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Abstract

This paper introduces the Indian chefs process
(ICP) as a Bayesian nonparametric prior on the
joint space of infinite directed acyclic graphs
(DAGS) and orders that generalizes the Indian
buffet process. As our construction shows, the
proposed distribution relies on a latent Beta
process controlling both the orders and outgo-
ing connection probabilities of the nodes, and
yields a probability distribution on sparse in-
finite graphs. The main advantage of the ICP
over previously proposed Bayesian nonpara-
metric priors for DAG structures is its greater
flexibility. To the best of our knowledge, the
ICP is the first Bayesian nonparametric model
supporting every possible DAG involving latent
nodes. We demonstrate the usefulness of the
ICP on learning the structure of deep genera-
tive sigmoid networks as well as convolutional
neural networks.

1 INTRODUCTION

In machine learning and statistics, the directed acyclic
graph (DAG) is a common modelling choice for express-
ing relationships between objects. Prime examples of
DAG-based graphical models include Bayesian networks,
feed-forward neural networks, causal networks, deep be-
lief networks, dynamic Bayesian networks and hidden
Markov models, to name a few. Learning the unknown
structure of these models presents a significant learning
challenge, a task that is often avoided by fixing the struc-
ture to a large and hopefully sufficiently expressive model.
Structure learning is a model selection problem in which
one estimates the underlying graphical structure of the
model. Over the years, researchers have explored a great
variety of approaches to this problem [} 2|3, 4 5], from
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frequentist to Bayesian, and some using pure heuristic-
based search, but the vast majority is limited to finite
parametric models.

Bayesian nonparametric learning methods are appealing
alternatives to their parametric counterparts, because they
offer more flexibility when dealing with generative mod-
els of unknown dimensionality [6]. Instead of looking
for specific finite-dimensional models, the idea is rather
to define probability measures on infinite-dimensional
spaces and then infer the finite subset of active dimen-
sions explaining the data. Over the past years, there has
been extensive work on constructing flexible Bayesian
nonparametric models for various types of graphical mod-
els, allowing complex hidden structures to be learned
from data. For instance, [7]] developed a model for infi-
nite latent conditional random fields while [8] proposed
an infinite mixture of fully observable finite-dimensional
Bayesian networks. In the case of time series, [9] de-
veloped the infinite hidden Markov random field model
and [10] proposed an infinite dynamic Bayesian network
with factored hidden states. Another interesting model is
the infinite factorial dynamical model of [[11]] represent-
ing the hidden dynamics of a system with infinitely many
independent hidden Markov models.

The problem of learning networks containing hidden struc-
tures with Bayesian nonparametric methods has also re-
ceived attention. The cascading Indian buffet process
(CIBP) of [12] is a Bayesian nonparametric prior over
infinitely deep and infinitely broad layered network struc-
tures. However, the CIBP does not allow connections
from non-adjacent layers, yielding a restricted prior over
infinite DAGs. The extended CIBP (ECIBP) is an exten-
sion of the previous model which seeks to correct this
limitation and support a larger set of DAG structures [[13]].
However, the ECIBP has some drawbacks: the observable
nodes are confined to a unique layer placed at the bottom
of the network, which prevents learning the order of the
nodes or have observable inputs. An immediate conse-
quence of this is the impossibility for an observable unit



to be the parent of any hidden unit or any other observable
unit, which restricts the support of the prior over DAGs
and makes their application to supervised deep learning
problematic.

In the context of deep learning, structure learning is of-
ten part of the optimization. Recently, [14] proposed a
method that enforces the model to dynamically learn more
compact structures by imposing sparsity through regu-
larization. While sparsity is an interesting property for
large DAG-based models, their method ignores the epis-
temic uncertainty about the structure. Structure learning
for probabilistic graphical models can also be applied in
deep learning. For instance, [[15] have demonstrated that
deep network structures can be learned through the use
of Bayesian network structure learning strategies. To our
knowledge, no Bayesian nonparametric structure learning
methods have been applied to deep learning models.

This paper introduces the Indian chefs process (ICP),
a new Bayesian nonparametric prior for general DAG-
based structure learning, which can equally be applied
to perform Bayesian inference in probabilistic graphical
models and deep learning. The proposed distribution has
a support containing all possible DAGs, admits hidden
and observable units, is layerless and enforces sparsity.
We present its construction in Section [2] and describe a
learning method based on Markov chain Monte Carlo in
Section[3] In Sectiond] we use the ICP as a prior in two
Bayesian structure learning experiments: in the first, we
compute the posterior distribution on the structure and
parameters of a deep generative sigmoid network and in
the second we perform structure learning in convolutional
neural networks.

2 BAYESIAN NONPARAMETRIC
DIRECTED ACYCLIC GRAPHS

We construct a probability distribution over DAGs and
orders by adopting the methodology followed by [16].
We first define a distribution over finite-dimensional struc-
tures, then obtain the final distribution by evaluating it as
the structure size grows to infinity.

Let G = (V,Z) be a DAG where V = {1,..., K} is
the set of nodes and Z € {0, 1}%*X is the adjacency
matrix. We introduce an ordering 6 on the nodes so that
the direction of an edge is determined by comparing the
order value of each node. A connection Zj; = 1 is only
allowed when 6, > 6;, meaning that higher order nodes
are parents and lower order nodes are children. Notice
that this constraint is stronger than acyclicity since all
(Z,0) combinations respecting the order value constraint
are guaranteed to be acyclic, but an acyclic graph can
violate the ordering constraint.

We assume that both the adjacency matrix Z and the
ordering @ are random variables and develop a Bayesian
framework reflecting our uncertainty. Accordingly, we
assign a popularity parameter 7 and an order value 6y,
called reputation, to every node k in GG based on the
following model:

O ~U(0,1) (D
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% | @7, 6, K ~ Beta (f +6l(k € 0),a — ?)
2)
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Here, I denotes the indicator function, U(a,b) denotes
the uniform distribution on interval [a, b] and O C V is
the set of observed nodes. In this model, the popularities
reflected by 7 control the outgoing connection probability
of the nodes, while respecting the fotal order imposed by
6. Moreover, the Beta prior parametrization in Eq. (2) is
motivated by the Beta process construction of [[17], where
Eq. (1) becomes the base distribution, and is convenient
when evaluating the limit in Section @ Also, o and
v correspond to the usual parameters defining a Beta
process and the purpose of the new parameter ¢ is to
control the popularity of the observable nodes and ensure
a non-zero connection probability when required.

Under this model, the conditional probability of the adja-
cency matrix Z given the popularities 77 = {m, }/*_; and
order values 8 = {0 }5_, is:

HHpme,ek, D). @
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p(Z |7, 0)=

The adjacency matrix Z may contain connections for
nodes that are not of interest, i.e. nodes that are not
ancestors of any observable nodes. Formally, we define
A C V as the set of active nodes, which contains all
observable nodes O and the ones having a directed path
ending at an observable node.

When solely considering connections from A to A, i.e.
the adjacency submatrix Z4 4 of the A-induced subgraph
of G, Eq. @) simplifies to:

P(Zaa |7 a,0) =[] 7 1 —m)™ "™ . (5)
keA
where m, = Zie A Zr; denotes the number of out-

going connections from node k to any active nodes,
ar =Y jeal(0; < 6k) denotes the number of active
nodes having an order value strictly lower than 6;, and
a = {a}¥_,. At this point, we marginalize out the pop-
ularity vector 7 in Eq. (5) with respect to the prior, by
using the conjugacy of the Beta and Binomial distribu-



tions, and we get:

p(Zaa | a,v,0,a,0) =
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where 2" = z(z +1) - - - (& + n — 1) is the Pochhammer
symbol denoting the rising factorial and H = A\ O is
the set of active hidden nodes. This equation is analogous
to Eq.(10) in [[L6] showing Beta-Binomial distributions.

00 1

Figure 1: Graph with active nodes A and inactive nodes
I. Solid arrows are connections among the active sub-
graph with hidden white nodes and gray observed nodes.
Dashed arrows indicates the connections that must be zero
to have exactly set I as the inactive set.

The set of active nodes A contains all observable nodes
as well as their ancestors, which means there exists a part
of the graph G that is disconnected from A. Let us denote
by I = V' \ A the set of inactive nodes. Considering
that the A-induced subgraph is effectively maximal, then
this subgraph must be properly isolated by some envelope
of no-connections Z 4 containing only zeros as in Fig[I]
The joint probability of submatrices Z4 4 and Z 4 is:

p(ZAA7ZIA ‘ aa,%(baa’ae) =
(Zaa | anb.0.0) T[22 @)
plZaa | &,7, 9, a, P an
€

where the number of negative Bernoulli trials a; depends
on 0}, itself and 0 4. Notice that since the submatrices
Z A1 and Z7; contain uninteresting and unobserved binary
events, they are trivially marginalized out of p(Z).

One way to simplify Eq. (7)) is to marginalize out the order
values @7 of the inactive nodes with respect to (Ij). To
do so, we first sort the active node orders ascendingly in
vector 6 4 and augment it with the extrema 6y = 0 and
Ox+41 = 1, where we introduce K+ = | A| to denote the
number of active nodes. We slightly abuse notation here
since these extrema do not refer to any nodes and are only
used to compute interval lengths. This provides us with
all relevant interval boundaries, including the absolute
boundaries implied by Eq. (). We refer to the j smallest

value of this vector as 9~j. Based on the previous notation,
the probability for an inactive node to lie between two
active nodes is simply ;41 — 6;. Using this notation, we
have the following marginal probability:
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where K~ = |I| denotes the number of inactive nodes,

22 = z(x —1)...(z — n + 1) symbolizes the falling
factorial and Z4 4 is a reordering of the adjacency matrix
according to 0 4. The latter is used because, due to the ex-
changeability of our model, the joint probability on both
the adjacency matrix and active order values can cause
problems regarding the index & of the nodes. By using this
many-to-one transformation, we obtain a probability dis-
tribution on an equivalence class of DAGs that is analog to
the lof function used by [16]. The number of permutations
mapping to this sorted representation is accounted for by
the normalization constant (K — D)X =D (K +1)~1,

2.1 From Finite to Infinite DAGs

An elegant way to construct Bayesian nonparametric mod-
els is to consider the infinite limit of finite parametric
Bayesian models [18]]. Following this idea, we revisit the
model of Section2]so that G now contains infinitely many
nodes. To this end, we evaluate the limit as K — oo of
Eq. (), yielding the following probability distribution:

p(Zaa, Z1a,04)a,7,6,0) =
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where v is the digamma function. Eq. (9) is the proposed
marginal probability distribution on the joint space of
infinite DAGs and continuous orders.

2.2 The Indian Chefs Process

Now that we have the probability distribution (9), we want
to draw random active subgraphs from it. This section
introduces the Indian chefs process (ICP), a stochastic



process serving this purpose. In the ICP metaphor, chefs
draw inspiration from other chefs, based on their popular-
ity and reputation, to create the menu of their respective
restaurant. This creates inspiration maps representable
with directed acyclic graphs. ICP defines two types of
chefs: 1) the star chefs (corresponding to observable vari-
ables) which are introduced iteratively and 2) the regular
chefs (corresponding to hidden variables) which appear
only when another chef selects them as a source of inspi-
ration.

The ICP starts with an empty inspiration map as its initial
state. The infinitely many chefs can be thought of as lying
on a unit interval of reputations. Every chef has a fraction
of the infinitely many chefs above him and this fraction is
determined by the chef’s own reputation.

The general procedure at iteration ¢ is to introduce a new
star chef, denoted ¢, within a fully specified map of in-
spiration representing the connections of the previously
processed chefs. The very first step is to draw a reputation
value from 0; ~ U(0, 1) to determine the position of the
star chef in the reputation interval. Once chef 7 is added,
sampling the new inspiration connections is done in three
steps.

Backward proposal Step one consists in proposing
star chef 7 as an inspiration to all the a; chefs having
a lower reputation than chef 7. To this end, we can first
sample the total number of inspiration connections with:

— ¢ >
i ~B 1 iy | 10
q inomia (a P (10)

and then uniformly pick one of the (') possible configu-
rations of inspiration connections.

Selecting existing chefs In step two, chef ¢ considers
any already introduced chefs of higher reputation. The
probability for candidate chef k to become an inspiration
for 7 is:

I(k € star chef:
ZkiNBernoulli< my + 9k € star chefs) ),

a+ ap — 1+ @lI(k € star chefs)
11

where ay, includes the currently processed chef i.

Selecting new chefs The third step allows chef ¢ to
consider completely new regular chefs as inspirations in
every single interval above 7. The number of new regular
chefs K7'“* to add in the 4™ reputation interval above i
follows probability distribution:

G _d.
K" ~ Poisson G =05)ay) gy
a+a; — 1

where the new regular chefs are independently assigned a
random reputation drawn from U (6,6, 1). The regular
chefs introduced during this step will be processed one by
one using step two and three. Once all newly introduced
regular chefs have been processed, the next iteration ¢ + 1
can begin with step one, a step reserved to star chefs only.

2.3 Some properties of the distribution

To better understand the effect of the hyperparameters on
the graph properties, we performed an empirical study
of some relations between the hyperparameters, the ex-
pected number of active nodes E[K T |a, ] and the ex-
pected number of active edges E[ET|«, ], where EV is
the number of elements in Z 4 4. Figure [3(a)|depicts level
curves of E[K T |, ~] for the case of only 1 observable
placed at 8, = 0. The figure shows that several combi-
nations of « and ~y leads to the same expected number
of active nodes. Notice that fixing one hyperparameter,
either « or v, and selecting the expected number of nodes,
one can retrieve the second hyperparameter that matches
the relationship. We used this fact in the construction
of Figure where the unshown parameter ~ could be
calculated. In Figure we illustrate the effect of o on
E[E™|c, ] which essentially shows that smaller values
of « increase the graph density. For additional intuition
on the effect of o and vy, we refer the reader to the two-
parameter version of the Indian buffet process and its
underlying Beta process [[19, 20l [16].

When using Bayesian nonparametric models, we are ac-
tually assuming that the generative model of the data is
infinite-dimensional and that only a finite subset of the
parameters are involved in producing a finite set of data.
The effective number of parameters explaining the data
corresponds to the model complexity and usually scales
logarithmically with respect to the sample size. Unlike
most Bayesian nonparametric models, the ICP prior scales
according to the number of observed nodes added to the
network. In Figure 3} we show how the expected number
of active hidden nodes increases as function of the number
of observable nodes.

2.4 Connection to the Indian Buffet Process

There exists a close connection between the Indian Chefs
Process (ICP) and the Indian Buffet Process (IBP). In
fact, our model can be seen as a generalization of the
IBP. Firstly, all realizations of the IBP receive a positive
probability under the ICP. Secondly, the two-parameter
IBP is recovered, at least conceptually, when altering the
prior on order values (see Eq. (I)) so that all observed
nodes are set to reputation 6 = 0 and all hidden nodes
are set to reputation § = 1. This way, connections are
prohibited between hidden nodes and between observable



nodes, while hidden-to-observable connections are still
permitted as depicted in Fig[2]

R

Figure 2: Left represents a random graph from an ICP
(a directed acyclic graph) and right represents a sample
from an IBP (a directed bipartite graph). Gray nodes are
observable and white nodes are hidden. The layerless ICP
can act as an IBP when all white nodes are set to § = 0.0
(top) and gray nodes are set to § = 1.0 (bottom).

3 STRUCTURE LEARNING

In this section, we present some Markov Chain Monte
Carlo (MCMC) operators to perform Bayesian inference
over structures following an ICP prior. We propose a re-
versible jump MCMC algorithm producing random walks
on Eq. (9) [21]]. This algorithm works in three phases:
the first resamples graph connections without adding or
removing any nodes, the second phase is a birth-death
process on nodes and the third one only involves the order.

The algorithm itself uses the notion of singleton and or-
phan nodes. A node is a singleton when it only has a
unique active child. Thus, removing its unique connec-
tion would disconnect the node from the active subgraph.
Moreover, a node is said to be an orphan if it does not
have any parents.

Within model moves on adjacency matrix: We begin
by uniformly selecting a node ¢ from the active subgraph.
Here, the set of parents to consider for ¢ comprises all non-
singleton active nodes having an order value greater than
;. This set includes both current parents and candidate
parents. Then, for each parent k&, we Gibbs sample the
connections using the following conditional probability:

myt + ¢l(k € O)
a+ap,—1+¢l(keO)’
a

P(Zi = 1Z35,0.4) =

where m; is the number of outgoing connections of
node k excluding the connection to node i and Z ;% has
element ki removed. Also, all connections not respecting
the order are prohibited and therefore have an occurrence
probability of 0, and the same applies to singleton parent

moves which are trans-dimensional.

Trans-dimensional moves on adjacency matrix: We
begin with a random uniform selection of node ¢ in the
active subgraph and, with equal probability, propose either
a birth or a death move.

In the birth case, we activate node k by connecting it to
node . The order 6}, is determined by uniformly selecting
an insertion interval above 6;. Assuming node i is also
the ™ element in @ 4, we have n; = K+ —i+1 possible
intervals, including zero-length intervals. Let us assume
that 7 and j + 1 are the two nodes between which & is to
be inserted. Then, we obtain the candidate order value
of the new node by sampling 6 ~ Z/{(éj, §j+1). The
Metropolis-Hastings acceptance ratio here is:

~ ~/
p(ZA/A/aZ}/AHOA/ ‘ a773¢70)
P(Zaa, 214,04 | a,7,0,0)

(01 —0;) (i + KT
Kr+1 ’

Abirth = min {17

(14)

where K is the number of singleton-orphan parents of ¢
andn; =3, 4 I(#; > 0;) is the number of active nodes
above 7.

In the death case, we uniformly select one of the K
singleton-orphan parents of ¢ if K > 0 and simply do
nothing in case there exists no such node. Let k be the
parent to disconnect and consequently deactivate. The
Metropolis-Hastings acceptance ratio for this move is:

- ~/
p(qulAl’Z}/A/70A/ | a7, ¢7O)
P(Zaa,Z1a,04 | ,7v,9,0)

Adeqth = Min {17

. Ky
(§j+1 - éj)(K+ — 1)77,1* '
(15)

If accepted, node k£ is removed from the active subgraph.

Moves on order values: We re-sample the order value
of randomly picked node ¢. This operation is done by find-
ing the lowest order valued parent of ¢ along with its high-
est order valued children, which we respectively denote
[ and h. Next, the candidate order value is sampled ac-
cording to 6; ~ U(0;,0y) and accepted with Metropolis-
Hasting acceptance ratio:

- ,
Zan,Zra,0 1o}
Gorder = Min {17p( A7, 214,04 | 0,7, 9, )} 7

P(Zaa, 214,04 | ,7,6,0)

(16)
which proposes a new total order 8 respecting the partial
order imposed by the rest of the DAG.
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Figure 3: Empirical study of hyperpameters. Figure (a) shows the expected number of active nodes as a function of
a and ~. Figure (b) shows that once we know the expected K+ from « and , we can find the expected number of
connections. Figure (c) shows the influence of o (with v = 1) on the complexity (number of hidden nodes) as function

of the number of observable nodes.

4 EXPERIMENTS

The ICP distribution (9) can be used as a prior to learn the
structure of any DAG-based model involving hidden units.
In particular, one can introduce a priori knowledge about
the structure by fixing the order values of some observed
units. Feedforward neural networks, for instance, can
be modelled by imposing 8, = 1 for all input units and
0 = 0 for the output units. On the other hand, generative
models can be designed by placing all observed units at
0, = 0, preventing interconnections between them and
forcing the above generative units to explain the data. In
Section[4.1] we use the ICP as a prior to learn the struc-
tures of a generative neural network by approximating
the full posterior for 9 datasets. In Section d.2] we use
the ICP to learn the structure of a convolutional neural
network (CNN) in a Bayesian learning framework.

4.1 Bayesian nonparametric generative sigmoid
network

The network used in this section is the Nonlinear Gaus-
sian Belief Network (NLGBN) [22], which is basically a
generative sigmoid network. In this model, the output of
a unit u; depends on a weighted sum of its parents, where
Wi represents the weight of parent unit uy, Zx; indicates
whether wuy, is a parent of u; and b; is a bias. The weighted
sum is then corrupted by a zero mean Gaussian noise of
precision p;, so that a; ~ N'(b; + > ZkiWriug, 1/p;).
The noisy preactivation a; is then passed through a sig-
moid nonlinearity, producing the output value u;. It turns
out that the density function of this random output u; can
be represented in closed-form, a property used to form
the likelihood function given the data. An ICP prior is
placed on the structure represented by Z along with pri-
ors v ~ Gamma(0.5,0.5), 1/a ~ Gamma(0.5,0.5) and
¢ ~ Gamma(0.5, 0.5). To complete the prior on param-

eters, we specify pr, ~ Gamma(0.5,0.5), b, ~ N (0,1)
and Wy, ~ N(0,1).

The inference is done with MCMC where structure oper-
ators are given in Section E] and we refer to [[12] for the
parameter and activation operators. The Markov chain
explores the space of structures by creating and destroy-
ing edge and nodes, which means that posterior samples
are of varying size and shape, while remaining infinitely
layered due to ), € [0, 1]. We also simulate the random
activations u; and add them into the chain state.

This experiment aims at reproducing the generative pro-
cess of synthetic data sources. In the learning phase, we
simulate the posterior distribution conditioned on 2000
training points. Fantasy data from the posterior are gen-
erated by first sampling a model from set of posterior
network samples and then one point is generated from the
selected model. Figure 4|shows 2000 test samples from
the true distribution along with the samples generated
from the posterior accounting for the model uncertainty.

Next, we compare the ICP (with observables at 6, = 0)
against other Bayesian nonparametric approaches: The
Cascading Indian Buffet Process [12] and the Extended
CIBP [[13]]. The inference for these models was done with
an MCMC algorithm similar to the one used for the ICP
and we used similar priors for the parameters to ensure
a fair comparison. The comparison metric used in this
experiments is the Hellinger distance (HD), a function
quantifying the similarity between two probability den-
sities. Table [I] shows the HDs between the generated
fantasy datasets and the ground truth datasets.

4.2 Bayesian nonparametric convolutional neural
networks

So far, we introduced the ICP as a prior on the space
of directed acyclic graphs. In this section we will use



(a) groundtruth (b) fantasy (c) groundtruth

(d) fantasy

(e) groundtruth (f) fantasy

Figure 4: Resulting fantasy data generated from the posterior on 3 toy datasets.

Table 1: Hellinger distance between the fantasy data from posterior models and the test set. Dimensionality of the
data is given in parentheses. The baseline shows the distance between the training and test sets, representing the best

achievable distance since the two come from the true source.

DATA SET ~ RING(2)  TWOMOONS (2)  PINWHEEL (2)  GEYSER(2)  IRIS(4)  YEAST(8)  ABALONE(9)  CLOUD (10)  WINE (12)
ICP 0.0402 0.0342 0.0547 0.0734 0.2666 0.3817 0.1379 0.1495 0.3629
CIBP 0.0493 0.0469 0.0692 0.1246 0.2667 0.4056 0.1502 0.1713 0.4079
ECIBP 0.0419 0.0450 0.0685 0.1171 0.2632 0.3840 0.1470 0.1501 0.3855
BASELINE 0.0312 0.0138 0.0436 0.0234 0.1930 0.3059 0.1079 0.1299 0.3387

this formalism in order to construct a prior on the space
of convolutional neural architectures. The fundamental
building blocks of (2D) convolutional networks are ten-
sors T" whose entries encode the presence of local features
in the input image. A convolutional neural network can be
described as a sequence of convolution operators acting
on these tensors followed by entry-wise nonlinearity f.

In our nonparametric model, a convolutional network is
constructed from a directed acyclic graph. Each node of
the graph represents a tensor 7(*). The entries of this
tensor are given by

T = ReLU Z W kD k)

kEParents (%)

a7

where W (%) is a tensor of convolutional weights and x
is the discrete convolution operator. In most hand-crafted
architectures, the spatial dimensions of the tensor are
course-grained as the depth increases while the number
of channels (each representing a local feature of the input)
increases. In the ICP, the depth of a node ¢ is represented
by its reputation #;. In order to encode the change of
shape in the nonparametric prior, we set the number of
channels to be a function of §:

N.(0) = 2L Noins(1=0))] 1 p 7 (18)

where Nypiys is the number of different possible tensor
shapes and Ny is the number of channels of the lowest
layers. Similarly, the number of pixels is given by:

N,(0) = 2~ LN (1=0D)] pp (19)

where M is the number of pixels in the original image.
The shape of the weight tensors W (5% is determined by
the shape of parent and child tensor.

In a classification problem, the nonparametric convolu-
tional network is connected to the data through two ob-
served nodes. The input node X stores the input images
and we set fx = 1. On the other hand, for the output
node we set 6y = 0, and have it receive input through
fully connected layers:

D

kEParents(Y")

Y = Softmax , (20)

k
SoviTy)

a,b,c

where V(%) is a tensor of weights.

Note that, when computing the acceptance ratios in
Egs. (T4HI6), we now need to add the model evidence
logp(y | G, X) for the proposal graph and current graph
to the numerators and denominators, respectively. In this
paper, we use a point estimate of the log model evidence:

p(y| Goz)~ply | G{WH*} z), @D

where W*) are the parameters of the network opti-
mized using Adam (a=0.1, 51=0.9, 82=0.999, eps=1e-08,
n=1.0) [23].

We performed architecture sampling on the MNIST
dataset. For computational reasons, we restricted the
dataset to the first three classes (1, 2 and 3). We sampled
the DAGs using the MCMC sampler introduced in Sec-
tion [3] with prior parameters o = 1, v = 20 and ¢ = 5.
For each sampled DAG, we trained the induced convolu-
tional architecture until convergence (540 iterations, batch
size equal to 100). The number of bins in the partition
of the range of the reputations was five and the number
of channels of the first convolutional layer was four. We
ran 15 independent Markov chains in order to sample
from multiple modes. Each chain consisted of 300 ac-
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Figure 5: Statistics of the sampled convolutional architectures. A) Histograms and bivariate density plots of test set
accuracy, number of nodes, average degree width and depth. The three colored crosses denote the statistics of the three
visualized networks. B) Histogram of the mean, standard deviation, min and max of the popularity values. C) Examples

of visited architectures visited during the inference.

cepted samples. After sampling, all chains were merged,
resulting in a total of 4500 sampled architecturesﬂ

Figure[5]A shows accuracy and descriptive statistics of the
sampled convolutional architectures. In all these statistics,
we only considered nodes that receive input from the in-
put node (directly or indirectly) as the remaining nodes do
not contribute to the forward pass of the network. The net-
work width is quantified as the total number of directed
paths between input and output nodes, while depth is
quantified as the maximal directed path length. The sam-
pler reaches a wide range of different architectures, whose
number of layers range from three to fifteen, and whose
average degree range from one to four. Some examples
of architectures are shown in Figure [5IC. Interestingly, the
correlation between the number of nodes, degree, width
and depth and accuracy is very low. Most likely, this
is due to the simple nature of the MNIST task. The en-
semble accuracy (0.95), obtained by averaging the label
probabilities over all samples, is higher than the average
accuracy (0.91), but lower than the maximum accuracy
(0.99). Figure 5B shows the histograms of mean, stan-
dard deviation, minimum and maximum of the reputation
values in the networks.

!The code is available at https:/github.com/mhinne/NPDAG

5 CONCLUSION AND FUTURE WORK

This paper introduced the Indian chefs process (ICP) as
a Bayesian nonparametric distribution on the joint space
of infinite directed acyclic graphs and orders. The model
allows for a novel way of learning the structure of deep
learning models. As a proof of concept, we have demon-
strated how the ICP can be used to learn the architecture
of convolutional deep networks trained on the MNIST
data set. However, for more realistic applications, several
efficiency improvements are required. First, the inference
procedure over the model parameters could be performed
using Hamiltonian Monte Carlo. This would remove the
need to fully train the network for every sampled DAG.
Second, add deep learning-specific sampling moves. For
example, add an “increase depth” move that replaces a
connection with a path comprised by two connections
and a latent node. And third, extend ICP beyond deep
learning architectures. For example, the ICP may serve as
a basis for nonparametric causal inference, where a DAG
structure is learned when the exact number of relevant
variables is not known a priori, or when certain relevant
input variables are not observed [24].
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