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We now show that the proposed slice sampler defines a
valid Markov chain Monte Carlo algorithm (Theorem 0.2).
In particular, (1) the exact posterior π is the invariant dis-
tribution of the Markov chain, and (2) that a law of large
numbers holds: for any measurable function Φ and initial
state S0, the sequence of states S1, S2, . . . produced by
the slice sampler satisfies

1

T

T∑
t=1

Φ(St)
a.s.→ Eπ [Φ(S)] .

We start with some basic notation. Let S be a set endowed
with a σ-algebra B, and let π be a target probability distri-
bution on S . A Markov kernel κ : S×B → [0, 1] satisfies
two properties: (1) for each B ∈ B, κ(·, B) : S → [0, 1]
is a measurable function, and (2) for each s ∈ S, κ(s, ·)
is a probability measure. κ(s,B) can be thought of as
the probability of transitioning to any state s′ ∈ B ⊆ S
in a single jump starting from a particular state s ∈ S.
Given two Markov kernels κ1, κ2, define the composition
κ1 ◦ κ2 of the kernels—another Markov kernel—via

(κ1 ◦ κ2)(s,B) =

∫
κ1(s′, B)κ2(s, ds′).

As with a single kernel, the composition (κ1 ◦ κ2)(s,B)
can be thought of as the probability of transitioning to any
state s′ ∈ B ⊆ S after two jumps—first via κ2, then via
κ1—starting from a particular state s ∈ S.

One of the key conditions for a kernel κ to create a Markov
chain Monte Carlo scheme for a target distribution π is
π-invariance: if one samples s ∼ π, and then simulates
a transition s′ ∼ κ(s, ·), we require that s′ ∼ π. In other
words, for any measurable set B,∫

κ(s,B)π(ds) = π(B).

We use the following results in Lemma 0.1 to analyze
the π-invariance of the proposed slice sampler for the
posterior distribution π.

Lemma 0.1. Let (κj)
∞
j=1 be Markov kernels, and sup-

pose S can be written as a countable partition S =⋃
j Bj , i 6= j =⇒ Bi ∩ Bj = ∅ of sets of nonzero

measure π(Bj) > 0.

1. If the κj are all π-invariant, and

κ(s,B) = lim
J→∞

(κJ ◦ · · · ◦ κ1) (s,B)

exists pointwise for s ∈ S and B ∈ B, then κ is a
π-invariant Markov kernel.

2. If each κj is πj-invariant, where

πj(B) =
π(B ∩Bj)
π(Bj)

,

then

κ(s,B) =

∞∑
j=1

1 [s ∈ Bj ]κj(s,B)

is π-invariant.

Proof. For 1,∫
κ(s,B)π(ds)

=

∫
lim
J→∞

(κJ ◦ · · · ◦ κ1) (s,B)π(ds)

= lim
J→∞

∫
(κJ ◦ · · · ◦ κ1) (s,B)π(ds)

= lim
J→∞

π(B) = π(B),

where we use the fact that the finite composition of π-
invariant kernels is π-invariant e.g. by [1, p. 49], and
Lebesgue dominated convergence to swap the limit and



integral. For 2,∫
κ(s,B)π(ds)

=

∞∑
j=1

∫
1 [s ∈ Bj ]κj(s,B)π(ds)

=

∞∑
j=1

π(Bj)

∫
κj(s,B)

1 [s ∈ Bj ]π(ds)

π(Bj)

=

∞∑
j=1

π(Bj)πj(B) =

∞∑
j=1

π(Bj ∩B) = π(B),

where we again use Lebesgue dominated convergence to
swap the infinite series and integral.

Each iteration of the slice sampler can be written as the
kernel composition

κ = κexp
Γ,V ◦ κΓ,V ◦ κX ◦ κψ ◦ κU .

The kernels κX , κψ, κU are the full conditional (i.e.,
Gibbs) kernels for variables X,ψ,U ; the kernel κΓ,V

(substep 1 in the main text) is the composition of the full
conditional of Γk, Vk for all k ∈ N; standard results [1,
p. 79] guarantee that each of these is π-invariant, and
so their composition is π-invariant by Lemma 0.1. Note
that although all of these kernels involve theoretically
simulating infinitely many values, in practice this is un-
necessary: truncation by U makes simulating Xnk and
ψk for k > K unnecessary, and we will see that the final
kernel κexp

Γ,V overwrites changes to Γk, Vk for k ≥ Kprev,
implying that the full conditional step only needs to be
run for k < Kprev.

The only remaining kernel is κexp
Γ,V , which corresponds

to substep 2 in the main text. This kernel samples
(Γk, Vk)∞k=Kprev

from their full conditional. Denote κexp
j

to be the kernel that samples (Γk, Vk)∞k=j from their full
conditional; then

κexp
Γ,V =

∞∑
j=0

1 [Kprev = j]κexp
j .

By Lemma 0.1, we just need to show that each κexp
j is

πj-invariant, where πj is the posterior conditioned on
Kprev = j, which follows from the fact that πj is a Gibbs
kernel.

We have now shown that the Markov kernel created by
the slice sampler in the main text is π-invariant. We now
complete the final result in Theorem 0.2.

Theorem 0.2. If f > 0 and h > 0, then for any mea-
surable function Φ and any initial random state S0, the

sequence of states S1, S2, . . . produced by κ satisfies

1

T

T∑
t=1

Φ(St)
a.s.→ Eπ [Φ(S)] .

Proof. We first establish ϕ-irreducibility: let us set ϕ to
the posterior distribution, let s = (v, γ, x, ψ, u) denote
an initial state, and B, a target set of configurations with
positive posterior probability. It may not be possible to
go from s to B in one application of κ as the current
configuration of the matrix x constrains what values u
can take. However this obstacle disappears by considering
paths obtained by two applications of κ and visiting an
intermediate state where every entry in the matrix x is
set to zero. To formalize this, let B0 = {(v, γ, x, ψ, u) :
xnk = 0 ∀n, k}. Then

κ2(s,B) =

∫
κ(s, ds′)κ(s′, B)

≥
∫
µ(ds′)κ(s′, B)

where µ(A) = κ(s,A ∩ B0). Using the fact that ξ is
monotonically decreasing, our assumption that f and h
are strictly positive, we obtain from the full conditional of
X derived in the paper that µ is a strictly positive measure
on B0. Moreover, using again the same assumptions,
straightforward checks on each full conditional derived
in the paper shows that provided s ∈ B0, the function
κ(s′, B) is positive.

Having established ϕ-irreducibility, Harris recurrence fol-
lows from [2, Cor. 13] since κ is a deterministic alterna-
tion of Gibbs kernels. Therefore the law of large number
follows by [3, Thm. 17.0.1, 17.1.6].
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