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Abstract

Monte-Carlo Tree Search (MCTS) is one of the
most-widely used methods for planning, and
has powered many recent advances in artifi-
cial intelligence. In MCTS, one typically per-
forms computations (i.e., simulations) to col-
lect statistics about the possible future conse-
quences of actions, and then chooses accord-
ingly. Many popular MCTS methods such as
UCT and its variants decide which computa-
tions to perform by trading-off exploration and
exploitation. In this work, we take a more di-
rect approach, and explicitly quantify the value
of a computation based on its expected impact
on the quality of the action eventually chosen.
Our approach goes beyond the myopic lim-
itations of existing computation-value-based
methods in two senses: (I) we are able to ac-
count for the impact of non-immediate (ie, fu-
ture) computations (II) on non-immediate ac-
tions. We show that policies that greedily op-
timize computation values are optimal under
certain assumptions and obtain results that are
competitive with the state-of-the-art.

1 INTRODUCTION

Monte Carlo tree search (MCTS) is a widely used ap-
proximate planning method that has been successfully
applied to many challenging domains such as computer
Go [4, 21]. In MCTS, one estimates values of actions by
stochastically expanding a search tree—capturing poten-
tial future states and actions with their respective values.
Most MCTS methods rely on rules concerning how to
expand the search tree, typically trading-off exploration
and exploitation such as in UCT [11]. However, since no
“real” reward accrues during internal search, UCT can be
viewed as a heuristic [7, 8, 23]. In this paper, we propose
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a more direct approach by calculating values of MCTS
computations (i.e., tree expansions/simulations).

In the same way that the value of an action in a Markov
decision process (MDP) depends on subsequent actions,
the value of a computation in MCTS should reflect sub-
sequent computations. However, computing the optimal
computation values—the value of a computation under
an optimal computation policy—is known to be gener-
ally intractable [14, 18]. Therefore, one often resorts to
“myopic” approximations of computation values, such as
considering the impact of only the immediate computa-
tion in isolation from the subsequent computations. For
instance, it has been shown that simple modifications to
UCT, where myopic computation values inform the tree
policy at the root node, can yield significant improve-
ments [8, 23].

In this work, we propose tractable yet non-myopic meth-
ods for calculating computation values, going beyond the
limitations of existing methods. To this end, we intro-
duce static and dynamic value functions that form lower
and upper bounds for state-action values in MCTS, in-
dependent of any future computations. We then utilize
these functions to define static and dynamic values of
computation, capturing the expected change in state val-
ues resulting from a computation. We show that the ex-
isting myopic computation value definitions in MCTS
can be seen as specific instances of static computation
values. The dynamic value function, on the other hand,
is novel measure, and it enables non-myopic ways of
selecting MCTS computations. We prove that policies
that greedily maximize static/dynamic computation val-
ues are asymptotically optimal under certain assump-
tions. Furthermore, we also show that they outperform
various MCTS baselines empirically.



2 BACKGROUND

In this section we cover some of relevant literature and
introduce the notation.

2.1 MONTE CARLO TREE SEARCH

MCTS algorithms function by incrementally and
stochastically building a search tree (given an environ-
ment model) to approximate state-action values. This
incremental growth prioritizes the promising regions of
the search space by directing the growth of the tree to-
wards high value states. To elaborate, a tree policy is
used to traverse the search tree and select a node which
is not fully expanded—meaning, it has immediate suc-
cessors that aren’t included in the tree. Then, the node is
expanded once by adding one of its unexplored children
to the tree, from which a trajectory simulated for a fixed
number of steps or until a terminal state is reached. Such
trajectories are generated using a rollout policy; which is
typically fast to compute—for instance random and uni-
form. The outcome of this trajectory—i.e., cumulative
discounted rewards along the trajectory—is used to up-
date the value estimates of the nodes in the tree that lie
along the path from the root to the expanded node.

Upper Confidence Bounds applied to trees (UCT) [11]
adapts a multi-armed bandit algorithm called UCB1 [1]
to MCTS. More specifically, UCT’s tree policy applies
the UCB1 algorithm recursively down the tree starting
from the root node. At each level, UCT selects the most

promising action at state s via arg max,c4, Q(s,a) +

cy/ %j\;(f) where A; is the set of available actions at

s, N(s,a) is the number of times the (s,a) is visited,
N(s) = > 4ea. N(s,a), Q(s, a) is the average reward
obtained by performing rollouts from (s, a) or one of its
descendants, and c is a positive constant, which is typi-
cally selected empirically. The second term of the UCT-
rule assigns higher scores to nodes that are visited less
frequently. As such, it can be thought of as an explo-

ration bonus.

UCT is simple and has successfully been utilized for
many applications. However, it has also been noted
[8, 23] that UCT’s goal is different from that of approx-
imate planning. UCT attempts to ensure that the agent
experiences little regret associated with the actions that
are taken during the Monte Carlo simulations that com-
prise planning. However, since these simulations do not
involve taking actions in the environment, the agent ac-
tually experience no true regret at all. Thus failing to
explore actions based on this consideration could slow
down discovery of their superior or inferior quality.

2.2 METAREASONING & VALUE OF
INFORMATION

Howard [9] was the first to quantify mathematically the
economic gain from obtaining a piece of information.
Russell and Wefald [18] formulated the rational metar-
easoning framework, which is concerned with how one
should assign values to meta-level actions (i.e., compu-
tations). Hay et al. [8], Tolpin and Shimony [23] applied
the principles of this framework to MCTS by modify-
ing the tree-policy of UCT at the root node such that the
selected child node maximizes the value of information.
They showed empirically that such a simple modification
can yield significant improvements.

The field of Bayesian optimization has evolved in paral-
lel. For instance, what are known as knowledge gradients
[19, 24] are equivalent to information/computation value
formulations for flat/stateless problems such as multi-
armed bandits.

Computation values have also been used to explain hu-
man and animal behavior. For example, it has been sug-
gested that humans might leverage computation values
to solve planning tasks in a resource efficient manner
[13, 20], and animals might improve their policies by “re-
playing” memories with large computation values [17].

2.3 NOTATION

A finite Markov decision process (MDP) is a 5-tuple
(S, A, P,R,v), where S is a finite set of states A is a
finite set of actions, P is the transition function such that

Pe, = P(sy = s'|s; = s,ay = a), where s,s' € S
and a € A, R is the expected immediate reward function
such that R?,, = E[rials: = s,a = a, 841 = &),

where again s, s’ € S and a € A, ~ is the discount factor
such that v € [0, 1).

We assume an agent interacts with the environment via
a (potentially stochastic) policy 7, such that 7(s,a) =
P(a: = a|sy = s). These probabilities typically depend
on parameters; these are omitted from the notation. The
value of an action « at state s is defined as the expected
cumulative discounted rewards following policy , that
isQ™(s,a) =Ex [Xi, virt+i| s¢ = 8,a; = aj.

The optimal action value function is defined as
Q*(s,a) = max, Q7 (s, a) for all state-action pairs, and
satisfies the Bellman optimality recursion:

Q*(s,a) = Z o [Rgs/ +ymax Q*(s',a")

We use N(p, %) and N (u,0?) to denote a multivari-
ate and univariate Normal distribution respectively with
mean vector/value ;. and covariance matrix X or scale o.



3 STATE-ACTION VALUES IN MCTS

To motivate the issues underlying this paper, consider
the following example (Figure 1). Here, there are two
rooms: one containing two boxes and the other con-
taining five boxes. Each box contains an unknown but
ii.d. amount of money; and you are ultimately allowed
to open only one box. However, you do so in stages. First
you must choose a room, then you can open one of the
boxes and collect the money. Which room should you
choose? What if you know ahead of time that you could
peek inside the boxes after choosing the room?
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Figure 1: Illustration of the example. There are two
rooms, one containing two boxes, another one contain-
ing five boxes. There is an unknown amount of money in
each box.

In the first case, it doesn’t matter which room one
chooses, as all the boxes are equally valuable in expecta-
tion in absence of any further information. By contrast,
in the second case, choosing the room with five boxes
is the better option. This is because one can obtain fur-
ther information by peeking inside the boxes—and more
boxes mean more money in expectation, as one has the
option to choose the best one.

Formally, let X = {x;}}'*; and Y = {y;};*, be sets
of random variables denoting rewards in the boxes of
the first and the second room respectively. Assume all
the rewards are sampled i.i.d. and n, < n,. Then
we have max,cx E[z] = maxyey E[y], which is why
the two rooms are equally valuable if one has to choose
a box blindly. On the other hand, E[max,cx z] <
E[max,cy y], which is analogous to the case where
boxes can be peeked in first.

If we consider MCTS with this example in mind, when
we want to value an action at the root of the tree, backing
up the estimated mean values of the actions lower in the
tree may be insufficient. This is because the value of a
root action is a convex combination of the “downstream”
(e.g., leaf) actions; and, as such, uncertainty in the val-
ues of the leaves contributes to the expected value at the
root due to Jensen’s inequality. We formalize this notion
of value as dynamic value in the following section and
utilize it to define computation values later on.

3.1 STATIC AND DYNAMIC VALUES

We assume a planning setting where the environment dy-
namic (i.e., P and R) is known. We could then com-
pute @* in principle; however, this is typically com-
putationally intractable. Therefore, we estimate Q* by
performing computations such as random environment
simulations (e.g., MCTS rollouts). Note that, our uncer-
tainty about Q* is not epistemic—environment dynamic
is known—but it is computational. In other words, if we
do not know %, it is because we haven’t performed the
necessary computations. In this subsection, we introduce
static and dynamic value functions, which are “posterior”
estimates of (* conditioned on computations.

Let us unroll the Bellman optimality equation for n-
steps!. For a given “root” state, sp, let T' (s,) be the set
of leaf state-actions—that is, state-actions can be tran-
sitioned to from s, in exactly n-steps. Let ()§ be a ran-
dom function denoting our prior beliefs about the optimal
value function Q* over I';,(s,). We then use Q) (s, a) to
denote the (Bayes-)optimal state-action value, which we
define as a function of Qg:

Qo(s,a) ifn=0
Zs’ Pgs' [Rgs"’_ else s

ymaxgrea, Qn 1 (s',a’)]

Qy(s,a) =

where A, is the set of actions available at s’.

We assume it is possible to obtain noisy evaluations of
Q* for leaf state-actions by performing computations
such as trajectory simulations. We further assume that
the process by which a state-action value is sampled
is a given, and we are interested in determining which
state-action to sample from. Therefore, we associate
each computation with a single state-action in I'y,(s,);
but, the outcome of a computation might be informa-
tive for multiple leaf values if they are dependent. Let
@ = (s,a) € T',(s,) be a candidate computation.
We denote the unknown outcome of this computation at
time ¢ with random variable Og; (or equivalently, O.;),
which we assume to be Og; = Q§(@) + € where €; is
an unknown noise term with a known distribution and
is i.i.d. sampled for each ¢t. If we associate a candi-
date computation i with its unknown outcome Og; at
time ¢, we refer to the resulting tuple as a closure and
denote it as ; = (@, Oz;). Finally, we denote a per-
formed computation at time t, by dropping the bar, as
wy = (@, 05) where oz (or equivalently, 0y4) is the
observed outcome of the computation that we assume to
be 05: ~ Oz, and thus w; ~ ;. In the context of
MCTS, o044 Wwill be the cumulative discounted reward

'Obtaining, what is sometimes referred to as the n-step
Bellman equation.



of a simulated trajectory from (s, a) at time t. We will
obtain these trajectories using an adaptive, asymptoti-
cally optimal sampler/simulator (e.g., UCT), such that
limy o0 E[Osat] = @*(s,a). This means {Ogqt}y is a
non-stationary stochastic process in practice; yet, we will
treat it as a stationary process, as reflected in our i.i.d. as-
sumption.

Let w1.; be a sequence of ¢ performed computations con-
cerning arbitrary state-actions in I',,(s,) and s, be the
current state of the agent on which we can condition Q).
Because wi.; contains the necessary statistics to compute
the posterior leaf values, we will sometimes refer to it
as the knowledge state. We denote the resulting poste-
rior values for a (s,a) € T'y(s,) as Q§(s,a)|wi and
the joint values of leaves as Qw1 = (Qf(s, a)|wy.t :
(s,a) € Tu(s,)):

We define the dynamic value function as the expected
value the agent should assign to an action at s, given
w1:t, assuming it could resolve all of the remaining un-
certainty about posterior leaf state-action values Q{|w1.¢.
Definition 1. The dynamic value function is defined as
V(s alwit) = Eqsiw,., [Tn(s,alwr.t)] where,

Qi(s,a)|w.t if n =
Yoo PLIRE, + else
ymaxg Thp_1(s,a |wi.t)]

T, (s, alwyg) =

where A, is the set of actions available at s'.

The ‘dynamic’ in the term reflects the fact that the agent
may change its mind about the best actions available
at each state within n-steps; yet, this is reflected and
accounted for in 1,,. A useful property of i, is that
is time-consistent in the sense that it does not change
with further computations in expectation. Let Q. =
{(@;,0z,:)}%_, be a sequence of k closures. Then the
following equality holds for any €2;.;:

'(/)n(spva‘wl:t) = EQLk[wn(Spvaf‘wl:th:k)] 5 (1)

due to the law of total expectation, where wy.4{2;. is a
concatenation. This might seem paradoxical: why per-
form computations if action values do not change in ex-
pectation? The reason is that we care about the maximum
of dynamic values over actions at s,, which increases
in expectation as long as computations resolve some
uncertainty.  Formally, max,ca, ¥n(sp, alwiy) <
Eq,.,[maxaea,, ¥n(sp, a|w1;t(21:k)p], due to Jensen’s
inequality, just as in the example of the boxes.

Dynamic values capture one extreme: valuation of ac-
tions assuming perfect information in the future. Next,
we consider the other extreme, valuation under zero in-
formation in the future, which is given by the static value
function.

Definition 2. We define the static value function as
E[QS(&CL”th] lf’fL = 0
Zs’ Pgs’ [Rgs/+ C]SC

Ymaxe ¢n_1(s,a’|wi:e)]

¢n(87 a‘wlzt) =

where A, is the set of actions available at s’.

In other words, ¢,,(s,,a) captures how valuable (s,,a)
would be if the agent were to take n actions before run-
ning any new computations. In Figure 2, we graphically
contrast dynamic and static values, where the difference
is the stage at which the expectation is taken. For the
former, it is done at the level of the root actions; for the
latter, at the level of the leaves.

Going back to our example with the boxes, dynamic
value of a room assumes that you open all the boxes af-
ter entering the room, whereas the static value assumes
you do not open any boxes. What can we say about the
in-between cases: action values under a finite number of
future computations? Assume we know that the agent
will perform k£ computations before taking an action at
s,. The optimal allocation of these & computations to
leaf nodes is known to be intractable even in a simpler
bandit setting [16]. That said, for any allocation (and for
any finite k), static and dynamic values will form lower
and upper bounds on expected action values neverthe-
less. We formalize this for a special case below.

Proposition 1. Assume an agent at state s, and knowl-
edge state w14 decides to perform 1., a Ssequence
of k candidate computations, before taking n ac-
tions. Then the expected future value of a € A,
prior to observing any of the k-computation outcomes
is equal to Eq,  [¢n(sp, alwi+Q.k)], where Qi =
{(@170@1‘)}5:1- Then,

1/1n(8p, a|w1:t) > ]EQI:]Q [¢n(spa a|W1:tQI:k)] > d)n(spa a/|w1:t)7

where both bounds are tight.

The proof is provided in the Appendix.

4 VALUE OF COMPUTATION

In this section, we use the static and dynamic value func-
tions to define computation values. We show that these
computation values have desirable properties and that
policies greedily-maximizing these values are optimal in
certain senses. Lastly, we compare our definitions to the
existing computation value definitions.

Definition 3. We define the value of computation at
state s, for a sequence of candidate computations @y
given a static or dynamic value function f € {d,, ¥, }
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Figure 2: Graphical illustration dynamic (¢,,) and static (¢,,) value functions for n = 2. We ignore immediate rewards
and the discounting for simplicity. In Panel A, dynamic values (given by 12) are obtained by calculating the expected
maximum of all state-action values (given by Qf) lying 2-steps away. Whereas, the static values (given by ¢2) are
obtained by calculating the maximum of expectations of state-action values, as shown in Panel B.

and a knowledge state wy.; as
VOCf(Sm wl:k‘wlzt) = Eﬂl:k max f(spa a|w1:tQI:k)
aE.Asp

- a?iii f(sp,alwiie) ,

where 1., specifies the state-actions in 27, that is,
Q. = {(@;,03,:)}_, where @; is the ith element of
wl:lw

We refer to computation-policies that choose computa-
tions based on greedy maximization one by one (i.e.,
k = 1) of VOC as VOC(¢y,,)-greedy and VOC (¢, )-
greedy depending on which value function is utilized.
We assume these policies stop if and only if Vi
VOC(s,,@|wi:x) = 0. Our greedy policies consider
and select computations one-by-one. Alternatively, one
can perform a forward search over future computation
sequences, similar to the search over future actions se-
quences in Guez et al. [6]. However, this adds another
meta-level to our metareasoning problem; thus, further
increasing the computational burden.

We analyze these greedy policies in terms of the
Bayesian simple regret, which we define as the differ-
ence between two values. The first is the maximum
value the agent could expect to reap assuming it can
perform infinitely many computations, thus resolving
all the uncertainty, before committing to an immedi-
ate action. Given our formulation, this is identical to
EQ w1+ {maxaeASp Tn(s,,,a|w1:t)} and thus is inde-
pendent of the agent’s action policy and the (future) com-
putation policy for a given knowledge state wi.;. Further-
more, it remains constant in expectation as the knowl-

edge state expands. The second term in the regret is
the maximum static/dynamic action value assuming the
agent cannot expand its knowledge state before taking an
action.

Definition 4. Given a knowledge state wy.;, we define
Bayesian simple regret at state s, as

R¢(sp,wii) =E mgx'fn(sp, a|w1:t)} —max f(8p, alwize),

where f € {¢na ¢n}

Based on this definition, we have the following.

Proposition 2. VOC(¢,,)-greedy and VOC (1), )-greedy
choose the computation that maximize expected decrease
in Ry, (sp,w1:) and Ry, (S,, wi.) respectively.

The proof is provided in the appendix.

We refer to policies that choose the regret-minimizing
computation as being one-step optimal. Note that this
result is different than what is typically referred to as my-
opic optimality. Myopia refers to considering the impact
of a single computation only, whereas VOC(¢))-greedy
policy accounts for the impact of possible future compu-
tations that succeed the immediate action.

Proposition 3. Given an infinite computation budget,
VOC(¢,,)-greedy and VOC(vy,)-greedy policies will
find the optimal action at the root state.

Proof sketch. Both policies will perform all computa-
tions infinitely many times as shown for the flat setting in
Ryzhov et al. [19]. Thus, dynamic and static values at the
leaves (ie, for I',,(s,)) will converge to the true optimal
values (given by Q*), so will the downstream values. [J



We refer to such policies as being asymptotically opti-
mal.

4.1 ALTERNATIVE VOC DEFINITIONS

A common [8, 10, 18, 23] formulation for the value of
computation is

VOC (s, w1.x|wi:e) =Eaqy., L%%X f(8p, alwr:e1:1)
Sp

- f(sm O4(")1:tQI:,"c):| 5 (2)

where o = argmax, f(s,,alwi) and f is a value
function as before.

The difference between this and Definition 3 is that the
second term in VOC' conditions f also on €.,. This
might seems intuitively correct. VOC’ is positive if and
only if the policy at s, changes with some probability,
that is, P(arg maXaeA,, f(sp,alwitQ1k) # ) > 0.
However, this approach can be too myopic as it often
takes multiple computations for the policy to change [8].
Note that, this is particularly troublesome for static val-
ues (f = ¢,,), which commonly arise in methods such as
UCT that estimate mean returns of rollouts.

Proposition 4. VOC'(¢,,)-greedy is neither one-step
optimal nor asymptotically optimal.

By contrast, dynamic value functions escape this prob-
lem.

Proposition 5. For any 1. and wy: we have
VOC'y, (5p,@1:k|wi:t) = VOCy, (5, D1:k|wi:t)-

Both propositions are proved in the Appendix.

S VALUE OF COMPUTATION IN MCTS

We now introduce a MCTS method based on VOC-
greedy policies we introduced. For this, as done
in other information/computation-value-based MCTS
methods [8, 23], we utilize UCT as a “base” policy—
meaning we call UCT as a subroutine to draw samples
from leaf nodes. Because UCT is adaptive, these samples
will be drawn from a non-stationary stochastic process in
practice; yet, we will treat them as being i.i.d. .

We introduce the model informally, and provide the ex-
act formulas and a pseudocode in the Appendix. We as-
sume no discounting, i.e., 7 = 1, and zero immediate re-
wards within n steps of the root node for simplicity here,
though as we show in the Appendix, the results trivially
generalize.

We assume Qf ~ N (g, Xo) where p is a prior mean
vector and X, is a prior covariance matrix. We as-

sume both these quantities are known—but it is possi-
ble to also assume a Wishart prior over ¥ or to employ
optimization methods from the Gaussian process litera-
ture (e.g., maximizing the likelihood function via gra-
dient descent). We assume computations return evalu-
ations of Q)§ with added Normal noise with known pa-
rameters. Then, the posterior value function Q|wy.+ can
be computed in O(t) for an isotropic prior covariance,
in O(tm?) using recursive update rules for multivariate
Normal priors , where m = |Q}]| is the number of leaf
nodes, or in O(t3) using Gaussian process priors. We
omit the exact form of the posterior distribution here as
it is a standard result.

For computing the VOC(¢,,)-greedy policy we need
to evaluate how the expected values at the leaves
change with a candidate computation @ = (s,a), i.e.,
EQ[EqQs w,.,0[Q5|w1::Q]] where @ = (@, Ogt41). Note
that, Og¢41 conditioned on ws., gives the posterior
predictive distribution for rollout returns from (s,a),
and is normally distributed. Thus, Eq-.,,,o[Qf|w1:+$]
is a multivariate random Normal variable of di-
mension m. The maximum of this variable, i.e.
max Eqz ., ,0[@5|w1::(2], is a piecewise linear function
in Og¢41 and thus its expectation can be computed ex-
actly in O(m? log m) as shown in Frazier et al. [5]. If an
isotropic prior covariance is assumed, the computations
simplify greatly as VOCy, reduces to the expectation of
a truncated univariate normal distribution, can be com-
puted in O(1) given the posterior distributions and the
leaf node with the highest expected value. If the tran-
sitions are stochastic, then the same method can be uti-
lized whether the covariance is isotropic or anisotropic,
with an extra averaging step over transition probabilities
at each node, increasing the computational costs.

Computing the VOC(%),)-policy is much harder on
the other hand, even for a deterministic state-transition
function, because we need to calculate the expected
maximum of possibly correlated random variables,
E[max Qf|w1.t]. One could resort to Monte Carlo sam-
pling. Alternatively, assuming an isotropic prior over leaf
values, we can obtain the following by adapting a bound
on expected maximum of random variables [12, 15]:

E[max Q; |w1:t] S )\spt

=c+ Z

(s",a”)€Tn(sp)

+ (Ms’a’t — C)[l - Fs’a’t(c)]:|

(Us’a/t)2Fs/a’t(c)

where p44¢ and oy 44 are posterior mean and vari-
ances, that is Qg(s',a’)|wie ~ N(isart, (0srare)?)
Fy o4 is the CDF of Q(s', a’)|w1.+, and ¢ is a real num-
ber. The tightest bound is realized for a c that satisfies



D (st,a)eTn (s, [1 — Frare(c)] = 1, which can be found
by root-finding methods.

The critical question is then how A ; changes with an
additional sample from (s’,a’). For this, we use the lo-
cal sensitivity, O\, ¢/Ongrqrs as a proxy, where nrqr is
the number of samples drawn from (s’,a’) until time ¢.
We give the closed form equation for this partial deriva-
tive along with some of its additional properties in the
Appendix. Then we can approximately compute the
VOC (1), )-greedy policy by choosing the computation
that maximizes the magnitude of O\, ¢/Ongq¢. This
approach only works if state-transitions are determinis-
tic as it enables us to collapse the root action values into
a single max of leaf values. If the state transitions are
stochastic, this is no longer possible as averaging over
state transitions probabilities is required. Alternatively,
one can sample deterministic transition functions and av-
erage O\ ¢ /Ongrqre over the samples as an approxima-
tion.

Our VOC-greedy MCTS methods address important
limitations of VOC’-based methods [8, 23]. VOC-
greedy does not suffer from the early stopping problem
that afflicts VOC’-based. It is also less myopic in the
sense that it can incorporate the impact of computations
that may be performed in the future if dynamic value
functions are utilized. Lastly, our proposal extends VOC
calculations to non-root actions, as determined by n.

6 EXPERIMENTS

We compare the VOC-greedy policies against UCT [11],
VOI-based [8], Bayes UCT [22], and Thompson sam-
pling for MCTS (DNG-MCTS) [2] in two different envi-
ronments, bandit-trees and peg solitaire, where the envi-
ronment dynamics are provided to each method.

Bayes UCT computes approximate posterior action val-
ues and uses a rule similar to UCT to select child
nodes. DNG-MCTS also estimates the posterior action
values but instead utilizes Thompson sampling recur-
sively down the tree. We use the same conjugate Nor-
mal prior structure for the Bayesian algorithms: VOC-
greedy, Bayes UCT, and DNG-MCTS?. The prior and
the noise parameters are tuned for each method via grid
search using the same number of evaluations, as well as
the exploration parameters of UCT and VOI-based.

VOI-based, VOC-greedy, and Bayes UCT are hybrid
methods, using one set of rules for the top of the search
tree and UCT for the rest. We refer to this top part of

*In the original paper [2], the authors use Dirichlet-Normal-
Gamma priors, but we resort to Normal priors to preserve con-
sistency among all the Bayesian policies.

the tree as the partial search tree (PST). By construction,
VOI-based utilizes a PST of height 1. We implement the
latter two methods using PSTs of height 4 in bandit-trees
and of 2 in peg solitaire. These heights are determined
based on the branching factors of the environments and
the total computation budgets, such that each leaf node
is sampled a few (5-8) times on average. For the exper-
iments we explain next, we tune the hyperparameters of
all the policies using grid search.

6.1 BANDIT-TREES

The first environment in which we evaluate the MCTS
policies is an MDP composed of a complete binary tree
of height d, similar to the setting presented in Tolpin
and Shimony [23] but with a deeper tree structure and
stochastic transitions. The leaves of the tree are noisy
“bandit arms” with unknown distributions. Agents per-
form “computations” to draw samples from the arms,
which is analogous to performing rollouts for evaluating
leaf values in MCTS. At each state, the agents select an
action from A = {LEFT,RIGHT} (denoting the desired
subtree of height d — 1) and transition there with prob-
ability .75 and to the other subtree with probability .25.
In Figure 3, we illustrate a bandit tree of height 3.

RRR RRR

I

Figure 3: A bandit tree of height 3. Circles denote states,
and squares denote bandit arms.

At each time step t, agents sample one of the arms, and
update their value estimates at the root state s,. We mea-
sure the simple objective’ regret at state s, at t, which
we define as max,e 4 Q*(s,,a) — Q*(s,, mi(s,)), for a
deterministic policy 7 : s, — A which depends on the
knowledge state acquired by performing ¢t many compu-
tations.

We sample the rewards of the bandit arms from a multi-
variate Normal distribution, where the covariance is ob-
tained either from a radial basis function or from a white
noise kernel. The noise of arms/computations follow an
i.i.d. Normal distribution. We provide the exact environ-
ment parameters in the Appendix.

3We call it objective regret because it is based on the ground
truth (Q™) as opposed to Bayesian regret, which is based on the
estimates of the ground-truth.



Figure 4.a shows the results in the case with correlated
bandit arms. These correlations are exploited in our
implementation of VOC(¢,,)-greedy (via an anisotropic
Normal prior over the leaf values of the PST). Note
that, we aren’t able to incorporate this extra assump-
tion in other Bayesian methods. Bayes UCT utilizes
a specific approximation for propagating values up the
tree. Thompson sampling would require a prior over
all state-actions in the environment which is complicated
due to the parent-child dependency among the nodes as
well as computationally prohibitive. Because comput-
ing the VOC (¢, )-greedy policy is very expensive if state
transitions are stochastic, we only implement VOC (¢, )-
greedy for this environment, but implement both for the
next environment.

We see that VOC(¢,,)-greedy outperforms all other
methods. Note that this is a low-sample density set-
ting: there are 27 = 128 bandit arms and each arm gets
sampled on average once as the maximum budget (see
x-axis) is 128 as well. This is why many of the poli-
cies do not seem to have converged to the optimal solu-
tion. The outstanding performance of VOC(¢,,)-greedy
is partially due to its ability of exploiting correlations. In
order to control for this, Figure 4b shows the results in
a case in which the bandit rewards are actually uncor-
related (i.e., sampled from an isotropic Normal distribu-
tion). As we can see VOC(¢,,)-greedy and Bayes UCT
performs equally well, and better than the other policies.
This implies that the good performance of VOC(¢y,)-
greedy does not depend wholly on its ability to exploit
the correlational structure.

6.2 PEG SOLITAIRE

Peg solitaire—also known as Solitaire, Solo, or Solo
Noble—is a single-player board game, where the objec-
tive for our purposes is to remove as many pegs as pos-
sible from the board by making valid moves. We use a
4 x 4 board, with 9 pegs randomly placed.

In the implementation of VOC-greedy policies, we as-
sume an anisotropic prior over the leaf nodes. As shown
in Figure 5, VOC(¢,,)-greedy has the best performance
for small budget ranges, which is in line with our intu-
ition as ¢,, is a more accurate valuation of action values
for small computation budgets. For large budgets, we
see that VOC(1),,)-greedy performs as well as Thomp-
son sampling, and better than the rest.

7 DISCUSSION

This paper offers principled ways of assigning values to
actions and computations in MCTS. We address impor-
tant limitations of existing methods by extending com-
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(b) Bandit-trees with uncorrelated bandit arms.

Figure 4: Mean regret as a function of the computation
budget for bandit-trees with correlated (panel a) uncor-
related (panel b) expected bandit rewards, averaged over
10k and 5k random bandit reward seeds respectively.

putation values to non-immediate actions while account-
ing for the impact of non-immediate future computa-
tions. We show that MCTS methods that greedily max-
imize computation values have desirable properties and
are more sample-efficient in practice than many popular
existing methods. The major drawback of our proposal
is that computing VOC-greedy policies might be expen-
sive, and may only worth doing so if rollouts (i.e., en-
vironment simulations) are computationally expensive.
That said, we believe efficient derivates of our methods
are possible, for instance by using graph neural networks
to directly learn static/dynamic action or computation
values.

Practical applications aside, the study of computation
values might provide tools for a better understanding of
MCTS policies, for instance, by providing notions of re-
gret and optimality for computations, similar to what al-
ready exists for actions (i.e., @*).
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Figure 5: The average number of pegs remaining on
the board as a function of the computation budget, aver-
aged over 200 random seeds. The bars denote the mean
squared errors.
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