(p, q) = �p log(q) and the
choice g(y,x, ✓) = p(y|x, ✓) are somewhat of a special
case when used together as even when the full stochastic
expectation update Us is used, the resulting distillation
parameter gradient is unbiased. To distill posterior ex-
pected entropy (e.g., expected data uncertainty), we set
g(y,x, ✓) =

P
y2Y

p(y|x, ✓) log p(y|x, ✓), U = Uo and
`(h, h0) = |h� h

0
|.

3.3 Model Compression and Pruning

One of the primary motivations for the original Bayesian
Dark Knowledge approach is that it provides an approxi-
mate inference framework that results in significant com-
putational and storage savings at test time. However, a
drawback of the original approach is that the architecture
of the student is chosen to match that of the teacher. As
we will show in Section 4, this will sometimes result in a
student network that has too little capacity. On the other
hand, if we plan to deploy the student model in a low
resource compute environment, the teacher architecture
may not meet the specified computational constraints. In
either case, we need a general approach for selecting an
architecture for the student model.

To begin to explore this problem, we consider two basic
approaches to choosing student model architectures that
enable trading off test time inference speed and storage
for accuracy (or more generally, lower distillation loss).
A helpful aspect of the distillation process relative to a de
novo architecture search problem is that the architecture
of the teacher model is available as a starting point. As a
first approach, we consider wrapping the proposed GPED
algorithm with an explicit search over a set of student
models that are “close” to the teacher. Specifically, we
consider a search space obtained by starting from the
teacher model and applying a width multiplier to the width
of every fully connected layer and a kernel multiplier to
the number of kernels in every convolutional layer. While
this search requires exponential time in the number of
layers, it provides a baseline for evaluating other methods.

As an alternative approach with better computational com-
plexity, we leverage the regularization function R(�) in-
cluded in the GPED framework to prune a large initial
network using group `1/`2 regularization (Zhang and Ou,
2018; Wen et al., 2016). To apply this approach, we
first must partition the parameters in the parameter vector
� across K groups Gk. The form of the regularizer is
R(�) =

PK
k=1

�P
j2Gk

�
2
j

�1/2. As is well-established
in the literature, this regularizer causes all parameters
in a group to go to zero simultaneously when they are
not needed in a model. To use it for model pruning for
a unit in a fully connected layer, we collect all of that
unit’s inputs into a group. Similarly, we collect all of the

incoming weights for a particular channel in a convolu-
tion layer together into a group. If all incoming weights
associated with a unit or a channel have magnitude below
a small threshold ✏, we can explicitly remove them from
the model, obtaining a more compact architecture. We
also fine-tune our models after pruning.

Finally, we note that any number of weight compress-
ing, pruning, and architecture search methods could be
combined with the GPED framework. Our goal is not to
exhaustively compare such methods, but rather to demon-
strate that GPED is sensitive to the choice of student
model to highlight the need for additional research on the
problem of selecting student model architectures.

4 EXPERIMENTS AND RESULTS

In this section, we present experiments and results evalu-
ating the proposed approach using multiple data sets, pos-
terior expectations, teacher model architectures, student
model architectures, basic architecture search methods,
and multiple down-stream tasks. We begin by providing
an overview of the experimental protocols used.

4.1 Experimental Protocols

Data Sets: We use the MNIST (LeCun, 1998) and CI-
FAR10 (Krizhevsky et al., 2009) data sets as base data
sets in our experiments. In the case of MNIST, posterior
predictive uncertainty is very low, so we introduce two
different modifications to explore the impact of uncer-
tainty on distillation performance. The first modification
is simply to subsample the data. The second modification
is to introduce occlusions into the data set using randomly
positioned square masks of different sizes, resulting in
masking rates from 0% to 86.2%. For CIFAR10, we only
use sub-sampling. Full details for both data sets and the
manipulations applied can be found in Appendix A.1.

Models: We evaluate a total of three teacher models in
this work: a three-layer fully connected network (FCNN)
for MNIST matching the architecture used by Balan et al.
(2015), a four-layer convolutional network for MNIST,
and a five-layer convolutional network for CIFAR10. Full
details of the teacher model architectures are given in
Appendix A.2. For exhaustive search for student model
architectures, we use the teacher model architectures as
base models and search over a space of layer width multi-
pliers K1 and K2 that can be used to expand sets of layers
in the teacher models. A full description of the search
space of student models can be found in Appendix A.2.

Distillation Procedures: We consider distilling both the
posterior predictive distribution and the posterior entropy,
as described in the previous section. For the posterior

Table 1: Results of posterior distillation when the student
architecture is fixed to match the teacher architecture and
base data sets are used with no sub-sampling or occlusion.

Model &
Dataset

Teacher
NLL

Student
NLL

MAE
(Entropy)

FCNN - MNIST 0.052 0.082 0.016
CNN - MNIST 0.022 0.053 0.016

CNN - CIFAR10 0.671 0.932 0.245

predictive distribution, we use the stochastic expecta-
tion estimator Us while for entropy we experiment with
both estimators. We allow B = 1000 burn-in iterations
for MNIST and B = 10000 for CIFAR10, and total of
T = 106 training iterations. The prior hyper-parameters,
learning rate schedules and other parameters vary by data
set or distillation target and are fully described in Ap-
pendix A.2.

4.2 Experiments

Experiment 1: Distilling Posterior Expectations For
this experiment, we use the MNIST and CIFAR10
datasets without any subsampling or masking. For each
dataset and model, we consider separately distilling the
posterior predictive distribution and the posterior entropy.
We fix the architecture of the student to match that of
the teacher. To evaluate the performance while distilling
the posterior predictive distribution, we use the negative
log-likelihood (NLL) of the model on the test set. For
evaluating the performance of distilling posterior entropy,
we use the mean absolute difference between the teacher
ensemble’s entropy estimate and the student model output
on the test set. The results are given in Table 1. First,
we note that the FCNN NLL results on MNIST closely
replicate the results in Balan et al. (2015), as expected.
We also note that the error in the entropy is low for both
the FCNN and CNN architectures on MNIST. However,
the student model fails to match the NLL of the teacher on
CIFAR10 and the entropy MAE is also relatively high. In
Experiment 2, we will investigate the effect of increasing
uncertainty , while in Experiment 3 we will investigate
the impact of student architectures.

Experiment 2: Robustness to Uncertainty We build on
Experiment 1 by exploring methods for increasing pos-
terior uncertainty on MNIST (sub-sampling and mask-
ing) and CIFAR10 (sub-sampling). We consider the
cross product of four sub-sampling rates and six mask-
ing rates for MNIST and three sub-sampling rates for
CIFAR10. We consider the posterior predictive distri-
bution and posterior entropy distillation targets. For the
posterior predictive distribution we report the negative

(a) (b) (c)

Figure 1: Distillation performance using CNNs on MNIST while varying data set size and masking rate. (a) Test
negative log likelihood of the teacher posterior predictive distribution. (b) Difference in test negative log likelihood
between student and teacher posterior predictive distribution estimates. (c) Difference between teacher and student
posterior entropy estimates on test data set.

log likelihood (NLL) of the teacher, and the NLL gap
between the teacher and student. For entropy, we report
the mean absolute error between the teacher ensemble
and the student. All metrics are evaluated on held-out test
data. We also restrict the experiment to the case where
the student architecture matches the teacher architecture,
mirroring the Bayesian Dark Knowledge approach. In
Figure 1, we show the results for the convolutional mod-
els on MNIST. The FCNN results are similar to the CNN
results on MNIST and are shown in Figure 4 along with
the CNN results on CIFAR10 in Figure 5 in Appendix B.
In Appendix B, we also provide a performance compar-
ison between the Uo and Us estimators while distilling
posterior expectations.

As expected, the NLL of the teacher decreases as the data
set size increases. We observe that changing the number
of training samples has a similar effect on NLL gap for
both CIFAR10 and MNIST. More specifically, for any
fixed masking rate of MNIST (and zero masking rate for
CIFAR10), we can see that the NLL difference between
the student and teacher decreases with increasing training
data. However, for MNIST we can see that the teacher
NLL increases much more rapidly as a function of the
masking rate. Moreover, the gap between the teacher
and student peaks for moderate values of the masking
rate. This fact is explained through the observation that
when the masking rate is low, posterior uncertainty is
low, and distillation is relatively easy. On the other hand,
when the masking rate is high, the teacher essentially
outputs the uniform distribution for every example, which
is very easy for the student to represent. As a result, the
moderate values of the masking rate result in the hardest
distillation problem and thus the largest performance gap.
For varying masking rates, we see exactly the same trend
for the gap in posterior entropy predictions on MNIST.
However, the gap for entropy prediction increases as a
function of data set size for CIFAR10. Finally, as we
would expect, the performance of distillation using the

Uo estimator is almost always better than that of the Us

estimator (see Appendix B).

The key finding of this experiment is that the quality
of the approximations provided by the student model
can significantly vary as a function of properties of the
underlying data set. In the next experiment, we address
the problem of searching for improved student model
architectures.

Experiment 3: Student Model Architectures In this
experiment, we compare exhaustive search to the group
`1/`2 (group lasso) regularizer combined with pruning.
For the pruning approach, we start with the largest stu-
dent model considered under exhaustive search, and prune
back from there using different regularization parameters
�, leading to different student model architectures. We
present results in terms of performance versus computa-
tion time (estimated in FLOPS), as well as performance
vs storage cost (estimated in number of parameters). As
performance measures for the posterior predictive distri-
bution, we consider accuracy and negative log likelihood.
For entropy, we use mean absolute error. In all cases,
results are reported on test data. We consider both fully
connected and convolutional models.

Figure 2 shows results for the negative log likelihood
(NLL) of the convolutional model on MNIST with mask-
ing rate 29% and 60,000 training samples. We select this
setting as illustrative of a difficult case for posterior pre-
dictive distribution distillation. We plot NLL vs FLOPS
and NLL vs storage for all points encountered in each
search. The solid blue line indicates the Pareto frontier.

First, we note that the baseline student model (with
architecture matching the teacher) from Experiment 2
on MNIST achieves an NLL of 0.469 at approximately
0.48⇥106 FLOPs and 0.03⇥106 parameters on this con-
figuration of the data set. We can see that both methods
for selecting student architectures provide a highly signif-
icant improvement over the baseline student architectures.

(a) (b) (c) (d)

Figure 2: NLL-Storage-Computation tradeoff while using CNNs on MNIST with masking rate 29%. Test negative
log likelihood of posterior predictive distribution vs FLOPS found using (a) exhaustive search and (b) group `1/`2

with pruning. Test negative log likelihood of posterior predictive distribution vs storage found using (c) exhaustive
search and (d) group `1/`2 with pruning. The optimal student model for this configuration is obtained with group `1/`2

pruning. It has approximately 6.6⇥ the number of parameters and 6.4⇥ the FLOPS of the base student model. Notation:
“S” - pareto frontier of the student models, “T” - Teacher, “IS” - Individual Student. The black dashed line denotes the
FLOPS/number of parameters of the base student model having the same architecture as a teacher model.

Table 2: In-distribution Test set metrics comparison us-
ing Us and largest student model obtained using width
multiplier.

Model/
Dataset

NLL
(Ensemble)

NLL
(GPED)

NLL
(EnD2)

MAE
Entropy
(GPED)

MAE
Entropy
(EnD2)

FCNN/
MNIST 0.362 0.408 0.415 0.069 0.105

CNN/
MNIST 0.269 0.296 0.321 0.086 0.106

CNN/
CIFAR10 0.799 0.859 0.907 0.146 0.328

On MNIST, the NLL is reduced to 0.30. Further, we can
also see that the group `1/`2 approach is able to obtain
much better NLL at the same computation and storage
cost relative to the exhaustive search method. Lastly, the
group `1/`2 method is able to obtain models on MNIST
at less than 50% the computational cost needed by the
baseline model with only a small loss in performance.
Results for other models and distillation targets show sim-
ilar trends and are presented in Appendix B. Additional
experimental details are given in Appendix A.2.

In summary, the key finding of this experiment is that
the capacity of the student model significantly impacts
distillation performance, and student model architecture
optimization methods are needed to achieve a desired
speed-storage-accuracy trade-off.

Experiment 4: Uncertainty Quantification for Down-
stream Tasks As noted earlier, uncertainty quantifica-
tion and decomposition is an important application of
Bayesian posterior predictive inference. In this set of ex-
periments, we evaluate our method on two downstream ap-
plications: out-of-distribution detection and uncertainty-

based ranking. We compare the GPED framework to the
full Monte Carlo ensemble as well as to an adaptation of
Ensemble Distribution Distillation (EnD2) (Malinin et al.,
2020). In particular, Malinin et al. (2020) materialize a
complete ensemble, which is not feasible in our case due
to the large number of samples in the Bayesian ensemble
(⇠ 105 samples). We instead use Algorithm 1 with the
Dirichlet log likelihood distillation loss used by Malinin
et al. (2020) (see Appendix A.3 for EnD2 implementation
details). Additionally, we modify our student models to
distill both the predictive distribution and expected data
uncertainty in a single model.

Before assessing the performance of these methods on
downstream tasks, we first compare their performance in
terms of negative log likelihood and MAE on the poste-
rior predictive distribution and expected data uncertainty
distillation tasks. We use the same dataset augmentation
as in the previous experiment. We compare the GPED
and EnD2 methods using Uo and Us as well as for small
and large model sizes. Note that for distilling entropy
under our method in this section, we always use the Uo

estimator. Wherever the Us estimator is mentioned for our
method in this section of experiments, it is only applied
to distilling predictive means. In Table 2 we compare
different distillation methods for different model-dataset
combinations. These results correspond to the Us esti-
mator and the largest student model. As an illustration,
we present joint and marginal expected data uncertainty
distribution plots in Figure 15 that correspond to the re-
sults in Table 2. These figures show how GPED and EnD2

compare against the Bayesian ensemble on a data case-by-
data case basis. Additional results are presented in Tables
[8- 10] and Figure 14. The key result of these experiments
is that the GPED framework consistently performs better
than EnD2 across all metrics on the test datasets.

Table 3: AUROC for OOD Detection using Us and largest
student model obtained using width multiplier.

Model & Train Data/
OOD Data Uncertainty Ensemble GPED

(ours) EnD2

FCNN-MNIST/
KMNIST

Total 0.929 0.867 0.816
Knowledge 0.976 0.928 0.899

FCNN-MNIST/
notMNIST

Total 0.944 0.670 0.652
Knowledge 0.990 0.762 0.681

CNN-MNIST/
KMNIST

Total 0.894 0.882 0.881
Knowledge 0.956 0.932 0.952

CNN-MNIST/
notMNIST

Total 0.888 0.882 0.860
Knowledge 0.946 0.934 0.939

CNN-CIFAR10/
TIM

Total 0.729 0.762 0.721
Knowledge 0.796 0.808 0.792

CNN-CIFAR10/
LSUN

Total 0.790 0.779 0.747
Knowledge 0.752 0.767 0.713

Out-of-distribution detection: OOD detection has gar-
nered a lot interest in the deep learning community as
it is as a practical challenge during deployment of deep
models. In this experiment, we use the measures of to-
tal uncertainty and knowledge uncertainty for detecting
OOD inputs. OOD detection is a binary classification
problem where we utilize a measure of uncertainty to
classify an input as in-distribution or out-of-distribution
based on a threshold. For our experiments, we use four
OOD datasets: KMNIST (Clanuwat et al., 2018), notM-
NIST (Bulatov, 2011), TinyImageNet (TIM) (CS231N,
2017), and SVHN (Netzer et al., 2011). Additional ex-
perimental details are given in the Appendix A.4. We
run our experiments for different combinations of mod-
els, in-distribution datasets, out-of-distribution datasets,
model architectures, and estimators used for distilling
the predictive distribution under the proposed framework
as well as for the EnD2 framework. We report example
OOD detection results using the Us estimator and the
largest student model in Table 3. Our overall results show
that GPED outperforms EnD2 in 75% of cases across all
experimental settings considered (additional results are
given in Tables [11-13] in Appendix B).

Uncertainty-Based Ranking: Another important appli-
cation of Bayesian neural networks is ranking instances
based on uncertainty. Such rankings are used in active
learning and other human-in-the-loop decision systems
to prioritize uncertain instances for labeling or analysis
by human decision makers. This task is sensitive to the
correct rank order of in-distribution instances by uncer-
tainty level, where as the OOD task is only sensitive to
the existence of a threshold that separates in and out of
distribution instances. To assess how well our distillation
framework preserves the relative ranking between the in-
puts when compared to the full Bayesian ensemble, we
compute the Normalized Discounted Cumulative Gain

Table 4: nDCG@20 out of 100 randomly selected test
inputs using Us estimator and largest student model . Re-
sults reported as mean ± std. dev. over 500 trials.

Model & Data Uncertainty GPED
(ours) EnD2

FCNN-MNIST Total 0.954 ± 0.02 0.946 ± 0.021
Knowledge 0.924 ± 0.03 0.941 ± 0.028

CNN-MNIST Total 0.929 ± 0.034 0.916 ± 0.032
Knowledge 0.888 ± 0.032 0.876 ± 0.045

CIFAR10 Total 0.935 ± 0.022 0.919 ± 0.027
Knowledge 0.885 ± 0.033 0.889 ± 0.034

(nDCG) score (Järvelin and Kekäläinen, 2002) for total
uncertainty and knowledge uncertainty. A higher nDCG
score implies that the correct ranking of inputs is better
preserved under the distillation framework. For our ex-
periments, we asses nDCG@20. In Table 4, we report the
nDCG scores using the Us estimator and largest student
model as example results. Overall, GPED outperforms
EnD2 in 91% of settings considered (additional ranking
results are given in Tables [14-16] in Appendix B).

5 CONCLUSIONS & FUTURE
DIRECTIONS

We have presented a framework for distilling expecta-
tions with respect to the Bayesian posterior distribution
of a deep neural network that significantly generalizes the
Bayesian Dark Knowledge approach. Our results show
that posterior distillation performance can be highly sen-
sitive to the architecture of the student model, but that
architecture search methods can identify student model
architectures with improved speed-storage-accuracy trade-
offs. We have also demonstrated that the proposed ap-
proach performs well on downstream tasks that leverage
entropy distillation for uncertainty decomposition. There
are many directions for future work including considering
the distillation of a broader class of posterior statistics,
developing more advanced architecture search methods,
and applying the framework to larger models.

Acknowledgments

This work was partially supported by the US Army Re-
search Laboratory under cooperative agreement W911NF-
17-2-0196. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or
the US government.

References
J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In NeurIPS, 2016.
A. K. Balan, V. Rathod, K. P. Murphy, and M. Welling.

Bayesian dark knowledge. In NeurIPS, 2015.
Y. Bulatov. notMNIST dataset. 2011.
T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb,

K. Yamamoto, and D. Ha. Deep learning for classical
japanese literature. arXiv:1812.01718, 2018.

S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez,
and S. Udluft. Decomposition of uncertainty for active
learning and reliable reinforcement learning in stochas-
tic systems. ArXiv, abs/1710.07283, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In NeurIPS, 2014.

A. Graves. Practical variational inference for neural net-
works. In NeurIPS, 2011.

A. Graves, A. R. Mohamed, and G. Hinton. Speech
recognition with deep recurrent neural networks. In
ICASSP. IEEE, 2013.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery
for efficient dnns. In NeurIPS, 2016.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both
weights and connections for efficient neural networks.
In NeurIPS, 2015.

S. Han, J. Pool, S. Narang, H. Mao, S. Tang, E. Elsen,
B. Catanzaro, J. Tran, and W. J. Dally. Dsd: Regular-
izing deep neural networks with dense-sparse-dense
training flow. ArXiv, abs/1607.04381, 2016.

B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain
surgeon and general network pruning. IEEE Interna-
tional Conference on Neural Networks, 1993.

Y. He, X. Zhang, and J. Sun. Channel pruning for accel-
erating very deep neural networks. ICCV, 2017.

C. Henning, J. von Oswald, J. Sacramento, S. C. Surace,
J.-P. Pfister, and B. F. Grewe. Approximating the pre-
dictive distribution via adversarially-trained hypernet-
works. In NeurIPS Bayesian Deep Learning Workshop,
2018.

J. M. Hernández-Lobato and R. Adams. Probabilistic
backpropagation for scalable learning of Bayesian neu-
ral networks. In ICML, 2015.

G. Hinton and D. Van Camp. Keeping neural networks
simple by minimizing the description length of the
weights. In COLT, 1993.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-
edge in a neural network. arXiv:1503.02531, 2015.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-
berger. Densely connected convolutional networks.
CVPR, 2016.

K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst., 20:
422–446, 2002.

X. Jin, X.-T. Yuan, J. Feng, and S. Yan. Training skinny
deep neural networks with iterative hard thresholding
methods. ArXiv, abs/1607.05423, 2016.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K.
Saul. An introduction to variational methods for graph-
ical models. Machine learning, 37(2):183–233, 1999.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers
of features from tiny images. Technical report, 2009.

Y. LeCun. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

C. Louizos, K. Ullrich, and M. Welling. Bayesian com-
pression for deep learning. ArXiv, abs/1705.08665,
2017.

A. Malinin, B. Mlodozeniec, and M. Gales. Ensemble
distribution distillation. In ICLR, 2020.

T. P. Minka. Expectation propagation for approximate
Bayesian inference. In UAI, 2001.

R. M. Neal. Bayesian Learning for Neural Networks.
Springer-Verlag, 1996.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng. Reading digits in natural images with unsu-
pervised feature learning. 2011.

D. Soudry, I. Hubara, and R. Meir. Expectation back-
propagation: Parameter-free training of multilayer neu-
ral networks with continuous or discrete weights. In
NeurIPS, 2014.

K.-C. Wang, P. Vicol, J. Lucas, L. Gu, R. Grosse, and
R. Zemel. Adversarial distillation of Bayesian neural
network posteriors. arXiv:1806.10317, 2018.

M. Welling and Y. W. Teh. Bayesian learning via stochas-
tic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learn-
ing (ICML-11), pages 681–688, 2011.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In NeurIPS,
2016.

Y. Zhang and Z. Ou. Learning sparse structured ensembles
with stochastic gradient MCMC sampling and network
pruning. IEEE MLSP, 2018.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	PROPOSED FRAMEWORK
	Generalized Posterior Expectations
	Generalized Posterior Expectation Distillation
	Model Compression and Pruning

	EXPERIMENTS AND RESULTS
	Experimental Protocols
	Experiments

	CONCLUSIONS & FUTURE DIRECTIONS
	Datasets and Model Details
	Datasets
	Models
	Ensemble Distribution Distillation (EnD2) malinin2020ensemble
	Additional Details on Experiment 4: Uncertainty Quantification for Downstream tasks

	Supplemental Experiments and Results
	Supplemental Results for Experiment 2: Robustness to Uncertainty
	Supplemental Results for Experiment 3: Towards Student Model Architecture Search
	Supplemental Results for Experiment 4: Uncertainty Quantification for Downstream tasks

