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Abstract

Given a number of pairwise preferences of
items, a common task is to rank all the items.
Examples include pairwise movie ratings, New
Yorker cartoon caption contests, and many other
consumer preferences tasks. What these set-
tings have in common is two-fold: a scarcity
of data (it may be costly to get comparisons
for all the pairs of items) and additional feature
information about the items (e.g., movie genre,
director, and cast). In this paper we modify
a popular and well studied method, RankCen-
trality for rank aggregation to account for few
comparisons and that incorporates additional
feature information. This method returns mean-
ingful rankings even under scarce comparisons.
Using diffusion based methods, we incorporate
feature information that outperforms state-of-
the-art methods in practice. We also provide
improved sample complexity for RankCentral-
ity in a variety of sampling schemes.

1 INTRODUCTION

In this paper we are interested in the problem of rank ag-
gregation from pairwise preferences under settings where
the amount of data is scarce but we may have additional
structural information. For example, consider a setting
where a set of pairwise comparisons on a set of n movies
have been collected from a set of critics and the goal is
to give an overall ranking. If n is large, for example, all
movies released in the last two decades, it may be ex-
tremely costly to get a comparison for each of the

(
n
2

)

pairs. A more realistic regime is to hope that each movie
has been viewed at least once. Standard methods of rank-
ing suggest that the number of comparisons needed is
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roughly O(n log(n))—when n is large, even hoping for
log(n) comparisons may be hopeless! However, each
movie has additional feature information xi ∈ Rd. For
example, the dimensions could encapsulate the produc-
tion budget, the number of A-list actors, the writer, studio,
animated or live action, etc. In general, we may suspect
that these features inform the comparisons: if movies A
and B have the same Oscar-winning director, and movie
A beats movie C in a comparison, we may expect movie
B to also perform well against movie C. In an extreme
setting, even if we don’t have any comparisons involving
movie B, we may still hope to infer a meaningful ranking.
In this paper we focus on modifying a popular and well
studied method arising in the ranking literature for this
setting and demonstrate gains in the scarce setting when
the number of comparisons is very small.

A common model in the literature of particular interest to
us is the Bradley-Terry-Luce (BTL) model. We assume
that we have n items and associated to each item i is a
positive score wi so that the probability that j is preferred
to i (“j beats i”) in a comparison is

Pij := P (i ≺ j) =
wj

wi + wj
, (1)

and that we see m comparisons. The underlying ranking
on the items is then given by the scores w, with an item
with a larger score being ranked higher than an item with
a smaller score. In the structured setting above, we may
expect movies with similar features to have similar scores.
Traditional methods of learning w using the BTL model,
e.g., maximum likelihood estimation (MLE) or spectral
methods such as Rank Centrality (both discussed below),
do not naturally incorporate this kind of side information.

We have two main contributions.

1. Our main contribution is Algorithm 1, Regularized
RankCentrality, in Section 4. We propose a novel method
for regularizing the RankCentrality algorithm that returns
meaningful rankings even under scarcity. Using diffusion



based methods, we propose a way of incorporating feature
information that is empirically competitive with other
feature based methods such as RankSVM or Siamese
Networks on both synthetic and real-world datasets in
scarce settings. In a specific context, we provide a sample
complexity result for this regularized method.
2. Along the way, we discuss traditional RankCentrality
and, under a natural sampling scheme extending that in
(Rajkumar and S. Agarwal 2014), we show an improved
sample complexity bound for the RankCentrality algo-
rithm. For example, when pairs are sampled uniformly,
we improve the bound from O(n5 log n) to O(n log n).

2 RELATED WORKS

There is an extensive amount of literature on ranking
from pairwise comparisons under various models, and we
refer the interested reader to the survey in (Rajkumar and
S. Agarwal 2014). Roughly speaking, most frameworks
either fall into the parametric setting, i.e., a model such
as BTL is assumed, or non-parametric where general
assumptions on the pairwise comparison matrix P , where
Pij is the probability that i beats j in a comparison, are
made.

In the latter setting, several different conditions on P ,
such as stochastic transitivity and low noise described in
(Rajkumar and S. Agarwal 2014), or low rank as in (Ko-
ren, Bell, and Volinsky 2009), and generalized low per-
mutation rank models have been proposed (see (N. B.
Shah, Balakrishnan, and Wainwright 2018)). All of these
models include the BTL model as a specific case. Other
estimators such as the Borda count and Condorcet winner
(for finding the best item rather than a ranking) have been
analyzed in (N. B. Shah and Wainwright 2017). A variant
of the ranking problem also falls under the category of
active ranking where the comparisons that are queried are
chosen by an active ranker rather than passively consid-
ered offline, see (Katariya et al. 2018; Heckel et al. 2019;
Jamieson and Nowak 2011).

A great deal of attention has been paid to the BTL model.
A natural approach to this setting is to compute an esti-
mate for w using the MLE. More precisely given a set of
comparisons S = {(ik, jk, yk)}mk=1 where the k-th com-
parison is between items ik and jk, and yk = 0 denotes
that ik was preferred in this observation, whereas yk = 1
denotes that jk was preferred. Then the MLE is given by

argmax
v∈Rn

m∑

i=1

− log
(

1 + e(2yk−1)(vjk−vik )
)

(2)

and our estimate is ŵi = exp(vi).

We can also consider a constrained MLE where we add an

additional constraint1, e.g., on the maximum entry of w,
‖w‖∞ < B, or, alternatively, we can add add an `2 regu-
larizer λ‖v‖2 to the objective. The BTL-MLE in any of
these formulations is a popular objective since it is convex.
We briefly review the known results on the BTL-MLE.
(N. B. Shah, Balakrishnan, Bradley, et al. 2016) have
shown the constrained BTL-MLE is minimax optimal for
the `2 error. Note that low `2 loss does not necessarily
guarantee a correct recovery of a ranking. (Chen et al.
2019) shows that the (regularized) MLE and spectral rank-
ing methods (discussed below) are minimax optimal for
recovery of a ranking. The critical parameter for recov-
ery is the minimum gap between any two different BTL
scores—which does not show up when one is interested
in the `2 norm only.

In the next section we discuss the class of algorithms that
are the main study of this work: spectral methods and the
RankCentrality algorithm.

3 SPECTRAL METHODS

We assume that we have access to a collection of m in-
dependent and identically distributed pairwise compar-
isons S = {(ik, jk, yk)}mk=1 where each ik < jk ∈ [n].
Furthermore we assume that each pair is i.i.d drawn:
(i, j) ∼µ {(i, j), 1 ≤ i < j ≤ n}, where µ is an
unknown sampling distribution on the set of ordered
pairs. Although µij is defined for i < j, we assume
it is understood that µij = µji when i > j. Denote
µmin := mini<j µij and µmax := maxi<j µij . In addi-
tion, we assume that the label is an independent Bernoulli
draw, i.e.

yk =

{
1 with probability Pikjk =

wjk

wik
+wjk

0 otherwise

according to the BTL model where (w1, · · · , wn) ∈ Rn>0

is an unknown vector of BTL-scores, i.e., ik ≺ jk with
probability Pikjk . Note Pij = 1 − Pji. Additionally
define b := maxi,j wi/wj . Without loss of generality we
assume that wT 1 = 1, indeed scaling the weights has no
effect on the comparison probabilities.

Problem. Given S, return ŵ, an estimator for w.

Consider the following matrix Q ∈ Rn×n, defined as

Qij :=

{
µijPij if i 6= j

1−∑` 6=i µi`Pi` if i = j
. (3)

Observe Qij is the transition matrix of a time-reversible
Markov chain, where the we transition from i to j with

1Without loss of generality, assume
∑

i wi = 1 because Pij

is invariant to scaling w.



probability proportional to that of i beating j in a com-
parison (we refer the reader to Chapter 1 of (Norris 1998)
for background on Markov Chains), i.e., it satisfies the
detailed balance equations: for all i 6= j, we have

wiQij =
µijwiwj
wi + wj

= wjQji.

This implies the vector w is the stationary distribution
of Q, satisfying wTQ = w, i.e., wi is the equilibrium
probability of being in state i. This motivates using the
stationary distribution of an empirical estimator Q̂, with
E [Q̂] = Q as an estimator ŵ for w. The impatient reader
can skip ahead to the next section for our choice of Q̂.

The connection between the BTL model and time-
reversible Markov chains was noticed by (Negahban, Oh,
and D. Shah 2016) where they proposed the RankCen-
trality algorithm for estimating w under a slightly dif-
ferent model. In their setting, they assume they have
access to a (connected) graph on n vertices G, and for
each edge in the graph they repeatedly query the associ-
ated pairwise comparison k times. In the specific setting
of an Erdős–Rényi graph Gn,p on n vertices, they con-
struct an estimator ŵ and show for d ≥ 10C2 log n and
kd ≥ 128C2b5 log n, setting p = d

n the following bound
on the error rate holds with high probability:

∥∥ŵ − w
∥∥
2

‖w‖2
≤ 8Cb5/2

√
log n

k d
.

(where we recall b := maxi,j wi/wj). Noting that
the expected number of comparisons is O(n2pk) =
O(nkd) = O(b5n log(n)) this yields a sample complex-
ity of O(b5n log n/ε2) for recovering a weight vector
with relative error ε. Note that in this setting, for Gn,p to
even be connected, it is important that p be at least on or-
der log(n)/n, and we must at least observe O(n log(n))
comparisons. In the more general setting, the sample com-
plexity depends on the spectral gap of the graph Laplacian
of G ; precise dependencies have been given in (A. Agar-
wal, Patil, and S. Agarwal 2018; N. B. Shah, Balakrishnan,
Bradley, et al. 2016)

Returning to our setting, our sampling scheme, which we
refer to as independent sampling was proposed by (Rajku-
mar and S. Agarwal 2014). Observe that the independent
sampling scheme is more natural in many applications,
and in particular each observation is made independent
of the other observations, which is not true of those in
(Negahban, Oh, and D. Shah 2016). Rajkumar and Agar-
wal show that if O( Cn

ε2P 2
minµ

2
min
b3 ln

(
n2

δ

)
) comparisons

are made then with probability at least 1 − δ (over the
random draw of m samples from which P̂ is constructed),
the score vector ŵ produced by their version of the Rank-
Centrality algorithm satisfies ‖ŵ−w‖2 ≤ ε. The sample

complexity here scales as O(n5 log n) since µ−1min ≥
(
n
2

)
,

with equality achieved only when µ is uniform. In the
next section we propose a different estimator from the
one given in (Rajkumar and S. Agarwal 2014) and we are
able to give a O(n log n) sample complexity bound in the
case of uniform sampling.

A crucial point to note is that both (Negahban, Oh, and
D. Shah 2016) and (Rajkumar and S. Agarwal 2014) as-
sume that the directed graph of comparisons, where an
edge (i, j) represents that j beat i in at least one compari-
son, is strongly connected. This is because the empirical
estimate Q̂ of the Markov transition matrix needs to be
ergodic, i.e., irreducible and aperiodic, which ensures that
Q̂ has a unique stationary distribution. When the number
of comparisons m is small (i.e., m < n log(n) in the case
of (Negahban, Oh, and D. Shah 2016)), this is usually
not the case and these algorithms return a default output.
In particular, in the setting mentioned in the introduction
where the number of comparisons are scarce, these meth-
ods will not return a useful ranking. This is a primary
motivation for the work in this paper.

3.1 WARM-UP: IMPROVED RESULTS FOR
INDEPENDENT SAMPLING

In this section we improve the results given in (Rajkumar
and S. Agarwal 2014) by using a different estimator of
Q than the one presented there. Recall the notation of
Section 3. Given a dataset of comparisons S, define

Cij =
∑m
k=1

(
1{ik = i, jk = j, yk = 1}

+1{ik = j, jk = i, yk = 0}
)
,

i.e., Cij is the number of comparisons between i and j
that j won. Additionally define the empirical Markov
transition matrix

Q̂ij :=

{
Cij

m if i 6= j

1−∑` 6=i
Ci`

m if i = j
. (4)

By construction,Q = E(Q̂) so Q̂ is an unbiased estimator
of Q. Let ŵ be the leading left eigenvector of Q̂. When
Q̂ is ergodic, ŵ is the unique stationary distribution of Q̂.

Theorem 1. Fix δ ∈ (0, 1) and ε ∈ (0, 1). If

m ≥ 64b3n−1µ−2minε
−2(µmax + nµ2

max) log
2n

δ

and the empirical Markov chain Q̂ constructed as in (4)
is ergodic, then with probability at least 1− δ, we have

‖ŵ − w‖
‖w‖ ≤ ε.



Proof. A complete proof can be found in the supplemen-
tary materials. We sketch an outline of the proof here.

We first prove a result on the deviation of left eigenvec-
tors for perturbations of ergodic row stochastic matrices,
Proposition 5 based on ideas from (Negahban, Oh, and
D. Shah 2016). For each observation k ∈ [m], we de-
fine a random i.i.d. matrix Qk (in terms of ik, jk, and
yk) such that Q̂ = I + 1

m

∑m
k=1Qk. We can therefore

write Q̂ − Q =
∑
k Zk where each Zk is an indepen-

dent random matrix with E (Zk) = 0 and we can ex-
plicitly compute the matrix variance of Zk (Lemma 8).
By using matrix Bernstein inequalities given in (Tropp
2012) we can derive a central-limit type upper bound on
P (‖ŵ − w‖ > ε) (Theorem 10). Solving the resulting
inequality for m, we get the desired result.

Because µmin = µmax =
(
n
2

)−1
when µ is uniform,

we have given an O
(
b3ε−2n log(nδ )

)
sample complexity

when µ is uniform. Our argument improves upon that
in (Rajkumar and S. Agarwal 2014) through improved
matrix concentration results and a different (unbiased)
estimator for Q.

4 REGULARIZING
RANKCENTRALITY

When the number of pairwise comparison observations
we have available is small, the Q̂ij entries are poor esti-
mators for Qij : there are n2 − n off-diagonal entries in
Q̂ and each observation only affects one off-diagonal en-
try leaving most entries zero. Furthermore, as described
in the previous section, if the graph of pairwise compar-
isons (given by connecting any two points with an edge)
is not strongly connected, may not guarantee that Q̂ has
a unique stationary distribution. Motivated by this, we
ask a natural question—when the number of pairwise
comparisons is small; i.e., data is scarce (for example
we have just observed one comparison per item) how
can we still obtain a reasonable ranking?

Intuitively, if the items [n] have some inherent structure,
we can hope to exploit that structure to infer pairwise
comparisons. Since Qij = µijPij ; i.e., a scaled proba-
bility of i beating j, even if we have never seen a com-
parison between i and j, it is reasonable to estimate this
value by taking a weighted combination of the empirical
Q̂ik, 1 ≤ k ≤ n, where the choice of weights perhaps
reflect some prior knowledge on the similarity between
j and k. In an extreme case—if we suspect item j and k
would perform the same against item i, we may choose
the weight on Q̂ik to be large, and set the weights on all
other Q̂ik′ , k 6= k′ to zero.

Said more precisely, we choose a row-stochastic matrix
D and use the estimator Q̂D whose ij-th entry is

[Q̂D]ij =

n∑

k=1

DkjQ̂ik (5)

How should we choose D? We want Q̂D to be ergodic,
but it should also reflect some similarity structure between
the items. This prior information could take form in many
ways—for example we can imagine that associated to
item i is a feature vector xi ∈ Rd and intuitively items
that are close together perform similarly on a comparison
with some other element j (see Section 4.1). An extreme
case of this is assuming that the items are in clusters, and
items within a cluster rank similarly (or the same). Finally,
we can consider forms of D that do not reflect any prior
structure but do at least guarantee that Q̂D is ergodic—as
we will show these estimators can still perform compet-
itively with other methods (Section 4.2). To recap, our
resulting regularized RankCentrality algorithm that we
will discuss in the rest of this section is given below in
Algorithm 1.

Algorithm 1 Regularized RankCentrality algorithm

1: procedure RANKCENTRALITY(n, S,D)
2: compute Q̂ as in (4)
3: return leading left eigenvector of Q̂D
4: end procedure

4.1 DIFFUSION BASED REGULARIZATION

Diffusion RankCentrality leverages additional features
xi ∈ Rd for each of the items i ∈ [n] being ranked.
We use this to compute pairwise similarities in a manner
consistent with the literature (e.g., in t-SNE (Maaten and
Hinton 2008) and diffusion maps formulated by (Coifman
et al. 2005)) so that for a fixed i, the similarities Dik

are proportional to the probability density of a Gaussian
centered at xi. Let D(σ)

ik , the similarity between item i
and j, be defined as

D
(σ)
ik :=

exp
(
−‖xi−xk‖2

σ2

)

∑n
l=1 exp

(
−‖xi−xl‖2

σ2

) , (6)

where σ, the kernel width, is an appropriately chosen hy-
perparameter. The Diffusion RankCentrality algorithm,
obtained by using D(σ) in Algorithm 1, returns the sta-
tionary distribution of the Markov chain Q̂D(σ).

As described in equation (5), [Q̂D(σ)]ij =∑n
k=1D

(σ)
kj Q̂ik, i.e., the ij entry is a weighted av-

erage of Q̂ik’s. D(σ)
ij is large when xi is close to xj and



close to 0 when they are far apart. In particular the Q̂jk
contribute more when j is close to i and less otherwise.

An alternative interpretation of this procedure is given
by considering the Markov chain induced by Q̂ and con-
trasting it with that of Q̂D(σ). Consider starting at any
item i, and repeatedly transitioning according to Q̂. If
the number of comparisons is small, there may not even
be a path from i to any other item j. In addition, any
additional comparison greatly affects the stationary dis-
tribution (i.e. the limiting distribution as we transition
according to Q̂) of Q̂. Contrast this with the stationary
distribution of Q̂D(σ). By construction, Q̂D(σ) will be
dense (assuming each element has some neighbor that has
a comparison). We can interpret the elements of Q̂D(σ)

as a Markov chain themselves: first, we make a sub-step
(say from i to k) according to Q̂, which is based only the
pairwise comparison observations, and then we make a
sub-step (say from k to j) with probability that inversely
depends the distance of points to k. In, particular, we have
imputed a series of transitions from i to other elements j,
using the underlying geometry of the points along with
the pairwise comparisons. This technique is similar to
that found in (Dijk et al. 2018), the MAGIC algorithm
used in the field of single-cell RNA sequencing, where
each entry in Q is an extremely undersampled low integer
count.

Example. Consider the following extreme case example.
Suppose the 100 points {xi}99i=0 lie in 10 tight clusters
with cluster k being {x10k+1, · · · , x10k+9} and the clus-
ters are spaced very far apart. Assume the BTL scores
of items are constant within clusters; if items i and j
are in the same cluster then xi = xj and wi = wj . Set
‖xi − xj‖ =∞ when i and j are in different clusters. In
this case, the matrix D(σ) is block diagonal: D(σ)

ij = 1
10

when i and j are in the same cluster and D(σ)
ij = 0 other-

wise.

Figure 1 demonstrates the benefit of multiplying Q̂ by
D(σ). We see that a comparison between i and j does
not just affect the ij entry, but those corresponding to
neighbors of i and j. To visualize the effect of D(σ), we
also show heatmaps of the 50-th powers of the transition
matrices, Q̂ and Q̂D(σ). The checkered patterns in Q and
QD(σ) are clearly visible in (Q̂D(σ))50 while Q̂50 is still
very sparse. After 50 iterations of Q̂ vs. Q̂D(σ), we see
the impact of regularization, (Q̂D(σ))50 is far less sparse
than Q̂50 and reflects a block structure that is imputing
comparisons for items that have been compared less often.

There are a number of different ways we could have dif-
fused the information across the samples. We could have
used Q̂D(σ), D(σ)Q̂, or even D(σ)Q̂D(σ). In our empiri-
cal analysis, however, we found no significant difference
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Figure 1: Demonstrating the impact of D(σ). The 100
items in this experiment lie in 10 equally sized tight clus-
ters, where BTL scores are constant within clusters and
the corresponding D(σ) matrix is block diagonal. The
Q̂ matrix was computed using 200 pairwise comparisons
simulated according to the BTL model.

in the performance of the algorithm run with these possi-
bilities.

Finally, we note that the running time of the regularized
RankCentrality algorithm is dominated by the computa-
tion of the leading eigenvector. The matrices Q and D are
of size n × n and we can form the matrix M = Q̂D in
timeO(n3). We then iterate in the power method withM ,
each iteration, requiring a matrix-vector multiply takes
time O(n2). Our empirical analysis suggests that a few
steps of the power method are sufficient. Furthermore,
this iterative eigenvector computation on sparse matrices
can be faster, than optimization procedures inherent in the
MLE.

4.2 λ-REGULARIZED RANKCENTRALITY

Implicitly, D is chosen so that two properties are satis-
fied. Firstly, Q̂D will be an ergodic markov chain, and
secondly, as in most regularization situations, we choose
D to capture some inherent prior structural information
we may have about w apriori. In this section we ignore
the second motivation and instead focus on a D which
just guarantees that former constraint.

In particular, given λ > 0 we consider Dλ := (1− λ)I +
λ
n11

T as a choice of regularizer in Algorithm 1. Note that
Q̂Dλ = (1−λ)Q̂+ λ

n11
T , which ensures that Q̂Dλ is a



positive row-stochastic matrix, which must be ergodic. In
particular, we can run Algorithm 1, regardless of the num-
ber of samples and we are guaranteed that Q̂Dλ necessar-
ily has a unique stationary distribution. The simple nature
of Dλ allows us to give a precise theoretical characteri-
zation of it’s performance. In general, E [Q̂Dλ] = QDλ,
but QDλ may not have the same left eigenvector as Q.
This introduces a bias in our estimator. How can we over-
come this bias? Inspecting the form of Dλ, note that if
λ → 0 as m → ∞ then Dλ → I . The following theo-
rem characterizes the error of this procedure of any λ and
shows that it is reasonable to take λ = O(1/

√
m). For

notational convenience, we let γ := nµmin

2(1+
√
2)b3/2

. Note

that γ is not constant—in fact it is O( 1
n ).

Theorem 2. Let λ ∈ (0, γ2 ). Choose δ ∈ (0, 1) and
ε ∈

(
2λγ−1, 1

)
. Let ŵλ be the output of Regularized

RankCentrality run with D = Dλ. Then, with probability
at least 1− δ,

‖ŵλ − w‖
‖w‖ < 2λγ−1+

√
68(1−λ)b3(µmax+nµ

2
max)

nµ2
minm

log
2n

δ
,

In particular, choosing λ = c/
√
m, then with probability

at least 1− δ, we have

‖ŵ − w‖
‖w‖ = O

(
b3 log(2n/δ)

nµminm

)
.

We give a proof in the supplementary material under
Corollary 14.

Our empirical experiments run with λ = ηm−1/2 for
various values of η support decaying λ in this way. Figure
2 demonstrates a run of λ-Regularized RankCentrality on
a setting wherew = [i]200i=1 and the underlying distribution
on pairwise comparisons is assumed to be uniform. We
compare several choices of λ (with λ = 0 corresponding
to normal RankCentrality) and the BTL MLE with an `2
regularizer2 on the weights (implemented using logistic
regression). Note that η = 1/6 seems to perform the
best and even outperforms regularizing the BTL-MLE
for small sample sizes where RankCentrality may still
be returning a uniform distribution. For more details and
experiments with different choices of w in this setting,
see Appendix C in the supplementary materials.

Remark: To connect the diffusion based regularization
with λ-regularization, observe that if we take σ → 0 in the
definition of D in Equation 6, then D → D0 = In (when
the xi’s are all distinct). The kernel width σ, therefore,
determines the bias of Diffusion RankCentrality—small
values of σ only introduce a small bias in the algorithm

2Without such a regularizer, the BTL-MLE is underdeter-
mined when the number of comparisons is small and cannot be
solved.
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Figure 2: Comparing λ-Regularized RankCentrality with
BTL-MLE and RankCentrality. Here w = [i]200i=1.

while large values of σ introduce considerable bias. Moti-
vated by Theorem 2, to diminish this bias as m increases,
we can use (1 − 1√

m
)I + 1√

m
D(σ) in Diffusion Rank-

Centrality instead of D(σ) directly. We call this Decayed
Diffusion RankCentrality. In general, cross-validation
could be used to choose the kernel width.

5 EMPIRICAL RESULTS FOR
REGULARIZED RANKCENTRALITY

In this section we do a comparison of the regularized
RankCentrality methods in the structured setting to stan-
dard methods for ranking on synthetic and real world
datasets. The code we used along with additional plots
are part of the supplementary material. Although our the-
oretical analyses do not make assumptions about µ, our
experiments focus on the case where µ is uniform.

5.1 COMPARISON TO SCORING FUNCTIONS

As discussed in Section 2, there is a rich literature of rank-
ing methods, though less so for ranking data that come
with features. Recall, we assume for each item i ∈ [n]
there is a vector xi ∈ Rd. In past work, the goal is to learn
a function f : Rd → R, presumed to be in a specified
function class F , such that sign(f(xi)− f(xj)) predicts
a comparison between item i and item j. To learn f given
the dataset S = {(ik, jk, yk)}mk=1, and a loss function
` : R× R× {0, 1} → R, we can learn the empirical risk
minimizer argminf∈F

∑n
k=1 `(f(xi), f(xj), yk). Two

notable examples that focus on learning a scoring func-
tion that we compare to are RankSVM by (Joachims 2002)
and Siamese network based approaches due to (Bromley
et al. 1994).

RankSVM assumes that F = {f : x 7→ wTx},



i.e. linear separators through the origin and choose
`(f(xi), f(xj), y) = min(0, 1−(f(xi)−f(xj))(2y−1).
When testing RankSVM, we used it naively on the origi-
nal features but also considered a kernelized version using
random features, as described in (Rahimi and Recht 2008)
and implemented in SkLearn, (Pedregosa et al. 2011).

Note that when the loss function is the logistic loss,
`(f(xi), f(xj), y) = log

(
exp(f(xj))

exp(f(xi))+exp(f(xj))

)
, we re-

cover the MLE under the assumption that the BTL scores
are given by a transformation of the features. Such an
objective has been proposed several times in the literature,
e.g. (Burges et al. 2005). In the extreme case f(xi) = θi
is the BTL-MLE.

An example of such an approach are Siamese Nets, in-
troduced by in (Bromley et al. 1994). We implemented
a Siamese network using Keras ((Chollet et al. 2015))
with two hidden dense layers, each with 20 nodes and a
dropout factor of 0.1, and an output dimension of 1. Each
layer in the base network used a ReLU activation. The
outputs of the right network is subtracted from that of the
left and a cross-entropy loss is then used.

We point out that in general both methods described above
have a very different goal from what our paper proposes.
Our goal is not to learn a scoring function, but instead
to use the similarity information to inform the ranking
process. In general, learning a scoring function can be
expensive in terms of both computation, and samples. In
addition, if the features do not actually inform the ranking
very well, we want methods that will still learn a reason-
able ranking—guaranteed by regularized RankCentrality
as m → ∞. We now demonstrate competitive perfor-
mance of regularized RankCentrality even when the data
is generated by a scoring function.

We constructed two synthetic datasets. We assume that
the BTL-score is given by a continuous function of the
features; i.e., there is an f : Rd → R so that the BTL
score wi = f(xi). This intuitively captures the idea that
items which are close in space are close in rank. We
consider a few examples of such functions f as given
below.

• In Experiment A, we generated 1600 points {xi}1600i=1

chosen uniformly at random from [0, 4]2, we chose
ω1, ω2, . . . , ω4 ∈ R2 at random, each entry chosen
independently from a Gaussian. To each i ∈ [1600]

we associate a score wi =
∑2
h=1 exp(cos(5ωTh xi)) +∑4

h=3 exp(ωTh xi/10).

• In Experiment B, we generated 1000 points {xi}1000i=1 ∈
[0, 4] chosen uniformly at random and chose ω ∈ R
at random from a Gaussian. To each i ∈ [1000] we
associate a score wi = exp(cos(5ωxi)).

For varying of m, we simulated m observations under the
BTL-model with uniform µ and ran various algorithms
that have been discussed. We recorded plotted the aver-
age Kendal-tau correlation metric (see Section D in the
supplementary for details) between the ranking on the
synthetic scores we generated and the true ranking on the
items. The results of these experiments are summarized
in Figures 3 and 4.
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Figure 3: Comparison of algorithms in synthetic exper-
iment A. Diffusion RankCentrality was run with kernel
width σ = 2−4.

102 103 104
0

0.2

0.4

0.6

0.8

1

0.5

0.6

0.7

0.8

0.9

1

Number of comparisons (m)

K
en

d
al

l’
s

T
au

τ
(π
,π̂

)

Synthetic Experiment B

A
cc

u
ra

cy
( co

rd
an

t
p
ai

rs
/
( n 2

))

BTL-MLE (regularized) λ-regularized RC Decayed Diffusion RC

RankSVM RankSVM with Random Features Siamese Net

Figure 4: Comparison of algorithms in synthetic exper-
iment B. Diffusion RankCentrality was run with kernel
width σ = 2−5.

In Experiment A, Diffusion RankCentrality proves to be
the best method when the comparisons are scarce. The
impact of Diffusion RankCentrality in Experiment B is
dramatic when compared to λ-regularized RankCentral-
ity. While it is true that RankSVM with random features
far outperforms other algorithms, it should not come as
a surprise given that the BTL scores wi, as a function
of xi, come from monotonic transformations of linear
combinations of the basis of the RKHS used for the im-
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Figure 5: Impact of kernel width on performance of Dif-
fusion RankCentrality.

plementation of random Fourier Features in scikit-learn
(Pedregosa et al. 2011).

In both experiments, Diffusion RankCentrality outper-
forms Siamese Networks. To choose the kernel width,
we ran Decayed Diffusion RankCentrality with several
different choices of σ on a validation set and chose the
best one (see Figure 5).

5.2 NEW YORKER CAPTION COMPETITION

It is challenging to find real-life data sets that satisfy all
of the following conditions: 1) The data is structured; i.e.,
has image or text features associated with the items and
2) the number of items compared is moderate to large in
size.

The New Yorker Caption Competition dataset consists of a
cartoon and a series of associated (supposedly) funny cap-
tions submitted by readers (see (NEXTML 2019) for de-
tails on this dataset). Each week, readers vote on whether
they think each caption is funny (2 points), somewhat
funny(1 point) or unfunny (0 points), and the caption is
assigned an average cardinal score based on these points.
Included in this dataset are only two contests (#508 and
#509), in which there are a large number of pairwise com-
parisons in addition to cardinal scores generated from
user votes on a small number of items (n = 29 items
for each contest). Each pair of items received roughly
300 comparisons and each item also received roughly 200
cardinal votes. (The associated captions and visuals of
the query types are given in Figure 6, and Figure 13 in
the supplementary material). Run directly on this dataset,
Diffusion Rank Centrality did not show an appreciable
advantage since the number of items was so small and
hence similarity information provided less leverage over
other methods.

Figure 6: New Yorker Caption Competition Interface for
pairwise comparisons for #508. Users were asked to click
on the caption they thought was funnier.

Figure 7: A sample of the voting user interface presented
to readers of the New Yorker Magazine for contest #651

5.2.1 Cardinal Scores model BTL-scores

We generate comparisons on a much larger set of cap-
tions for a different contest by transforming the cardi-
nal data to infer pairwise comparisons. To determine
this transformation, we used contest #508 for which we
had 300 pairwise comparisons and 200 cardinal votes.
For each pair of captions i, j in contest #508, we com-
pute P̂ emp

ij , the empirical probability of item i beating
item j. In addition, we used the average empirical car-
dinal scores of items i and j denoted as ŝi, ŝj we com-
puted P̂ card

ij = exp(ŝi)/(exp(ŝi) + exp(ŝj)). In other
words, we calculated the empirical probabilities implied
by the cardinal scores and compared them to the empirical
probabilities from the pairwise comparisons. A resulting
scatterplot of the points (P̂ emp

ij , P̂ card
ij ) is shown in Fig-

ure 8. Somewhat surprisingly, this plot demonstrates that
a monotonic transformation of the cardinal scores seem
to model an underlying pairwise probability model fairly
well—implying that up to an exponential scaling trans-
formation, the cardinal scores determine underlying BTL
scores for the captions. This seems to be an interesting
non-trivial result about ranking and humor that has not
been previously observed.
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Figure 8: Scatter plot demonstrating the relationship be-
tween P̂ emp and P̂ card.

5.2.2 Contest #651

Using the observations in the previous section, we chose
a contest, #651, that did not have underlying pairwise
comparisons but did have a large number of items all with
cardinal scores. We then generated pairwise comparisons
from these cardinal scores as described in Section 5.2.1.
The cartoon associated to this contest is in Figure 9.

More precisely, from the captions available, we took the
400 captions (out of roughly 7000) with largest empiri-
cal average cardinal score (each caption had around 250
votes) and generated BTL weights. We used the Uni-
versal Sentence Encoder in (Cer et al. 2018) to gener-
ate 512 dimensional embeddings for each of the cap-
tions (this yields the additional structural information
we need for regularization). The resulting plot contrasting
the methods is shown in 7, as before the kernel width
was chosen on a validation set—in addition we used
(1 − 1√

m
)I + 1√

m
D(σ) as the regularizer in Diffusion

RankCentrality to debias the procedure.

In this setting, Diffusion RankCentrality performs ex-
tremely well, locking in a significantly better ranking
almost immediately with few comparisons.

5.3 PLACE PULSE

Our final example involves comparisons arising from the
Place Pulse dataset used in (Katariya et al. 2018). There
were 100 images of locations in Chicago in this dataset,
and a total of 5750 comparisons where MTurk workers
were asked which of the two locations they thought were
safer. We used ResNetV1 (He et al. 2016) to generate
features for the images of each location and broke the data
up into a train, test and validation set (again used to select
σ and λ). Since we do not have an underlying ground
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Figure 9: Test Error for various algorithms for the New
Yorker Caption Competition #651 with σ = .25.

truth ranking, we instead plot the test error in Figure 10.
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Figure 10: Performance of various algorithms from the
Place Pulse dataset.

Again, Diffusion RankCentrality (a non-classification
based method) performed competitively matching the per-
formance of RankSVM.

6 CONCLUSION

In this paper we provided a way to employ structure in
the RankCentrality algorithm that provides meaningful
results when data is scarce. Along the way we provided a
stronger sample complexity bound for a natural sampling
scheme. For future work we hope to provide rigorous
sample complexity bounds for diffusion based methods.
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Appendices

Symbol Definition
‖ · ‖ unless stated otherwise, vector norms are `2 norms, and matrix norms are operator (spectral) norms
γ nµmin

2(1+
√
2)b3/2

w stationary distribution of Q
ŵ stationary distribution of Q̂
λ regularization constant, see Dλ

λmax(R) second largest eigenvalue of matrix R (because the largest eigenvalue of an irreducible Markov chain
is always 1)

µij probability that pair (i, j) is observed
1 vector of all one entries, usually in Rn
b maxi,j

wi

wj

k number of comparisons per pair in sampling scheme in (Negahban, Oh, and D. Shah 2016)
n number of items being compared
m number of comparisons total
P pairwise preference matrix
P̂ empirical comparison matrix
Q true markov chain (requires knowing P )
Q̂ empirical markov chain
Dλ (1− λ)I + λ

n11
T

Table 1: Notation used in this paper.

A CONVERGENCE OF RANKCENTRALITY

Define
Q(ij) := eie

T
j − eieTi , (7)

and additionally

Qk =

{
Q(jkik) if yk = 0

Q(ikjk) if yk = 1
. (8)

We see now that

Q̂ = I +
1

m

m∑

k=1

Qk, (9)

and for the remainder of our analysis we shall consider (9) as the definition of Q̂. Recall

Qij =

{
µijPij if i 6= j

1−∑k 6=i µikPik if i = j
,

and observe that E (Q̂) = Q.

We begin our analysis of the RankCentrality algorithm by giving a bound on the spectral gap of the transition matrix Q
constructed from pairwise preferences.

Proposition 3. The spectral gap 1− λmax of Q is at least nµmin

2b , where b = maxi,j
wi

wj
.

Proof. We will use the following lemma from (Negahban, Oh, and D. Shah 2016, Lemma 6).



Lemma 4 (Comparison Inequality for Spectral Gaps(Negahban, Oh, and D. Shah 2016)). Let Q, π and R, τ be
reversible Markov chains on a finite set [n] representing random walks on a graph G = ([n], E), i.e. R(i, j) = 0 and
Q(i, j) = 0 if (i, j) /∈ E. For α ≡ min(i,j)∈E{πiQij/τiRij} and β ≡ maxi{πi/τi},

1− λmax(Q)

1− λmax(R)
≥ α

β

We will invoke the above lemma with R = 1
n11

T = [ 1n ]ij , τ = 1
n1 = [ 1n ]i, Q as we have defined it previously, and

π = w. Observe that these define a reversible Markov chain. Since R has rank 1, we have λmax(R) = 0, which gives
us that 1− λmax(Q) ≥ α

β . Now we bound α and β.

We have

α = min
i,j

wiQij
τiRij

= min
ij

wiµij
wj

wi+wj

1
n

1
n

≥ min
i,j

n2µminwiwj
(wi + wj)

≥ n2µmin mini wi
2

We also see β = maxi
wi

τi
= nmaxi wi. Thus, αβ ≥

nµmin

2b .

This bound is close to optimal when µ is uniform. Since the diagonal entries of Q are each at least 1− 2
n−1 , we know

n−1
2 (Q − (1 − 2

n−1 )I) is non-negative and row stochastic. By the Perron-Frobenius Theorem, the eigenvalues of
n−1
2 (Q− (1− 2

n−1 )I) lie in [−1, 1] and the eigenvalues of Q must lie in [1− 4
n−1 , 1]. The difference between 1 and

the smallest possible eigenvalue of Q is only a factor of 4b larger than our bound on the spectral gap.
Proposition 5 (Effect of perturbing Q). Let Q be the true transition matrix as defined in (3). For any ergodic Markov
chain on [n] with row-stochastic transition matrix Q̃ and stationary distribution w̃, if ‖Q− Q̃‖ < nµmin

2b3/2
, we have

‖w̃ − w‖
‖w‖ ≤ 2‖∆‖b3/2

nµmin − 2‖∆‖b3/2 ,

where ∆ = Q̃−Q.

Proof. We begin by citing a lemma (Negahban, Oh, and D. Shah 2016, Lemma 2).

Lemma 6. For any Markov chain Q̃ = Q + ∆ with a reversible Markov chain Q, let pt be the distribution of the
Markov chain Q̃ when started with initial distribution p0. Then,

‖pt − w‖
‖w‖ ≤ ρt ‖p0 − w‖‖w‖

√
wmax

wmin
+

1

1− ρ‖∆‖2
√
wmax

wmin
.

where w is the stationary distribution of Q and ρ = λmax(Q) + ‖∆‖2
√
wmax/wmin.

As before, let b = maxi,j
wi

wj
. Consider the limit as t→∞:

• when 0 ≤ ρ < 1 we have ρt → 0, and

• when the Markov chain Q̃ is irreducible we have pt → w̃.

In this case,

‖w̃ − w‖
‖w‖ ≤ 1

1− ρ‖∆‖2
√
b.

Recall that 1− λmax(Q) > nµmin

2b by Proposition 3. Now we have that ρ < 1 when ‖∆‖ < nµmin

2b3/2
because when this is

the case, we have ‖∆‖
√
b < nµmin

2b and hence ρ ≤ 1− nµmin

2b + ‖∆‖
√
b < 1. Assuming ‖∆‖ < nµmin

2b3/2
, we have

‖w̃ − w‖
‖w‖ ≤ ‖∆‖

√
b

nµmin

2b − ‖∆‖
√
b

=
2‖∆‖b3/2

nµmin − 2‖∆‖b3/2 .



For transition matrices Q and Q̂ we define the centered transition matrices Q′ and Q̂′ by subtracting I . That is,
Q′ = Q− I and Q̂′ = Q̂− I . These centered matrices Q′ and Q̂′, as well as Qk and Q(ij) defined previously, have
non-negative entries everywhere except on the diagonal (where they are non-positive) and their rows sum to zero. These
centered matrices significantly simplify the algebra in the following computations.

Lemma 7. The difference Zk := Qk−Q′

m is bounded in norm: ‖Zk‖ < 3
m .

Proof. To bound ‖Qk‖, recall that Qk is of the form Q(ij) = (eie
T
j − eiei). Observe that Q(ij)Q(ij)T = 2eie

T
i .

Therefore, ‖Qk‖ ≤
√

2. By convexity of norms, ‖Q′‖ = ‖EQk‖ ≤ E ‖Qk‖ ≤
√

2. Using the triangle inequality we
get ‖Qk −Q′‖ ≤ 2

√
2 < 3.

Lemma 8. Let Zk = Qk−Q′

m , as before. We can bound the variance term as:

σ2 := max

{∥∥∥∥∥
m∑

k=1

E ZkZ∗k

∥∥∥∥∥ ,
∥∥∥∥∥
m∑

k=1

E Z∗kZk

∥∥∥∥∥

}
≤ 3(n− 1)µmin

m
.

Proof. To bound ‖E ZkZ∗k‖, we see

E ZkZ∗k =
1

m2
E
(
QkQ

T
k −QkQ′T −Q′QTk +Q′Q′T

)
=

1

m2
E
(
QkQ

T
k −Q′Q′T

)
.

We can compute these explicitly.

Begin by considering the QkQTk term. We know Q(ij)Q(ij)T = 2eie
T
i . By simple algebra, we get E QkQ

T
k =∑

i

∑
j 6=i 2µijPjieie

T
i . Therefore, ‖EQkQTk ‖ ≤ maxi

∑
j 6=i 2µijPji ≤ 2(n− 1)µmax.

Computing Q′Q′T is more tedious.

Q′Q′T =


∑

i 6=j
µijPij(eie

T
j − eieTi )




∑

u6=v
µuvPuv(eve

T
u − eueu)




=
∑

i 6=j,u 6=v
µijµuvPijPuv(eie

T
j eve

T
u − eieTj eueu − eieTi eveTu + eie

T
i eue

T
u ).

By ignoring zero terms (notice that the first of four summands is non-zero only when j = v, the second when j = u,
etc.) and re-indexing, we get

Q′Q′T =


 ∑

i 6= 6̀=j
µi`µj`Pi`Pj`eie

T
j −

∑

i 6=j 6=`
µijµj`PijPj`eie

T
j −

∑

j 6=i 6=`
µi`µjiPi`Pjieie

T
j +

∑

u6=i 6=v
µiuµivPiuPiveie

T
i


 ,

where statements such as i 6= ` 6= j mean i 6= ` and j 6= ` (but i may be equal to j). This is a symmetric matrix, so
its singular values are its eigenvalues. We can now invoke the Gershgorin circle theorem, a consequence of which is
that ‖M‖ < maxi

∑
j |Mij | for symmetric matrices. Therefore, ‖Q′Q′T ‖ ≤ 4n2µ2

max. Finally, the triangle inequality
gives ‖E ZkZ∗k‖ ≤ 1

m2

(
2(n− 1)µmax + 4n2µ2

max

)
.

We now turn to Z∗kZk. Similar to the calculations above, simple algebra gets us

EQTkQk =
∑

i

∑

j 6=i
µij(Pij + Pji)(eie

T
i − eieTj ).

As before, this is a symmetric matrix and we can use the Gershgorin circle theorem to give a bound on the largest
singular value of EQTkQk:

‖EQTkQk‖ ≤ max
i

∑

j 6=i
2µij ≤ 2(n− 1)µmax.



As before computing Q′TQ′ is more tedious but gives

Q′TQ′ =
∑

i 6=j

∑

u 6=v
µijµuvPijPuv(eje

T
i − eieTi )(eue

T
v − eueTu )

=
∑

i 6=j

∑

u 6=v
µijµuvPijPuv(eje

T
i eue

T
v − ejeTi eueTu − eieTi eueTv + eie

T
i eue

T
u )

=
∑

i 6=j

∑

v 6=i
µijµuvPijPiv(eje

T
v − ejeTi − eieTv + eie

T
i )

=
∑

i6=j


 ∑

6̀=i; 6̀=j
µ`iµ`jP`iP`j − µjiµj`PjiPj` − µi`µijPi`Pij


 eie

T
j

+
∑

i


 ∑

u6=i,v 6=i
µiuµivPiuPiv +

∑

` 6=i
µ`iµ`iP`iP`i


 eie

T
i .

Again, we can invoke the Gershgorin circle theorem and see that ‖Q′Q′T ‖ ≤ 4n2µ2
max. As before, the triangle

inequality gives ‖E Z∗kZk‖ ≤ 1
m2

(
2(n− 1)µmax + 4n2µ2

max

)
.

Finally, note that Zk are not only independent but also identically distributed and hence

max

{∥∥∥∥∥E
∑

k

Z∗kZk

∥∥∥∥∥ ,
∥∥∥∥∥E

∑

k

ZkZ
∗
k

∥∥∥∥∥

}
= mmax {‖E Z∗kZk‖, ‖E ZkZ∗k‖} ≤

4(n− 1)µmax + 4n2µ2
max

m
.

We will soon need to use the Matrix Bernstein Inequality from (Tropp 2012, Theorem 1.6) and state it here as a lemma.

Lemma 9 (Matrix Bernstein (Tropp 2012)). Consider a finite sequence {Zk} of independent, random matrices with
dimensions d1 × d2. Assume that each random matrix satisfies

E Zk = 0 and ‖Zk‖ ≤ R almost surely.

Define
σ2 := max

{∥∥∥
∑

k
E (ZkZ

∗
k)
∥∥∥ ,
∥∥∥
∑

k
E (Z∗kZk)

∥∥∥
}
.

Then, for all t ≥ 0,

P
(∥∥∥
∑

k
Zk

∥∥∥ ≥ t
)
≤ (d1 + d2) · exp

( −t2/2
σ2 +Rt/3

)
.

Finally, we put this all together.

Theorem 10 (Convergence of Unregularized RankCentrality). Let Q̂ be constructed as in (4). If Q̂ is ergodic and ŵ is
the stationary distribution of Q̂, then we have (where probability is taken over the m comparisons made under the BTL
model and each pair is equally likely to get picked)

P
(‖ŵ − w‖
‖w‖ ≤ ε

)
> 1− 2n exp

( −µ2
minε

2nm

16b3(1 + ε)2(µmax + nµ2
max)

)
.

Proof. Assuming ‖∆‖ < 1
nb3/2

, by Proposition 5 we have

‖ŵ − w‖
‖w‖ ≤ 2‖∆‖b3/2

nµmin − 2‖∆‖b3/2 .

This means we want
2‖∆‖b3/2

nµmin − 2‖∆‖b3/2 < ε,



which happens when ‖∆‖ ≤ εnµmin

2b3/2(1+ε)
. Note that this is stronger than ‖∆‖ < nµmin

2b3/2
, so our previous assumption will

hold.

Finally, we let t = εnµmin

2b3/2(1+ε)
and use Lemma 9 to get

P
(‖ŵ − w‖
‖w‖ ≥ ε

)
≤ P

(
‖Q̂−Q‖ ≥ t

)
≤ −2n exp

( −t2
σ2 +Rt/3

)
,

where we have σ2 ≤ 4(n−1)µmax+4n2µ2
max

m by Lemma 8 and R < 3
m by Lemma 7. Therefore, we get

P
(‖ŵ − w‖
‖w‖ ≥ ε

)
≤ 2n exp




−
(

εnµmin

2b3/2(1+ε)

)2

4(n−1)µmax+4n2µ2
max

m + εnµmin

2mb3/2(1+ε)




≤ 2n exp

( −µ2
minε

2n2m

4b3(1 + ε)2 (2nµmax + 4n2µ2
max) + 2b3/2ε(1 + ε)nµmin

)

≤ 2n exp

( −µ2
minε

2nm

16b3(1 + ε)2(µmax + nµ2
max)

)
.

Corollary 11. Fix δ ∈ (0, 1) and ε ∈ (0, 1). If

m ≥ 64b3n−1µ−2minε
−2(µmax + nµ2

max) log
2n

δ

and the empirical Markov chain Q̂ constructed as in (4) is ergodic, then with probability at least 1− δ, we have

‖ŵ − w‖
‖w‖ ≤ ε.

Proof. We need

P
(‖ŵ − w‖
‖w‖ ≥ ε

)
≤ 2n exp

( −µ2
minε

2nm

16b3(1 + ε)2(µmax + nµ2
max)

)
< δ.

By re-writing in terms of m, we see that the second inequality is true when

m > 16b3(1 + ε)2n−1µ−2minε
−2(µmax + nµ2

max) log
2n

δ
.

The desired inequality now follows immediately from ε < 1 (we make this assumption for simplicity; the statement of
the theorem is not very strong when ε > 1).

When µ is uniform and n > 4, the above theorem requires m > 48b3ε−2n log( 2n
δ ). We have given an O

(
ε−2n log n

δ

)

upper bound on the sample complexity. This is a much better bound than in (Rajkumar and S. Agarwal 2014). Their
O(ε−2µ−2minn log(nδ )) scales as O(ε−2n5 log(nδ )) when µ is uniform and worse otherwise.

B CONVERGENCE OF λ-REGULARIZED RANKCENTRALITY

This section is devoted to an analysis of the bias-variance trade-off of λ-Regularized RankCentrality. We will compare

• ˆ̃w, the leading left eigenvector of Q̂Dλ, i.e., the output of λ-regularized RankCentrality, and

• w̃, the leading left eigenvector of QDλ, i.e., the expected output of λ-regularized RankCentrality as m→∞,

• w, the leading left eigenvector of Q, and the expected output of RankCentrality as m→∞.



Proposition 12 (Regularized RankCentrality Bias). Fix λ ∈ (0, γ). The asymptotic (m→∞) expectation of the output
of the λ-Regularized RankCentrality algorithm is w̃ and the bias ‖w − w̃‖/‖w‖ can be bounded as

‖w − w̃‖
‖w‖ ≤ λ

γ − λ

Proof. Let Q̃ = QDλ. We now have Q− Q̃ = λ( 1
n11

T −Q) and ‖Q− Q̃‖ ≤ λ(1 +
√

2). Now we apply Proposition
5 to see that

‖w − w̃‖
‖w‖ ≤ 2(1 +

√
2)λb3/2

nµmin − 2(1 +
√

2)λb3/2
=

λ

γ − λ.

Theorem 13 (Regularized RankCentrality). Fix λ ∈ (0, γ2 ) and choose ε ∈ (2λγ−1, 1). We construct Q̂ as before and
let ˜̂w be the stationary distribution (leading left eigenvector) of Q̂Dλ (i.e., the output of λ-regularized RankCentrality).
We have

P

(
‖ ˜̂w − w‖
‖w‖ < ε

)
> 1−2n exp

(
−(nµminε− 4(1 +

√
2)b3/2λ)2m

16b3(1− λ)2 (4(n− 1)µmax + 4n2µ2
max) + 4b3/2(1− λ)(nµminε− 4b3/2(1 +

√
2)λ)

)

Proof. As we noted in the proof of Theorem 10, to guarantee ‖w − ˜̂w‖/‖w‖ ≤ ε, we need ‖Q− Q̂Dλ‖ ≤ εnµmin

2(1+ε)b3/2
.

Using the triangle inequality, we have ‖Q− Q̂Dλ‖ ≤ ‖Q−QDλ‖+ ‖QDλ + Q̂Dλ‖. We showed in Proposition 12
that ‖Q−QDλ‖ ≤ λ(1 +

√
2). So we need

‖QDλ − Q̂Dλ‖ ≤
εnµmin

2(1 + ε)b3/2
− λ(1 +

√
2) ≤ εnµmin

4b3/2
− λ(1 +

√
2)

=
(1 +

√
2)

2
εγ − λ(1 +

√
2) =

(1 +
√

2)

2
(εγ − 2λ)

Note that this quantity is positive when ε ∈ (2λγ−1, 1) (which is precisely the requirement in the hypothesis above).
We have required that ε < 1 to simplify algebra; the theorem is not very useful otherwise. We now require that

‖QDλ − Q̂Dλ‖ ≤
εnµmin

4b3/2
− λ(1 +

√
2).

We can now invoke Lemma 9 with Zk = 1
m (Q′Dλ −QkDλ) = 1

m (1− λ)(Q′ −Qk). By our previous calculations in

Lemmas 7 and 8, we have the variance term σ2 ≤ (1 − λ)2
4(n−1)µmax+4n2µ2

max

m and the norm term R ≤ (1 − λ) 3
m .

The resulting inequality is

P
(
‖QDλ − Q̂Dλ‖ ≥

nµminε

4b3/2
− (1 +

√
2)λ
)
≤ 2n exp

(
−
(
nµminε
4b3/2

− (1 +
√

2)λ
)2

(1− λ)2
4(n−1)µmax+4n2µ2

max

m + 1−λ
m

(
nµminε
4b3/2

− (1 +
√

2)λ
)
)
,

which simplifies to the desired inequality.

Corollary 14. Recall γ = nµmin

2(1+
√
2)b3/2

. Let λ ∈ (0, γ2 ). Choose δ ∈ (0, 1) and ε ∈
(
2λγ−1, 1

)
. If

m >
68(1− λ)b3(µmax + nµ2

max)

nµ2
min (ε− 2λγ−1)

2 log
2n

δ

then with probability at least 1− δ, we have
‖ ˜̂w − w‖
‖w‖ ≤ ε.



Proof. As in Corollary 11, we need

P

(
‖ ˜̂w − w‖
‖w‖ > ε

)
< δ,

which we can guarantee when

2n exp

(
−(nµminε− 4(1 +

√
2)b3/2λ)2m

16b3(1− λ)2 (4(n− 1)µmax + 4n2µ2
max) + 4b3/2(1− λ)(nµminε− 4b3/2(1 +

√
2)λ)

)
< δ.

Rewriting in terms of m, we see that the second inequality is true when

m >
16b3(1− λ)2

(
4(n− 1)µmax + 4n2µ2

max

)
+ 4b3/2(1− λ)(nµminε− 4b3/2(1 +

√
2)λ)

(nµminε− 4(1 +
√

2)b3/2λ)2
log

2n

δ

The desired inequality now follows by replacing various terms in the above inequality with upper bounds for them (e.g.,
(1− λ)2 < 1− λ, b3/2 < b3, and ε < 1).

Empirical evidence suggests that values of λ larger than γ
2 often yield meaningful results. Future work could include

bridging this gap between the theory and application.

C EMPIRICAL RESULTS: RANKCENTRALITY AND λ-REGULARIZED
RANKCENTRALITY

Our main experiments was to evaluate convergence of these algorithms with synthetic BTL scores and comparisons.
We compared (unregularized) RankCentrality, λ-regularized RankCentrality (with λ decaying as ηm−1/2 for different
values of η, as described in Section 4.2), the BTL maximum likelihood estimation (see equation (2)), and regularized
BTL-MLE (using the Scikit-Learn (Pedregosa et al. 2011) implementation of logistic regression). The BTL score wi
for each item i was either

• assigned by choosing vi uniformly at random from [0, 5] and setting wi = exp(vi), or

• deterministically constructed, e.g., wi = i for i ∈ [200].

Then, for various values of m, we generated m comparisons (first chose m pairs of items, uniformly at random from
all possible pairs, then drew winners with probabilities according to the BTL model) and ran each algorithm on the
same set of comparisons. In each of these cases, we record the `2 error and the Kendall’s Tau correlation metric. We
repeat this process of generating comparisons and evaluating algorithms for a total of 40 times and record the mean and
standard error of the `2 error and the Kendall-Tau correlation metric. The results for some of these experiments are
shown in Figure 11.

D KENDALL’S TAU-B

The Kendall-Tau correlation metric we use in our experiments is also know as Kendall’s Tau-b, defined as

τ(α, β) =
P −Q√

(P +Q+ T ) ∗ (P +Q+ U)
, (10)

where P is the number of concordant pairs (i.e., the number of pairs i, j such that the relative ordering of αi and αj is
the same as that of βi and βj), Q the number of discordant pairs, T the number of ties only in α, and U the number of
ties only in β.

E NEW YORKER CAPTION CONTEST



102 103 104

10−0.6

10−0.4

10−0.2

Number of comparisons (m)

‖π̂
−
π
‖/
‖π
‖

Accuracy (n = 200)

BTL-MLE λ = 0 λ = (6
√
m)−1

λ = (12
√
m)−1 λ = (25

√
m)−1 λ = (50

√
m)−1

(a) w ∈ R200 chosen at random.

102 103 104

10−0.5

100

Number of comparisons (m)

‖π̂
−
π
‖/
‖π
‖

Accuracy (n = 40)

BTL-MLE λ = 0 λ = (10
√
m)−1

λ = (20
√
m)−1 λ = (40

√
m)−1 λ = (80

√
m)−1

(b) w ∈ R40 chosen at random.

Figure 11: Decaying λ with a factor of m−1/2.
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Figure 12: Impact of kernel width on Diffusion RankCentrality for various datasets.



Figure 13: New Yorker Caption Competition Interface for pairwise comparisons for 508. Users were asked to vote for
each caption.
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