Slice Sampling for General Completely Random Measures – Supplement

Peiyuan Zhu Alexandre Bouchard-Côté Trevor Campbell Department of Statistics University of British Columbia Vancouver, BC V6T 1Z4

We now show that the proposed slice sampler defines a valid Markov chain Monte Carlo algorithm (Theorem 0.2). In particular, (1) the exact posterior π is the invariant distribution of the Markov chain, and (2) that a law of large numbers holds: for any measurable function Φ and initial state S_0 , the sequence of states S_1, S_2, \ldots produced by the slice sampler satisfies

$$\frac{1}{T} \sum_{t=1}^{T} \Phi(S_t) \xrightarrow{a.s.} \mathbb{E}_{\pi} \left[\Phi(S) \right].$$

We start with some basic notation. Let S be a set endowed with a σ -algebra \mathcal{B} , and let π be a target probability distribution on S. A *Markov kernel* $\kappa : S \times \mathcal{B} \to [0, 1]$ satisfies two properties: (1) for each $B \in \mathcal{B}$, $\kappa(\cdot, B) : S \to [0, 1]$ is a measurable function, and (2) for each $s \in S$, $\kappa(s, \cdot)$ is a probability measure. $\kappa(s, B)$ can be thought of as the probability of transitioning to any state $s' \in B \subseteq S$ in a single jump starting from a particular state $s \in S$. Given two Markov kernels κ_1, κ_2 , define the *composition* $\kappa_1 \circ \kappa_2$ of the kernels—another Markov kernel—via

$$(\kappa_1 \circ \kappa_2)(s, B) = \int \kappa_1(s', B) \kappa_2(s, ds')$$

As with a single kernel, the composition $(\kappa_1 \circ \kappa_2)(s, B)$ can be thought of as the probability of transitioning to any state $s' \in B \subseteq S$ after two jumps—first via κ_2 , then via κ_1 —starting from a particular state $s \in S$.

One of the key conditions for a kernel κ to create a Markov chain Monte Carlo scheme for a target distribution π is π -*invariance*: if one samples $s \sim \pi$, and then simulates a transition $s' \sim \kappa(s, \cdot)$, we require that $s' \sim \pi$. In other words, for any measurable set B,

$$\int \kappa(s,B)\pi(ds) = \pi(B).$$

We use the following results in Lemma 0.1 to analyze the π -invariance of the proposed slice sampler for the posterior distribution π .

Lemma 0.1. Let $(\kappa_j)_{j=1}^{\infty}$ be Markov kernels, and suppose S can be written as a countable partition $S = \bigcup_j B_j, i \neq j \implies B_i \cap B_j = \emptyset$ of sets of nonzero measure $\pi(B_j) > 0$.

1. If the κ_i are all π -invariant, and

$$\kappa(s,B) = \lim_{J \to \infty} (\kappa_J \circ \cdots \circ \kappa_1) (s,B)$$

exists pointwise for $s \in S$ and $B \in B$, then κ is a π -invariant Markov kernel.

2. If each κ_i is π_i -invariant, where

$$\pi_j(B) = \frac{\pi(B \cap B_j)}{\pi(B_j)},$$

then

$$\kappa(s,B) = \sum_{j=1}^{\infty} \mathbb{1}\left[s \in B_j\right] \kappa_j(s,B)$$

is π -invariant.

Proof. For 1,

$$\int \kappa(s, B)\pi(ds)$$

= $\int \lim_{J \to \infty} (\kappa_J \circ \dots \circ \kappa_1) (s, B)\pi(ds)$
= $\lim_{J \to \infty} \int (\kappa_J \circ \dots \circ \kappa_1) (s, B)\pi(ds)$
= $\lim_{J \to \infty} \pi(B) = \pi(B),$

where we use the fact that the finite composition of π -invariant kernels is π -invariant e.g. by [1, p. 49], and Lebesgue dominated convergence to swap the limit and

integral. For 2,

$$\int \kappa(s, B)\pi(ds)$$

= $\sum_{j=1}^{\infty} \int \mathbb{1} [s \in B_j] \kappa_j(s, B)\pi(ds)$
= $\sum_{j=1}^{\infty} \pi(B_j) \int \kappa_j(s, B) \frac{\mathbb{1} [s \in B_j] \pi(ds)}{\pi(B_j)}$
= $\sum_{j=1}^{\infty} \pi(B_j)\pi_j(B) = \sum_{j=1}^{\infty} \pi(B_j \cap B) = \pi(B),$

where we again use Lebesgue dominated convergence to swap the infinite series and integral. $\hfill \Box$

Each iteration of the slice sampler can be written as the kernel composition

$$\kappa = \kappa_{\Gamma,V}^{\exp} \circ \kappa_{\Gamma,V} \circ \kappa_X \circ \kappa_\psi \circ \kappa_U.$$

The kernels $\kappa_X, \kappa_{\psi}, \kappa_U$ are the full conditional (i.e., Gibbs) kernels for variables X, ψ, U ; the kernel $\kappa_{\Gamma,V}$ (substep 1 in the main text) is the composition of the full conditional of Γ_k, V_k for all $k \in \mathbb{N}$; standard results [1, p. 79] guarantee that each of these is π -invariant, and so their composition is π -invariant by Lemma 0.1. Note that although all of these kernels involve theoretically simulating infinitely many values, in practice this is unnecessary: truncation by U makes simulating X_{nk} and ψ_k for k > K unnecessary, and we will see that the final kernel $\kappa_{\Gamma,V}^{exp}$ overwrites changes to Γ_k, V_k for $k \ge K_{\text{prev}}$, implying that the full conditional step only needs to be run for $k < K_{\text{prev}}$.

The only remaining kernel is $\kappa_{\Gamma,V}^{\exp}$, which corresponds to substep 2 in the main text. This kernel samples $(\Gamma_k, V_k)_{k=K_{\text{prev}}}^{\infty}$ from their full conditional. Denote κ_j^{\exp} to be the kernel that samples $(\Gamma_k, V_k)_{k=j}^{\infty}$ from their full conditional; then

$$\kappa^{\mathrm{exp}}_{\Gamma,V} = \sum_{j=0}^{\infty} \mathbbm{1} \left[K_{\mathrm{prev}} = j \right] \kappa^{\mathrm{exp}}_j.$$

By Lemma 0.1, we just need to show that each κ_j^{exp} is π_j -invariant, where π_j is the posterior conditioned on $K_{prev} = j$, which follows from the fact that π_j is a Gibbs kernel.

We have now shown that the Markov kernel created by the slice sampler in the main text is π -invariant. We now complete the final result in Theorem 0.2.

Theorem 0.2. If f > 0 and h > 0, then for any measurable function Φ and any initial random state S_0 , the

sequence of states S_1, S_2, \ldots produced by κ satisfies

$$\frac{1}{T} \sum_{t=1}^{T} \Phi(S_t) \stackrel{a.s.}{\to} \mathbb{E}_{\pi} \left[\Phi(S) \right]$$

Proof. We first establish φ -irreducibility: let us set φ to the posterior distribution, let $s = (v, \gamma, x, \psi, u)$ denote an initial state, and B, a target set of configurations with positive posterior probability. It may not be possible to go from s to B in one application of κ as the current configuration of the matrix x constrains what values u can take. However this obstacle disappears by considering paths obtained by two applications of κ and visiting an intermediate state where every entry in the matrix x is set to zero. To formalize this, let $B_0 = \{(v, \gamma, x, \psi, u) : x_{nk} = 0 \ \forall n, k\}$. Then

$$\begin{split} \kappa^2(s,B) &= \int \kappa(s,\mathrm{d}s')\kappa(s',B) \\ &\geq \int \mu(\mathrm{d}s')\kappa(s',B) \end{split}$$

where $\mu(A) = \kappa(s, A \cap B_0)$. Using the fact that ξ is monotonically decreasing, our assumption that f and hare strictly positive, we obtain from the full conditional of X derived in the paper that μ is a strictly positive measure on B_0 . Moreover, using again the same assumptions, straightforward checks on each full conditional derived in the paper shows that provided $s \in B_0$, the function $\kappa(s', B)$ is positive.

Having established φ -irreducibility, Harris recurrence follows from [2, Cor. 13] since κ is a deterministic alternation of Gibbs kernels. Therefore the law of large number follows by [3, Thm. 17.0.1, 17.1.6].

References

- Charles J Geyer. Markov chain Monte Carlo Lecture Notes, 1998.
- [2] Gareth O. Roberts and Jeffrey S. Rosenthal. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains. *The Annals of Applied Probability*, 16(4): 2123–2139, 2006. ISSN 1050-5164.
- [3] Sean P. Meyn and Richard L. Tweedie. *Markov Chains and Stochastic Stability*. Communications and Control Engineering. Springer-Verlag, London, 1993. ISBN 978-1-4471-3269-1.