
Supplementary Material

1 Fly Model

The Fly-vs-Fly dataset we use (Eyjolfsdottir et al., 2014)
contains annotated tracks of fruit flies interacting with
each other. In order to expose this to our general model,
we are interested in the most basic representation or en-
coding of perceptual input and behavioral actions. At
each timestep, the fly has a field of view available to it,
which can contain solid surfaces (walls of the petri dish)
and any number of other flies. In keeping with Eyjolfs-
dottir et al. (2016), the agent’s visual field is divided into
72 individual slices, and the first index encodes the in-
verse distance to an object starting at the slice directly be-
hind the fly’s orientation, (i.e. 180 degrees). This proce-
dure is repeated for each slice going clockwise, until slice
72 is again at 180 degrees. This provides two generic vi-
sual field encodings for the fly, one denoting walls and
the other denoting flies (see Figure ??). Finally, this en-
coding scheme takes care of realistic conditions such as
occlusion, multiple other flies, and new environments as
well.

The action space is treated as follows: for each fly, its
permissible actions are forward and backward motion,
changing its wing angle, changing its wing length, ex-
tending and contracting its body (thereby producing a
change in the visual field of other agents around it), and
finally yawing or turning in place. At each timestep,
these actions are encoded by a delta to the previous po-
sition. That is, the fly knows where it currently is and
chooses for each of the 9 discrete actions, some delta
away from its position in the corresponding unit of mea-
surement. If a fly wishes to walk towards an object at
its 3 o’clock, it will produce a 90 degree turn, followed
by a movement forward some number of units. Another
example is during a mating ceremony, male flies often
encircle the female and vigorously flap its wings, which
is represented by a series of sharp and quick wing deltas
and changing of angles.

Spatial Localization. Let:
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For simplicity, all of the following are understood as the
deltas, or the change in the specified variable at a given
timestep:

• Let ot,f denote the orientation of the fly.

• Let mfwd
t,f and mlat

t,f denote the motion parallel to
and orthogonal to the fly’s orientation, respectively
(i.e. forward and lateral movement)

• Let {wllt,f , wlat,f , wrlt,f , wlat,f} denote the left wing
length, left wing angle, right wing length, and right
wing angle, respectively. Wing angles are measured
with respect to the axis given by the fly’s current
orientation.

• Let bmajt,f and bmint,f denote the fly body major and
minor axis length. While the flies do not actually
change their body size, they might reorient them-
selves in the third dimension, for example by climb-
ing the walls of the dish, which in 2D view results
in changing their body size.

For clarity, at each timestep, the observed motions mfwd
t,f

and mlat
t,f are measured with respect to the fly’s new ori-

entation, after it makes a rotation in place according to
ot,f . For these actions, each can be thought of as a veloc-
ity of sorts, with the basis vector being the fly’s own body
axis. Cueva and Wei (2018) found that modeling move-
ment using velocities leads to the emergence of neurolog-
ical grid cells resemblance in the RNN parametrization,
which provides a rationale for this encoding.

Sensory Encoding. In the fly model this consists of the
fly’s visual input and the relative positions of its body
parts

• Let swallt.f denote 72-dimensional visual input of sur-
rounding walls. Each slice contains the inverse Eu-



clidean distance to an object in the field of view,
with 0 denoting no object present.

• Let sflyt,f denote the 72-dimensional visual input of
other agents/flies present, with the same formula as
above.

• Let {ôt,f , ŵllt,f , ŵlat,f , ŵrlt,f , ŵlat,f , b̂
maj
t,f , b̂mint,f } en-

code the flies current physical state, which are
body and wing configurations. Note that unlike the
actions, these are specified as absolute values and
not deltas. We include knowledge of the fly’s global
orientation, since flies are known to have internal
compasses (Clandinin and Giocomo, 2015).

Together these values constitute the fly’s perceptual input.
Note that the fly does not have direct perception of its
position in space, but can infer that information from the
distances to walls in different directions.
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1.1 Generation and Inference

We introduce one additional piece of notation for con-
venience. In this 2D world, let (cx0

f , cy0f ) denote the
initial cartesian coordinates of the fly, relative to some
arbitrary reference point. For consistency, we con-
sider an environment bounded by some area, A with
the top-left coordinate as (0,0). Similarly, let îf =

{ô0,f ŵll0,f , ŵla0,f , ŵrl0,f , ŵla0,f , b̂
maj
0,f , b̂min0,f }, which denotes

the starting physical configuration of the fly.

We will show how to run the forward model and then to
perform inference in the model. Although the model is
factorized in flies, each fly interacts in the non-stationary,
multi-agent setting by incorporating the perceptual in-
puts of other agents in a generalized way. We con-
struct the factored generative model of behavior as fol-
lows:

• For t = 0, for f in {1, . . . , F}:

– Initialize RNNs

– (cx0

f , cy0f ) ∼ Uniform(A)

– îf ∼ p̂(·| . . . )

Subsequently, we will outline model specifics and give
the intuition for their design.

This model uses pt,f to paramterize the timestep-wise
VAE, by allowing the sensory information to be given to
the latent RNN before generating zt,f , (sometimes yt,f )

and xt,f . In all VRNN models, we directly use the sen-
sory data immediately after an action is taken and be-
fore the next action is produced. For clarity, we refer
to all latents, which may include a discrete y as zt,f be-
low:

• For 0 < t < T , for f in {1, . . . , F}:

vt,f = ζ({xi,k}t−1
i=1,k=f , (c

x0

f , vy0f ), îf , {vt,k}F∖f
k=1 )

h⟨t−1,f⟩ = γψ
(
h⟨t−2,f⟩, zt−1,f , vt,f , xt−1,f

)
zt,f ∼ pθ1(·|h⟨t−1,f⟩)

xt,f ∼ pθ2(·|h⟨t−1,f⟩, zt,f )

The joint probability of the above model factorizes as:

p(z1:T,1:F ) =

F∏
f=1

T∏
t=1

pθ1(zt,f |h
⟨t−1,f⟩)pθ2(xt,f |h⟨t−1,f⟩, zt,f )

(1)

The proposal distribution is as follows:

qϕ(z1:T,1:F ) =

F∏
f=1

T∏
t=1

qϕ1(zt,f |h⟨t−1,f⟩, vt,f ) (2)

To be precise, ζ(·) is a function that returns the sensory
encodings, vt,f of a fly, given its past trajectories to a
point, its own initial conditions, and the position of other
flies at the time. In practice, it can be implemented in a re-
cursive manner. Given the past coordinates and the most
recent action, update vt,f for every fly based on individ-
ual actions, and memoize the new coordinates.

1.2 Data cleaning

For the most part, the data is exhaustive, but a small
percentage of tracking data is missing, which we fill in
with a linear interpolation between the previous and next
known frames. For example, if there is data missing for
the flies position for 2 frames, we assume it walked in a
straight line from its previous known location to the next
known location. When the missing data is rotational, we
interpolate with the assumption that the fly rotated along
the shorter of the two possible arcs to the known orienta-
tion.

Exact measurements are given for yt,f and
{ôt,f ŵllt,f , ŵlat,f , ŵrlt,f , ŵlat,f , b̂

maj
t,f , b̂mint,f }, but sflyt,f

and sflyt,f are manually calculated. Sensory data for the
other fly is approximated with the opposite fly being an
exact circle with radius 12.95. In reality, these flies are
ellipses.



Training Each VRNN model is trained with discrete
and continuous latents. The wake loss of θ (update of θ
using IWAE) is annealed to a constant multiplier of 1.0
on the regularization term (KL between q(z|y) and p(z))
over 10000 steps. We use Adam with learning rate of
0.00002 with 25 particles for training all VRNNs, using
CWS or not. For the RNN baseline, we use RMSprop
with 0.5 weight decay and train to 1500 iterations with a
learning rate of 0.00002. All models are trained with a
batch size of 32 (or 16 per fly).

The dataset we use for training and testing consists of
200 length sequences that comprise at least 25 percent
well defined behavior. That is, our dataset is labeled
with actions consisting of lunges, wing threats, charges,
holds, and tussles. Erratic behavior is also labeled as
well as idle behavior. We define interesting actions as
not idle nor erratic. the training dataset consists of 3292
sequences pairs or 6584 total sequences of length 200 be-
havior. Of the 1,316,800 frames, 717188 are idle, 3567
are erratic, 83990 are tussles, 7946 are holds, 337 are
charges, 485335 are wing threats, and finally, 24924 are
lunges. (the labeled behavior sums to 1,323,287 because
there are overlapping frames, i.e. flies may charge or
hold as part of tussling)

Model architecture The neural network architecture
for the RNN uses two parallel GRU cells with hidden
dimension of 150. Input to the first is 160 dimensional.
The output from the second GRU is used as input to a
2-layer MLP with ReLU activations, to produce the final
action output which is 9-dimensional.

For VRNN models, link functions in the VRNN mod-
els are parametrized by 3-layer MLPs with 100 hidden
dimensions. The inference network link functions work
similarly, and take as input variables and hidden outputs
from the generative model. When multiple link functions
enter a single node, we concatenate all the incoming vec-
tors. For the recurrence, we use a 2-layer GRU for both
inference and the generative model.
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