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Abstract

We introduce a novel objective for training
deep generative time-series models with dis-
crete latent variables for which supervision is
only sparsely available. This instance of semi-
supervised learning is challenging for existing
methods, because the exponential number of
possible discrete latent configurations results
in high variance gradient estimators. We first
overcome this problem by extending the stan-
dard semi-supervised generative modeling ob-
jective with reweighted wake-sleep. However,
we find that this approach still suffers when the
frequency of available labels varies between
training sequences. Finally, we introduce a
unified objective inspired by teacher-forcing
and show that this approach is robust to vari-
able length supervision. We call the resulting
method caffeinated wake-sleep (CWS) to em-
phasize its additional dependence on real data.
We demonstrate its effectiveness with experi-
ments on MNIST, handwriting, and fruit fly tra-
jectory data.

1 INTRODUCTION

In recent years there has been an explosion of inter-
est in deep generative models (DGM), which use neu-
ral networks transforming random inputs to learn com-
plex probability distributions. We particularly focus on
the variational auto-encoder (VAE ; Kingma and Welling
(2013)) family of models, where the generative model
is learned simultaneously with an associated inference
network. This approach has been extended to settings
with partially observed discrete variables (Kingma et al.,
2014) and sequential data (Chung et al., 2015) but so far
little work has been done on combining the two. In this
paper we address this gap.
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In many scenarios it is natural to assign discrete labels
to specific intervals of time-series data and try to infer
these labels from observations. For example, sequences
of stock prices can be identified as periods of bear or
bull markets, fragments of home CCTV footage can be
classified as burglaries or other events, and heart rate sig-
nals can be used to classify cardiac health. In addition
to the latent classification of observations in these appli-
cations, we may also wish to conditionally generate new
sequences or predict ahead given some input sequence.
Existing approaches to generative modeling in this con-
text either require full supervision in the label space, and
therefore are not able to leverage large amounts of unla-
beled data, or are restricted to classification and can not
generate new data (Chen et al., 2013; Wei and Keogh,
2006).

Additionally, many methods for semi-supervised learn-
ing of static DGM tasks define separate unsupervised
and supervised loss terms in the training objective, which
are weighted to reflect the overall supervision rate in the
dataset (Kingma et al., 2014). Though this class of ap-
proaches is extendable to the time-series setting, the op-
timization of model and inference network parameters
become unstable when there is an uneven contribution of
partial labels to the supervised term, as a result of varying
supervision rates in each training example. Because of
this, the state-of-the-art approaches to semi-supervised
learning, including Virtual Adversarial Training (Miy-
ato et al., 2018), Mean Teacher (Tarvainen and Valpola,
2017), and entropy minimization (Grandvalet and Ben-
gio, 2005), cannot be easily adapted to modeling time-
series data.

In this work we derive two novel objectives for training
DGMs with discrete latent variables in a semi-supervised
fashion. They are both based on the reweighted wake-
sleep (RWS) algorithm (Bornschein and Bengio, 2014),
which avoids using high variance score function estima-
tors for expectations over the discrete latents. The first
one, which we call semi-supervised wake-sleep (SSWS),



is obtained by extending RWS with a supervised classifi-
cation term. While it performs well when labels available
in the training set are regularly distributed per training ex-
ample, it suffers from optimization problems when they
are not, which can be unavoidable in real world datasets.
To overcome this problem, we introduce a new approach
which performs wake-sleep style optimization using a
single objective that incorporates both supervised and un-
supervised terms for every gradient update. We call this
approach caffeinated wake-sleep (CWS).

Although we are explicitly targeting the sequential set-
ting, our objectives can also be useful in non-sequential
settings, especially when the discrete latent space is too
large to be fully enumerated. We evaluate our objectives
on MNIST, a handwriting dataset, and a dataset of fruit
fly trajectories labeled with behavior classes. In the rest
of the paper, Section 2 reviews the relevant background
information, Section 3 describes our model and train-
ing objective, and Section 4 presents the experimental
results.

2 BACKGROUND

2.1 VARIATIONAL AUTO-ENCODERS

Variational auto-encoders (Kingma and Welling, 2013;
Rezende et al., 2014) are an approach to deep genera-
tive modeling where we simultaneously learn a genera-
tive model pθ and an amortized inference network qϕ,
both parameterized by neural networks. For any given
observation x, the inference network variationally ap-
proximates the intractable posterior distribution pθ(z|x)
over a latent variable z as qϕ(z|x). In order to train both
networks simultaneously, Kingma and Welling (2013)
propose maximizing the evidence lower bound (ELBO),
which is a sum over ELBOs for individual data points
defined as

L(θ, ϕ,x) : = log pθ(x)− KL(qϕ(z|x) ∥ pθ(z|x))

= Eqϕ(z|x)

[
log

pθ(z,x)

qϕ(z|x)

]
(1)

The ELBO approximates log-marginal likelihood
log pθ(x), making it a good target objective for learning
θ, and is proportional to negative KL(qϕ|pθ), making it
a good target objective for learning ϕ.

Burda et al. (2015) propose an extension to the varia-
tional autoencoder (VAE) where, for a given number of
samples K, the single-datapoint objective is instead de-
fined as

L
K(θ, ϕ,x) = Ez1:K∼qϕ

[
log

(
1

K

K∑
k=1

pθ(zk,x)

qϕ(zk|x)

)]
(2)

This yields a tighter bound for log pθ(x), which is desir-
able for learning θ.

In either case, the estimator of the gradient with respect
to ϕ is typically high variance if z includes any dis-
crete variables and therefore not suitable for gradient-
based optimization. Various authors have proposed to re-
duce this variance using continuous relaxation Maddison
et al. (2016); Jang et al. (2016) or control-variate meth-
ods (Mnih and Rezende, 2016; Mnih and Gregor, 2014;
Tucker et al., 2017; Grathwohl et al., 2017) with varying
degrees of success.

An alternative approach is to use the reweighted wake-
sleep (RWS) algorithm (Bornschein and Bengio, 2014)
which uses separate objectives for θ and ϕ, interleav-
ing the corresponding gradient steps. The target for θ
is LK

IWAE(θ, ϕ,x), while the target for ϕ is −KL(pθ||qϕ).
In the latter the expectation with respect to pθ is ap-
proximated by importance sampling from qϕ. Le et al.
(2018) show that using two separate objectives avoids
the problems with high variance gradient estimates in the
presence of discrete latent variables and avoids learning
problems discussed by Rainforth et al. (2018). Ba et al.
(2015) demonstrate RWS as a viable method for time-
series modeling by using it to train recurrent attention
models.

2.2 SEMI-SUPERVISED VAE

In certain situations it is desirable to extend the VAE
with an interpretable latent variable y, the canoni-
cal example being learning on the MNIST dataset
where y is the digit label, z is “style,” and x is
the image. Kingma et al. (2014) consider the set-
ting where the label y is only scarcely available and
the dataset consists of many instances of x and rela-
tively few instances of (x, y), which is a typical semi-
supervised learning setting. They choose a factorization
pθ(x, y, z) = pθ(x|y, z)pθ(y)pθ(z) and qϕ(y, z|x) =
qϕ(z|x, y)qϕ(y|x). A naive optimization objective can
be constructed by summing standard ELBOs for x
and (x, y). However, this objective is unsatisfactory,
since it does not contain any supervised learning sig-
nal for qϕ(y|x). Letting xu denote unsupervised in-
put variables and (xs, ys) denote supervised observation-
latent pairs, Kingma et al. (2014) propose to maximize
the corresponding supervised and unsupervised objec-
tives:

Ls(xs, ys) = Eqϕ(z|ys,xs)

[
log

(
p(xs, ys, z)

qϕ(z|ys,xs)

)]
+ α Ep̂(ys,xs) [log(qϕ(ys|xs))] (3)

L
u(xu) = Eqϕ(z,y|xu)

[
log

(
p(xu, y, z)

qϕ(z, y|xu)

)]
(4)
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Figure 1: Per time step graphical model for the structured
VRNN we use in this paper. In addition to the continuous
latent variable zt, we include a discrete latent variable yt
corresponding to an interpretable label, for which ground
truth is sometimes available in the dataset. Dashed lines
indicate the inference inference network, and solid lines
the generative model.

The additional second term in Equation 3 is an expec-
tation over the empirical distribution of labeled train-
ing pairs, p̂(xs, ys), and can be optionally scaled by a
hyperparameter, α, controlling the relative strength of
supervised and unsupervised learning signals. A semi-
supervised VAE typically achieves performance superior
to its unsupervised version. We subsequently refer to this
objective as “M1+M2”.

2.3 VARIATIONAL RNN

The variational RNN (VRNN) (Chung et al., 2015) is a
deep latent generative model that is an extension of the
VAE family. It can be viewed as an instantiation of a
VAE at each time-step, with the model factorised in time
overall. We use a structured VRNN variant, where a dis-
crete latent variable y is also present at each time step, as
depicted in Figure 1.

2.4 RELATED WORK

Xu et al. (2017) introduce a semi-supervised VAE which
overcomes the high-variance gradient estimators in se-
quential models using control variates during training.
We build upon their work by adapting a similar archi-
tecture specification for the inference networks while
avoiding the high-variance gradient estimators using
reweighted wake-sleep style updates for training. Addi-
tionally, Chen et al. (2018) proposes a semi-supervised
DGM for modeling natural language using full sentence
context. While a useful method for the task domain, they
state their model cannot do generation.

3 CAFFEINATED WAKE-SLEEP

Here we derive a general purpose training objective used
for semi-supervised generative modeling. As we will
show in subsequent experiments, both the objective and
training method can be used to effectively train sequen-
tial models. As such, we introduce CWS in the context
of time-series modeling, but note that it can trivially be
used for static models by considering them to have a
single time-step. In all subsequent sections, we denote
a≤t := a1:t and b<t := b1:t−1 if t > 1.

3.1 GENERATIVE MODEL

First, we define a generative model over a sequence of ob-
served variables, x1:T , continuous latent variables, z1:T ,
and a discrete latent categorical variable, y1:T .

pθ(x≤T ,y≤T , z≤T ) =
∏
t≤T

[
pθ(xt|z≤t, y≤t) (5)

× pθ(zt|x<t, y<t, z<t) pθ(yt|x<t, y<t, z<t)
]

Additionally, we are given x≤T and a subset S ⊆ 1 : T
of labeled yt, denoted yS := {yt : t ∈ S}. We denote
unlabeled yt as yU := {yt : t ∈ (1 : T ) \ S}.

3.2 INFERENCE

Given the generative model defined above and a partially
labeled dataset in the y space, our variational distribution
is the following:

qϕ(yU , z≤T |x≤T , yS) = (6)∏
t∈U

qϕ(yt|x≤T , y<t, z<t)
∏
t≤T

qϕ(zt|x≤T , y≤t, z<t)

If the categorical variable yt is always treated as a latent
variable in the fully unsupervised case, we can define a
variational distribution, q(z≤T , y≤T |x≤T ) and maximize
the ELBO with respect to {θ, ϕ}. Instead, we will not
need to infer given yS for any sequence, but at any time-
step when yt is available, we use it instead of a sampled
yt from the variational distribution. This is made clear
by writing the ELBO as:

log p(x≤T , yS) ≥ (7)

Eqϕ(yU ,z≤T |x≤T ,yS)

[
log

(∏
t∈S

pθ(xt, zt, yt, )

qϕ(zt|x≤T , y≤t, z<t)

×
∏
t∈U

pθ(xt, zt, yt)

qϕ(yt, zt|x≤T , z<t, y<t)

)]

3.3 OPTIMIZATION

Having defined the model and inference network, we
now specify the optimization objective.
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Figure 2: (a) Validation accuracy of a MNIST classification model trained with 4 different objectives. The objectives
CWS and M1+M2 denote two approaches for semi-supervised learning, while M1 and RWS are their unsupervised
analogies. As seen, CWS trains to the highest validation accuracy and faster on a held out test set of 10000 examples.
(b) Visual reconstructions of MNIST digit in final trained model using CWS (c) Reconstructions using the final trained
model by M1+M2 method. In (b-c), the first column denotes the input image, the second denotes reconstruction where
z, y are both inferred using q(y, z|x), the third denotes reconstruction where z is inferred given the correct label y, and
columns 4-12 denote reconstruction where we infer the style, z, fix it, and vary the y label to conditionally generate.

3.3.1 SEMI-SUPERVISED WAKE-SLEEP

Before introducing our new objective, we first show how
to use the reweighted wake-sleep algorithm (Bornschein
and Bengio, 2014) with the semi-supervised objective in-
troduced by Kingma et al. (2014). Following the rec-
ommendation of Le et al. (2018), extending reweighted
wake-sleep to include a supervision term can be used to
effectively avoid problems with discrete variables. Be-
low we derive the semi-supervised wake-sleep (SSWS)
objective within that framework. Both of our objec-
tives will be evaluated by sampling from qϕ, so for each
k ∈ 1 : K we have ykt ∼ qϕ(yt|·) for all t ∈ U and
zkt ∼ qϕ(zt|·) for all t ∈ 1 : T with a convention ykt = yt
for t ∈ S.

For learning the generative model, we maximize the
IWAE bound with respect to parameters θ:

Lp(x≤T , yS) :=

Eq

[
log

1

K

K∑
k=1

pθ(y
k
U , z

k
≤T ,x≤T , yS)

qϕ(ykU , z
k
≤T |x≤T , yS)

]
, (8)

q =

K∏
k=1

qϕ(y
k
U , z

k
≤T |x≤T , yS)

This is a lower bound to log pθ(x≤T , yS) which is tight
when qϕ(yU , z≤T |x≤T , yS) = pθ(yU , z≤T |x≤T , yS).
Sampling from qϕ(yU , z≤T |x≤T , yS) and evaluating its
density is simple since it is factorized as in (6) where
both q(yt|·) and qϕ(zt|·) are given, and all values to the
right of the conditioning bar are always available at sam-
pling at time step t (previous y<t are either sampled or
given supervision and z<t are sampled).

For learning the inference network parameters, we need
to consider the unsupervised and the supervised cases.
For unsupervised inference learning, we minimize the
expected KL-divergence between the true posterior and
the variational posterior given by qϕ under the generative
model, p := pθ(x≤T , yS):

∇ϕEp[KL(pθ(yU , z≤T |x≤T , yS)||qϕ(yU , z≤T |x≤T , yS))]

= Ep[Epθ(yU ,z≤T |x≤T ,yS) [−∇ϕ log qϕ(yU , z≤T |x≤T , yS)]]

Given some (x≤T , yS) from the data distribution,
p̂θ(x≤T , yS), the inner expectation is approximated us-
ing samples from the inference network, qϕ, referred to
as the wake-ϕ update for learning parameters ϕ:

Lq(x≤T , yS) :=

Eqϕ

[
K∑

k=1

w̄k

(
− log qϕ(y

k
U , z

k
≤T |x≤T , yS)

)]
, (9)

where w̄k is a normalized version of

wk :=
pθ(y

k
U , z

k
≤T ,x≤T , yS)

qϕ(ykU , z
k
≤T |x≤T , yS)

, w̄k =
wk∑
l wl

(10)

and
qϕ =

∏
k

qϕ(y
k
U , z

k
≤T |x≤T , yS)

Evaluating (9) requires evaluating the joint p density
given in (5), the q density given in (6), and sampling
again from (6).

Finally, we need to include a supervised loss term. There
is only supervision signal for some given yt for some t ∈
S per data example. As such, we want to maximize the
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Figure 3: Left: Top10 validation accuracy throughout training for a 70-class character classification task comparing
three methods of semi-supervised training, CWS, SSWS, and REINFORCE (M1+M2), with 12.5% supervision rate
and one method of fully supervised training using IWAE and a classifier loss on 12.5% of the dataset. Right: Final
top1, top5, and top10 accuracy summaries for semi-supervision using CWS (green) against models trained with full
supervision but on a corresponding fraction of the original dataset (blue). As before, the method denoted by blue trains
with full supervision using IWAE and a classifier loss on the subset of the total data denoted by the labels.

log-likelihood of the supervised pairs (yS ,x≤T ) under
the variational distribution, qϕ(y≤T |x≤T ), marginalized
over unsupervised time-steps:

qϕ(yS |x≤T ) =

∫
qϕ(y≤T , z≤T |x≤T )dyUdz≤T

=

∫
qϕ(yS |x≤T , z≤T , yU )qϕ(yU , z≤T |x≤T )dyUdz≤T

= Eqϕ(yU ,z≤T |x≤T )[qϕ(yS |x≤T , z≤T , yU )] (11)

We lower bound this with Jensen’s inequality and obtain
our supervised loss term:

Ls(yS) :=

Eqϕ(yU ,z≤T |x≤T )[log qϕ(yS |x≤T , z≤T , yU )] (12)

For each minibatch the objectives, (8), (9), and (12), are
computed using the same set of samples and we perform
the relevant gradient steps in ϕ and θ by alternating be-
tween the two parameter updates:

θ∗ = θ + αθ∇θLp(x≤T , yS) (13)

ϕ∗ = ϕ− αϕ∇ϕ

(
Lq(x≤T , yS)− Ls(yS)

)
(14)

3.3.2 CAFFEINATED WAKE-SLEEP

Although the SSWS approach can be used to train time-
series models, in practice there is a tradeoff between
learning and optimization stability. As mentioned earlier,
sequences of observations may contain variable amounts
of supervision, the most extreme example being datasets

containing both sequences with fully observed and fully
unobserved labels.

Because of this, the magnitude of the supervised and
unsupervised terms in the qϕ loss will vary per data se-
quence, and we incur a tradeoff between correcting for
this bias and computational efficiency. For example,
we could normalize Ls and Lq by |S| and |U |, respec-
tively, but doing so treats sequences with a lower super-
vision rate the same as those with much higher supervi-
sion. Alternatively, we could take a weighted average of
the terms across the sequences, but this faces the same
issue as before unless we also scale the learning rate
dynamically per gradient step for each stochastic mini-
batch.

To remedy this problem, we obviate the need to main-
tain two different supervision terms by minimizing the
expected KL-divergence between the true posterior and
the full variational posterior under the generative likeli-
hood, pθ(x≤T ):

∇ϕEpθ(x≤T )[KL(pθ(y≤T , z≤T |x≤T )||qϕ(y≤T , z≤T |x≤T ))]

= Epθ(x≤T )[Epθ(yU ,yS ,z≤T |x≤T ) [−∇ϕ log qϕ(·|x≤T )]]

Unlike in the derivation for Equation (9), there is no
distinction here between yS and yU , meaning that we
should always sample a value for yt when computing
this loss. However, doing so would give the fully un-
supervised wake-ϕ objective and not include any super-
vision signal for the yS labels that we do have. To “cor-
rect” for this, we introduce an empirically justified bias
into this estimator, namely replacing sampled values of
yt with yS when available. Intuitively, this is exactly the
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Figure 4: Generated of sample trajectories of handwriting conditioned on generating the bottom text. Each pair of rows
is trained with a supervision rate (right) and a method (left). Corresponding sample generated from a fully supervised
model is displayed in the red box. Note that the 100% supervision example in this figure is trained with the full dataset
with a separate classifier loss.

reweighted wake-sleep algorithm if yS is treated as hav-
ing been sampled from the distributions, qϕ(·). This is
a kind of teacher-forcing approach (Williams and Zipser,
1989) for discrete latent labels, yt.

To be concrete about our method, we still compute
an expectation over the empirical data distribution
p̂(x≤T , yS), and estimate the innermost expectation with
samples from (6) when needed. The bias introduced then
comes from the additional qϕ(yS |...) terms in the denom-
inator of the importance weights:

LCWS
q (x≤T , yS) :=

E(yS ,x≤T )∼p̂, (y1:K
U ,z1:K)∼qϕ(yk

U ,zk
≤T

|yS ,x≤T ) [f ] ,

f :=

K∑
k=1

w̃k

(
− log qϕ(y

k
U , yS , z

k
≤T |x≤T )

)
, (15)

wcws
k :=

pθ(y
k
U , z

k
≤T ,x≤T , yS)

qϕ(ykU , yS , z
k
≤T |x≤T )

, w̃k =
wcws

k∑
l w

cws
l

Finally, we formally introduce the caffeinated wake-
sleep algorithm. Model parameters are learned with the
importance-weighted ELBO as before. However, cru-
cially, we use a unified gradient estimator in (15) to up-
date ϕ parameters:

θ∗ = θ + αθ∇θLp(x≤T , yS) (16)

ϕ∗ = ϕ− αϕ∇ϕL
CWS
q (x≤T , yS) (17)

4 EXPERIMENTS

We evaluate CWS on an variety of tasks within genera-
tive modeling by running experiments on three separate

datasets, MNIST, IAM On-Line Handwriting Database
(IAM-OnDB) (Liwicki and Bunke, 2005), and Fly-vs-
Fly (Eyjolfsdottir et al., 2014). In our experiments, we
consider the training accuracy of the inference network
in classification, the conditional and unconditional gen-
eration of new data, and the uncertainty captured by our
generative models.

4.1 SEMI-SUPERVISED MNIST

We start with a toy MNIST experiment, which semi-
supervises a discrete latent variable corresponding to
digit class. We use the same model and VAE architec-
ture detailed in Kingma et al. (2014) and compare against
their training method, denoted as M1+M2 with the su-
pervised weight set to 60. For supervision, we use only
100 labeled digits out of a total dataset of 50000. We
briefly note that CWS for the single time-step case is triv-
ial given the objectives defined above and SSWS recov-
ers the M1+M2 objective.

In Figure 2a, we compare validation accuracy of digit
classification between CWS and M1+M2 trained models.
We find that our method both trains faster and better de-
spite using an identical generative model, inference net-
work, learning rate, and optimizer. Furthermore, our ap-
proach requires setting one fewer hyperparameter when
compared to M1+M2.

In Figure 2b, we conditionally generate samples us-
ing our trained models by first inferring the style using
qϕ(z|x̂, ŷ). Then, fixing the style, we change y and re-
construct using pϕ(x|z, y). We find that CWS is able to
conditionally generate as well as prior art.
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Figure 5: (a) Diagram of the red fly’s field of view encoding in a petri dish environment containing two other flies.
The middle line in the plots denotes the fly’s direct line of sight. Each pair of plots indicates the agent’s field of view
with respect to walls and other flies, respectively. The fly closer to the red agent contributes more mass to the encoding
vector. (b) Comparison of each model’s continuation tracks for four distinct seed sequences. Each column shows a
model’s continuation sampled from the generative model compared against the leftmost column displaying the ground
truth continuation. Each row shows one of four seed sequences used to seed the generative models. Within the petri
dish, both flies’ locomotion tracks are shown. For the first fly, the red arrow indicates the starting position of the
seed sequence, the black markers and line indicate the seed tracks, the purple markers and line indicate the sampled
continuation tracks, and the red ’x’ indicates the final position of the fly after 200 time-steps. For the second fly, these
indicators are blue arrow, gray markers, orange markers, and blue ’x’, respectively.

4.2 HANDWRITING

Next, we run an experiment on the IAM-OnDB dataset.
The generative model is over xt := {cit, c

j
t ,pent, eoct},

where ci, cj denotes a single time-step vectorized stroke
of the pen and the pent and eoct denote pen-up status and
end-of-character binary values. The latent space in this
model is comprised of continuous style variable, zt, and
a discrete character label corresponding to a sequence of
observed strokes that make up a valid character, yt. For
the IAM-OnDB data, the valid alphabet is comprised of
70 different characters: upper and lower case letters, dig-
its, and special characters. The large latent space makes
this a very challenging time-series problem.

The VRNN architecture we use is taken from the Deep-
Writing model introduced by Aksan et al. (2018). At a
high level, we use a VRNN over x≤T , z≤T , and a BiL-
STM network for qϕ(y≤T |x≤T ). Because the VRNN
can be optimized solely using reparameterization, we
train qϕ(z≤T |y≤T ,x≤T ) using IWAE and qϕ(y≤T |x≤T )
using CWS. This mirrors the optimization in Aksan
et al. (2018), except that now, we can train with semi-
supervision. For more detailed experimental setup, we

refer the reader to the cited work. In all experiments, we
use a training set of 26560 sequences and a validation set
of 512 sequences, all of length 200.

As previously mentioned, techniques for semi-
supervised learning do not trivially extend to time-series
models. Instead, we compare CWS against SSWS, the
latter of which can be viewed as the M1+M2 objective
for sequential models using wake-ϕ style updates for
learning discrete latents. For comparison, we can also
train the M1+M2 objective without using RWS by using
the REINFORCE estimator for taking gradients through
discrete latent variables. In Figure 3 (left), we find that
this method results in poorly trained inference networks
which cannot classify character labels accurately even
using top-10 metric.

In Figure 3 (right), we present classification results
of training with a fixed architecture, varying only the
training objective using either CWS or IWAE. Because
the normal IWAE objective cannot be used with semi-
supervision and REINFORCE, we compare CWS with
fully unsupervised IWAE plus training the classifier sep-
arately with full supervision. This baseline is generated
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Figure 6: Comparison of uncertainty estimates over future trajectories of two flies’ interactions in the environment
between different models. Each model is seeded with the same ground truth sequence each time and 100 continuations
are sampled for 100 time-steps into the future. We show the kernel density estimate of all fly positions at the indicated
time-step across the 100 continuations. Each model’s estimate is split by fly for clarity (two columns per model
indicated by separators), where the red ’x’ indicates the true position of the fly at that time-step. The future trajectories
across all models show greater uncertainty about the fly’s position as the model evolves in time. We find the model
trained with CWS is the least noisy as it evolves, still captures the actual position within a high probability region, and
has the most mass close to the true position of fly 1 at time 100 among the 4 models.

by using the optimization technique used from Aksan
et al. (2018) on a corresponding fraction of the dataset.
In other words, we take the exact same architecture and
compare training with conventional DGM techniques
plus a classification loss against training with our CWS
method using the same amount of full labels but being
able to incorporate unlabeled data. We find that valida-
tion accuracy of the classifier trained with CWS using
additional unlabeled data greatly outperforms the IWAE
baseline using the same amount of partial labels from the
dataset but without the additional data.

In Figure 4, we show reconstructed samples from trained
models where we force the network to attempt to gener-
ate the phrase, "hello friends my name is Bob and ma-
chine learning is very cool while useful". We find that
even at 12.5% supervision, sampled generations resem-
ble the target sentence using SSWS or CWS.

4.3 FLY TRACKING

In our final experiment, we run CWS on a dataset of two
male fruit flies interacting in a petri dish (Eyjolfsdottir

et al., 2014). We use a VRNN which attempts to mirror
biological plausibility by modeling movement, xt, as ve-
locities of body position and configuration (Cueva and
Wei, 2018). We inject as input to the RNN at each time-
step, the visual encoding for a given fly shown in Fig-
ure 5a (Clandinin and Giocomo, 2015) along with knowl-
edge of its own state (Cueva and Wei, 2018).

The dataset uses high level actions, which we model
as a 6-valued discrete variable, yt, corresponding to
possible semantic labels: "lunge", "charge", "tussle",
"wing threat", "hold", and "unknown". These annota-
tions are provided by human experts at time-steps dis-
persed throughout the dataset without a clear pattern or
regularity. In all experiments we compare four models:
the RNN used by Eyjolfsdottir et al. (2016) outputting a
probability vector over discretized action space at each
time step, the standard VRNN without y and with con-
tinuous valued z, the discrete VRNN (DVRNN) with yt
trained unsupervised, and the same DVRNN trained with
CWS. While CWS was able to train this model, we ran
into optimization difficulties with the same model but
training with a separate supervision term. We fine-tune



Table 1: KDE of ground truth position under model

KDE log p

model fly 1 fly 2

CWS+DVRNN −780.1 −851.5
RWS+DVRNN −901.8 −853.9

VRNN −962.0 −879.8
RNN −931.0 −921.2

and report results of the best performing model during
training: CWS-DVRNN with 30-dimensional z and 6-
valued y, RWS-DVRNN with 50-dimensional z and 10-
valued y, and VRNN with 120-dimension z. We provide
further details of model in the Appendix.

In Figure 5b, we condition the model on an initial se-
quence of actions, then sample a continuation and visu-
ally inspect how it compares with the true continuation
that was not shown to the model. We find that under
the RNN model, the flies tend to move in circular pat-
terns with relatively constant velocity. In contrast, real
flies tend to alternate between fast and slow movements,
changing their directions much more abruptly. All three
variants of our VRNN model qualitatively recover this
behavior, however the continuous VRNN also tends to
behave too erratically. In the DVRNN models, we were
not able to identify any other clear visual artifacts in the
generated trajectories that disagrees with the real data,
although DVRNN without semi-supervision appears to
generate trajectories where flies move too much. In Fig-
ure 6, we investigate the quality of uncertainty estimates
produced by various models. For this purpose we again
seed the model with an initial sequence of actions, then
observe how the probability mass over the flies’ pro-
jected future positions evolves over time and compare it
with the actual positions in the dataset. Figure 6 visual-
izes the results and Table 1 provides the log likelihood
of each fly’s true position under this density estimate.
Again, we find that CWS trained DVRNN performs best,
followed by the unsupervised DVRNN, the continuous
VRNN, and the RNN.

4.4 DISCUSSION

We have introduced a new method for semi-supervised
learning in deep generative time-series models and we
have shown that it achieves better performance than un-
supervised learning and fully supervised learning with a
fraction of the data. Although CWS uses a biased gradi-
ent estimator, it has many advantages including ease of
implementation, intuition as teacher-forcing RWS, and
empirical validation. A formal, theoretical justification
of why the biased estimator of CWS works remains for

future work. Additionally, we are interested in extending
CWS to a more general class of semi-supervised mod-
els, taking inspiration from the ideas of Siddharth et al.
(2017).
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