8 Appendix: Proofs

Lemma 4. Suppose Λ is a deterministic uniformly least favorable distribution for composite vs. simple test (H_0 vs. h_1) under $\mathcal{M} = (\mathcal{S}, \Theta, \bar{\pi})$. Then for any $n \in \mathbb{N}$, Λ is also a uniformly least favorable distribution for testing H_0 vs. h_1 under $\mathcal{M} = (\mathcal{S}^n, \Theta, \bar{\pi})$ with n i.i.d. samples.

Proof: Let $\text{Spt}(\Lambda) = \{h_0^n\}$. For any $n \in \mathbb{N}$ and any $h_0 \in H_0$, we define a random variable $X_{n,h_0} : \mathcal{S}^n \to \mathbb{R}$, where for any $P_n \in \mathcal{S}^n$, $\text{Pr}(P_n) = \pi_{h_0}(P_n) = \prod_{V \in P_n} \pi_{h_0}(V)$, and $X_{n,h_0}(P_n) = \log \text{Ratio}_{h_0^n,h_1}$. It follows that

$$X_{n,h_0} = X_{h_0} + X_{h_0} + \cdots + X_{h_0}$$

By Lemma 3, for any $h_0 \in H_0$, $X_{h_0^n}$ weakly dominates X_{h_0}. Because first-order stochastic dominance is preserved under convolution [Deelstra and Plantin, 2014], we have that X_{n,h_0} weakly dominates X_{n,h_0}. The lemma follows after applying Lemma 3.

Remarks. Lemma 4 is an extension of Theorem 2.3 by Reinhardt Reinhardt [1961] to finite models. Reinhardt's theorem requires that for any constant t, with measure 0 we have $\pi_{h_0^n}(P) = t \pi_{h_1}(P)$. This is an important assumption in Reinhardt's proof because it assumes away cases with $\text{Ratio}(P) = k_\alpha$ so that the most powerful test is deterministic. Unfortunately, this assumption does not hold for finite models and we must deal with randomized tests.

Lemma 5 Under a Mallows’ model, for any φ, any $K \in \mathbb{N}$, any $a \in A$, any $W \in \mathcal{L}(A)$, and any $C^0, C \subseteq A$ such that C dominates C^0 w.r.t. W, we have $\forall_{\varphi}(\{P : \text{w}_P(C^0 \succ a) \geq K\}) \leq \forall_{\varphi}(\{P : \text{w}_P(C \succ a) \geq K\})$.

Proof: We first prove the lemma for a special case where C and C^0 differ in only one alternative, that is, $|C - C^0| = 1$. Let $c \in C$ such that $c \notin C^0$. Let $c' \in C^0$ such that $c' \notin C$. Because C dominates C^0 in W, we have $c \succ_W c'$. Let $P = \{P \in \mathcal{L}(A) : \text{w}_P(C \succ a) \geq K\}$ and $P' = \{P \in \mathcal{L}(A) : \text{w}_P(C^0 \succ a) \geq K\}$. We define the following permutation \mathcal{M} over $\mathcal{L}(A)$. For any $P \in \mathcal{L}(A)$, if $c \succ_P a \succ_P c'$ then $\mathcal{M}(P)$ is the ranking that is obtained from P by switching c and c'; otherwise $\mathcal{M}(P) = P$. Because $|C - C^0| = 1$, it follows that for any $P \in P - P'$, we must have $c \succ_P a \succ_P c'$ and $(C - C^0)^0 \succ_P a$. Therefore, $\mathcal{M}(P - P') = P' - P$.

We now prove that $\forall_{\varphi}(P - P') > \forall_{\varphi}(P' - P)$. For any $P \in P - P'$, we have $c \succ_P a \succ_P c'$, which means that $\forall_{\varphi}(P) \geq \forall_{\varphi}(\mathcal{M}(P))/\varphi$ because $c \succ_W c'$. Therefore, $\forall_{\varphi}(P - P') > \forall_{\varphi}(P' - P)$ because $\mathcal{M}(P - P') = P' - P$.

We have $\forall_{\varphi}(P) = \forall_{\varphi}(P \cap P') + \forall_{\varphi}(P - P') \geq \forall_{\varphi}(P \cap P') + \forall_{\varphi}(P' - P) = \forall_{\varphi}(P')$. Therefore, the lemma holds for the case where $|C - C^0| = 1$. For general C and C^0, because C dominates C^0, there exists a sequence of sets $C = C_0, C_1, \ldots, C_l = C^0$ such that for all $0 \leq i \leq l - 1$, (i) C_i dominates C_{i+1}; (ii) $|C_i - C_{i+1}| = 1$. It follows that $\forall_{\varphi}(\{P : \text{w}_P(C \succ a) \geq K\}) \geq \forall_{\varphi}(\{P : \text{w}_P(C_1 \succ a) \geq K\}) \geq \cdots \geq \forall_{\varphi}(\{P : \text{w}_P(C^0 \succ a) \geq K\})$.

Theorem 2 (Characterization of all UMP non-winner tests under Mallows). Given a Mallows’ model \mathcal{M}_{Ma} with $m \geq 2$ and $n \geq 2$, there exists a UMP test for $H_0 = L_{\alpha}\text{-others}$ vs. H_1 for all $0 < \alpha < 1$ if and only if there exists $B \subseteq A$ such that $H_1 \subsetneq L_{B^\alpha}.$

Moreover, when $H_1 \subset L_{B^\alpha}$, $f_{\alpha,B}$ defined in Theorem 1 is a UMP test.

Proof: The “if” part. We note that $f_{\alpha,B}$ does not depend on the orderings among alternatives in B in h_1. It follows that for all $h_1 \in H_1$, $f_{\alpha,B}$ is a level-α most powerful test for H_0 vs. $\{h_1\}$, which means that $f_{\alpha,B}$ is a UMP test.

The “only if” part. Suppose there exist B, B' such that $B \neq B'$ and there exist two rankings $h_1^B = [B^\alpha \succ a \succ \text{others}]$ and $h_1^{B'} = [B'^\alpha \succ a \succ \text{others}]$ in H_1. W.l.o.g. suppose $B' - B \neq \emptyset$. Let a denote the number such that $K_a = n|B| - 0.5$, $\Gamma_a = 0$, and let $f_{\alpha,B}$ denote the most powerful test for H_0 vs. h_1^B guaranteed by Theorem 1. Because K_a is not an integer, there does not exist P_a such that $w_{P_a}(B \succ a) > K_a$. This means that $f_{\alpha,B}$ is the unique most powerful level-α test for H_0 vs. h_1^B. We observe that for any P_n, $f_{\alpha,B}(P_n)$ is either 0 or 1, and $f_{\alpha,B}(P_n) = 1$ if and only if a is ranked below B in all n rankings in P_n. It follows that $f_{\alpha,B}$ must be the unique level-α UMP test for H_0 vs. H_1.
By Theorem 1, any most powerful level-α test, in particular $f_{\alpha, a, B}$, must agree with $f_{\alpha, a, B'}$ except for the threshold cases $w_{P_n'}(B' \succ a) = K'_a$ for some K'_a. Choose arbitrary $b' \in B' - B$ and $b \in B$. Let P_n' be composed of n copies of $[b' \succ a \succ \text{others}]$ and let P_n'' be composed of $n-1$ copies of $[b' \succ B \succ a \succ \text{others}]$ and one copy of $[b' \succ (B \setminus \{b\}) \succ a \succ \text{others}]$. Because $w_{P_n''}(B \succ a) = n|B| > K_\alpha$, we have $f_{\alpha, a, B}(P_n'') = 1$. This means that the threshold K'_a for $f_{\alpha, a, B}$ is no more than when $w_{P_n'}(B' \succ a) = n|B \cap B'|$. Because $n \geq 2$, we have $w_{P_n'}(B' \succ a) \geq n(|B \cap B'| + 1) \geq n|B \cap B'| = w_{P_n''}(B' \succ a)$, which means that $f_{\alpha, a, B}(P_n'') = 1$. However, $w_{P_n''}(B \succ a) = n|B| - 1 < n|B|$, which is a contradiction because for any profile P_n, $f_{\alpha, a, B}(P_n) = 1$ if and only if $B \succ a$ in all n rankings in P_n.

\[\square\]

Theorem 4. Let \mathcal{M}^M_a denote a Mallows’ model with $n = 1$, any $m \geq 4$, and any $\varphi < 1/m$. There exists $0 < \alpha < 1$ such that no level-α UMP test exists for $H_0 = (\mathcal{L}(A) - H_1)$ vs. $H_1 = L_{a \succ \text{others}}$.

Proof: By Lemma 10, if a UMP test exists then $\tilde{f}_{\alpha, a}$ is also a UMP test. Therefore, it suffices to prove that $\tilde{f}_{\alpha, a}$ is not a level-α UMP test. To this end, we explicitly construct a test f and prove that the rankings assigned value 1 are more cost-effective than that under $\tilde{f}_{\alpha, a}$.

Let $V_1, V_2, \ldots, V_m, V'_2 \in \mathcal{L}(A)$ denote $m + 1$ rankings defined as follows. For any $j \leq m$, let $V_j = [a_j \succ \text{others}]$, where alternatives in “others” are ranked w.r.t. the increasing order of their subscripts. In other words, V_j is obtained from V'_1 by raising alternative a_j to the top position. We let $V''_2 = [a_3 \succ a_1 \succ a_4 \succ a_2 \succ \text{others}]$.

We consider the following critical function f. For any $V \in \mathcal{L}_{a \succ \text{others}}$, we let $f(V) = 1$. For any V_j with $j \neq 3$, let $f(V_j) = 1$. We then let $f(V_3) = f(V'_3) = \frac{1 + \varphi^m}{1 + \varphi}$. Let α denote the size of f at V_2. That is, $\alpha = \text{Size}(f, V_2)$. Let $T = \pi V_2(\mathcal{L}_{a \succ \text{others}})$. It follows that

\[
\begin{align*}
\alpha - T &= \varphi^0 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^{KT(V_2, V_3)} + \varphi^{KT(V_2, V'_3)}) + \sum_{j=5}^{m} \varphi^{KT(V_2, V_j)} \\
&= 1 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^3 + \varphi^4) + \varphi^4 + \sum_{j=5}^{m} \varphi^{KT(V_2, V_j)} \\
&> 1 + \varphi^3 + \varphi^4 + \varphi^5
\end{align*}
\]

Figure 1: Kendall-Tau distance for some rankings over four alternatives.

For any $j, j^* \geq 2$ such that $j \neq j^*$, it is not hard to verify that $\text{KT}(V_j, V_{j^*}) = j + j^* - 2$. Moreover, $\text{KT}(V_3, V'_3) = 4$, $\text{KT}(V_4, V'_3) = 4$, and for any $j \geq 5$, we have $\text{KT}(V'_3, V_j) = j + 2$. Therefore, we have the following calculations of $\text{Size}(f, V_3)$, $\text{Size}(f, V'_3)$, and $\text{Size}(f, V_4)$ (see Figure 1 for distances between V_2, V_3, V'_3, V_4).

We note that $T = \pi V_2(\mathcal{L}_{a \succ \text{others}}) = \pi V_3(\mathcal{L}_{a \succ \text{others}}) = \pi V'_3(\mathcal{L}_{a \succ \text{others}}) = \pi V_4(\mathcal{L}_{a \succ \text{others}})$ due to symmetry.

\[
\begin{align*}
\text{Size}(f, V_3) - T &\leq 1 + \varphi^3 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^3 + \varphi^4 + \varphi^5 + \sum_{j=5}^{m} \varphi^{KT(V_3, V_j)}) \\
&= 1 + \varphi^3 + (m - 3)\varphi^5
\end{align*}
\]

\[
\begin{align*}
\text{Size}(f, V'_3) - T &\leq 1 + \varphi^4 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^3 + \varphi^4 + \varphi^5 + \sum_{j=5}^{m} \varphi^{KT(V'_3, V'_j)}) \\
&= 1 + 2\varphi^4 + (m - 4)\varphi^6
\end{align*}
\]

\[
\begin{align*}
\text{Size}(f, V_4) - T &\leq 1 + \varphi^4 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^3 + \varphi^4 + \varphi^5 + \sum_{j=5}^{m} \varphi^{KT(V_4, V'_j)}) \\
&= 1 + 2\varphi^4 + (m - 4)\varphi^7
\end{align*}
\]

For any other $h'_0 \in H_0$, we have $\text{Size}(f, h'_0) - T \leq m\varphi$. Because $\varphi < 1/m$, we have $\text{Size}(f) = \alpha$. Let P denote a profile that is composed of $\{V_2, V_4, \ldots, V_m\} \cup \frac{1 + \varphi^m}{1 + \varphi} \{V_3, V'_3\}$. We next prove that $\text{Ratio}_{V_2, V_1}(P) > \text{Ratio}_{V_2, V_1}(T_{m-2})$.

Let $Z_m = \prod_{i=1}^m \frac{1 - \varphi^m}{1 - \varphi}$ denote the Mallows normalization factor for m alternatives. We have

\[
\text{Ratio}_{\nu_2, \nu_1}(T_{m-2}) = \frac{\nu_1(T_{m-2})}{\nu_2(T_{m-2})} = \frac{\varphi Z_{m-1}}{Z_{m-2} + \varphi^2(Z_{m-1} - Z_{m-2})} = \frac{\frac{\varphi Z_{m-1}}{Z_{m-2}}}{1 + \varphi^2(Z_{m-1} - Z_{m-2}) - 1} = \frac{\varphi + \varphi^2 + \cdots + \varphi^{m-1}}{1 + \varphi^3 + \varphi^4 + \cdots + \varphi^m} < \frac{1}{\varphi}
\]

\[
\text{Ratio}_{\nu_2, \nu_1}(P) = \frac{\varphi + \varphi^2 + \cdots + \varphi^{m-1} + \varphi^{m+2}}{1 + \varphi^3 + \varphi^4 + \cdots + \varphi^m} > \frac{1}{\varphi} = \text{Ratio}_{\nu_2, \nu_1}(T_{m-2})
\]

We note that $\text{Size}(\bar{f}_{\alpha, \nu_2}) = \alpha$. This means that $\text{Power}(\bar{f}_{\alpha, \nu_1}) = \nu_1(T_{m-1}) + \alpha \text{Ratio}_{T_2, T_1}(T_{m-2}) < \nu_1(T_{m-1}) + \alpha \text{Ratio}_{T_2, T_1}(P) = \text{Power}(f, V_1)$. This means that \bar{f}_{α, ν_1} is not a level-α UMP. The theorem follows after Lemma 10.

Theorem 5. Let $\mathcal{M}_{M^{\alpha}}$ denote a Mallows’ model with $n = 1$ and any $m \geq 4$. There exists $\epsilon > 0$ such that for any $\varphi > 1 - \epsilon$ and any α, \bar{f}_{α, ν_1} is a UMP test for $H_0 = (\mathcal{L}(A) - H_1)$ vs. $H_1 = L_{\alpha, \text{others}}$.

Proof: We first verify that when $K_\alpha = m - 1$, \bar{f}_{α, ν_1} is a UMP test. For any $h_1 \in H_1$, let $h_0^\alpha \in H_0$ denote the ranking that is obtained from h_1 by moving a down for one position. It is not hard to check that for any $V \in \mathcal{L}(A)$, $\text{Ratio}_{h_0^\alpha, h_1}(V) \leq 1/\varphi$, and for all $V \in H_1$ we have $\text{Ratio}_{h_0^\alpha, h_1}(V) = 1/\varphi$. This means that for any level-α test for H_0 vs. h_1, the power cannot be more than α/φ. We note that \bar{f}_{α, ν_1} is a level-α test whose power is exactly α/φ. This means that for all $h_1 \in H_1$, \bar{f}_{α, ν_1} is a most powerful test for H_0 vs. h_1. Therefore, when $K_\alpha = m - 1$, \bar{f}_{α, ν_1} is a UMP test.

For any α such that $K_\alpha \leq m - 2$, we will prove that for any $h_1 \in H_1$, \bar{f}_{α, ν_1} is a most powerful level-α test for H_0 vs. h_1. This is done in the following steps. Step 1. Find a least favorable distribution $\Lambda_{h_1}^{\alpha}$ whose support is the set of all rankings where a is ranked at the second position. Step 2. Verify that \bar{f}_{α, ν_1} is the likelihood ratio test w.r.t. $\Lambda_{h_1}^{\alpha}$, and step 3. verify that the two conditions in Lemma 2 holds for $\Lambda_{h_1}^{\alpha}$.

Step 1. The main challenge is that in general there does not exist a uniformly least favorable distribution. For different α we define different $\Lambda_{h_1}^{\alpha}$ as follows. For any α, we let s_α denote the smallest Borda score of the ranking V such that $\bar{f}_{\alpha, \nu_1}(V) > 0$. We have that $s_\alpha \leq m - 2$. Let the support of $\Lambda_{h_1}^{\alpha}$ be T_{m-2}, which is the set of rankings where a is ranked at the second position. We will solve the following system of linear equations to determine $\Lambda_{h_1}^{\alpha}$. For any $h_0^\alpha \in T_{m-2}$ there is a variable $x[h_0^\alpha, s_\alpha]$.

\[
\forall V \in T_{s_\alpha}, \sum_{h_0^\alpha \in T_{m-2}} \text{Ratio}_{h_0^\alpha, h_1}(V) \cdot x[h_0^\alpha, s_\alpha] = m \quad (LP_{h_1}^{\alpha})
\]

We note that as $\varphi \to 1$, $\text{Ratio}_{h_0^\alpha, h_1}(V) = \frac{\pi_{h_1}(V)}{\pi_{h_0^\alpha}(V)} = \varphi^{KT(h_0^\alpha, V)} - KT(h_1, V) \to 1$. Because there are m variables and m equations, as $\varphi \to 1$ the solution to $LP_{h_1}^{\alpha}$ converges to $\bar{\alpha}$. Therefore, there exists $\epsilon > 0$ such that for all $\varphi > 1 - \epsilon$, the linear systems $\{LP_{h_1}^{\alpha} : s \leq m - 1, h_1 \in H_1\}$ all have strictly positive solutions. Let $\{x^*[h_0^\alpha, s_\alpha] | V \in T_{s_\alpha}\}$ denote a solution to $LP_{h_1}^{\alpha}$. For any $h_0^\alpha \in T_{m-2}$, we let $\Lambda_{h_1}^{\alpha}(h_0^\alpha) = \frac{x^*[h_0^\alpha, s_\alpha] - 1}{\sum_{h_0^\alpha \in T_{m-2}} x^*[h_0^\alpha, s_\alpha] - 1}$.

Step 2. To simplify notation we let $\text{LR}_\alpha = \text{LR}_{\alpha, \Lambda_{h_1}^{\alpha}}$ denote the likelihood ratio test and let $\text{Ratio} = \text{Ratio}_{\Lambda_{h_1}^{\alpha}}$ denote the likelihood ratio function w.r.t. distribution $\Lambda_{h_1}^{\alpha}$ for H_0 vs. h_1. To prove $\text{LR}_\alpha = \bar{f}_{\alpha, \nu_1}$, we first prove that for any $V \in \mathcal{L}(A)$ where a is not ranked at the bottom position, $\text{Ratio}(V) > \text{Ratio}(\text{Down}_{a}(V))$, where we recall that
\(\text{Down}_a^1(V) \) is the ranking obtained from \(V \) by moving \(a \) down for one position.

\[
\frac{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \pi_{h_0^*}(\text{Down}_a^1(V))}{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \pi_{h_0^*}(V)}
= \frac{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \varphi(K_T(h_0^*, \text{Down}_a^1(V)))}{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \varphi(K_T(h_0^*, V))}
> \frac{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \varphi(K_T(h_0^*, V) \cdot \varphi(K_T(V, \text{Down}_a^1(V)))}{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \varphi(K_T(h_0^*, V))}
= \varphi = \frac{\pi_{h_1}(\text{Down}_a^1(V))}{\pi_{h_1}(V)}
\]

The strict inequality holds because of (1) triangle inequality for Kendall-Tau distance, and (2) for any ranking \(V \) where the top-ranked alternative in \(h_0^* \) is ranked right below \(a \), we have \(KT(h_0^*, V) + KT(V, \text{Down}_a^1(V)) > KT(h_0^*, \text{Down}_a^1(V)) \), and (3) for all \(h_0^* \in T_{m-2} \), \(\Lambda^{h_1}_\alpha(h_0^*) > 0 \).

It follows from the strict inequality that

\[
\text{Ratio}(V) = \frac{\pi_{h_1}(V)}{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \pi_{h_0^*}(V)}
> \frac{\pi_{h_1}(\text{Down}_a^1(V))}{\sum_{h_0^* \in T_{m-2}} \Lambda^{h_1}_\alpha(h_0^*) \cdot \pi_{h_0^*}(\text{Down}_a^1(V))}
\]

Moreover, for any \(V, V' \in T_{s_a} \), we have \(\text{Ratio}(V) = \text{Ratio}(V') \) by verifying \(LP_{s_a}^{h_1} \). Therefore, for any \(V \in T_i \) with \(i < s_\alpha \), we can move up the position of \(a \) one by one until we reach the \((m - s_\alpha) \)-th position. Let \(V^* \in T_{s_a} \) denote this ranking. It follows that \(\text{Ratio}(V) < \text{Ratio}(V^*) \). Similarly for any \(V' \in T_i \) with \(i > s_\alpha \), we have \(\text{Ratio}(V') > \text{Ratio}(V^*) \) for any \(V^* \in T_{s_a} \). This means that for any \(V \) where \(a \) is ranked above the \((m - s_\alpha) \)-th position, we have \(LR_{s_\alpha}(V) = 1 \); for any \(V \) where \(a \) is ranked below the \((m - s_\alpha) \)-th position, we have \(LR_{s_\alpha}(V) = 0 \); for any \(V \) where \(a \) is ranked at the \((m - s_\alpha) \)-th position, we have that \(LR_{s_\alpha}(V) \) is the same and is between 0 and 1. It follows that \(LR_{s_\alpha} = f_{s_a,a} \).

Step 3. Due to the symmetry \(f_{s,a} \) among alternatives in \(A \setminus \{a\} \), for any \(i \leq m - 2 \) and any \(h_0, h_0' \in T_i \), we have \(\text{Size}(f_{s,a}, h_0^*) = \text{Size}(f_{s,a}, h_0'^*) \). Therefore, condition (i) in Lemma 2 is satisfied. Choose arbitrary \(h_0^m \in T_{m-2} \) and any \(h_0^* \in T_i \) denote the ranking obtained from \(h_0^m \) by moving \(a \) down for one position. To verify condition (ii) in Lemma 2, it suffices to prove that for any \(i \leq m - 3 \) and any \(K \in \mathbb{N} \), we have

\[
\pi_{h_0}^{m-2}(\{V : \text{Borda}_a(V) \geq K\}) \geq \pi_{h_0}^1(\{V : \text{Borda}_a(V) \geq K\})
\tag{2}
\]

We will prove a slightly stronger lemma.

Lemma 8 Under Mallows’ model, for any \(m, \varphi, \) any \(W \in \mathcal{L}(A) \), any \(b, c \in A \) such that \(b \succ_W c \), and any \(K \), we have \(\pi_W(\{V : \text{Borda}_a(V) \geq K\}) \geq \pi_W(\{V : \text{Borda}_c(V) \geq K\}) \).

Proof: The proof is similar to the proof of Lemma 5. It suffices to prove the lemma for the case where \(b \) and \(c \) are adjacent in \(W \). Let \(\mathcal{P} = \{V \in \mathcal{L}(A) : \text{Borda}_a(V) \geq K\} \) and \(\mathcal{P}' = \{V \in \mathcal{L}(A) : \text{Borda}_c(V) \geq K\} \). It follows that \(\mathcal{P} \cap \mathcal{P}' \) is the set of rankings where both \(b \) and \(c \) are ranked within top \(m - K \) positions; \(\mathcal{P} - \mathcal{P}' \) is the set of rankings where \(b \) is ranked within top \(m - K \) positions but \(c \) is not; and \(\mathcal{P}' - \mathcal{P} \) is the set of rankings where \(c \) is ranked within top \(m - K \) positions but \(b \) is not. We let \(\mathcal{M} \) be a permutation that switches \(b \) and \(c \). It is not hard to check that \(\mathcal{M} \) is a bijection between \(\mathcal{P} - \mathcal{P}' \) and \(\mathcal{P}' - \mathcal{P} \), and because \(b \) and \(c \) are adjacent in \(W \), for any \(V \in \mathcal{P} \), we have \(KT(M(V), W) = KT(V, W) + 1 \), which means that \(\pi_W(V) = \pi(M(V))/\varphi \). Therefore, we have
Lemma 7. For any model \mathcal{M}_X and any $t \in \mathbb{N}$, suppose Λ is a uniformly least favorable distribution for composite vs. simple test (H_0, h_1) under \mathcal{M}_X. Then $\text{Ext}(\Lambda, h_1, t)$ is a uniformly least favorable distribution for $\text{Ext}(H_0, h_1, t)$ vs. \bar{h}_1 in $(\mathcal{M}_X)^t$.

Lemma 6. For any \mathcal{M}_X and \mathcal{M}_Y, suppose Λ_X is a least favorable distribution for composite vs. simple test (H_0, X) under \mathcal{M}_X. Given $y_1 \in \Theta_Y$, let Λ^* be the distribution over $H_0, X \times \Theta_Y$ where for all $x \in H_0, X$, $\Lambda^*(x, y_1) = \Lambda_X(x)$. Then Λ^* is a least favorable distribution for $H_0, X \times \Theta_Y$ vs. (x_1, y_1) under $\mathcal{M}_X \otimes \mathcal{M}_Y$.

Proof: Let $x_0^K, \ldots, x_0^K \in \Theta_X$ denote the support of Λ_X. The theorem is proved by applying Lemma 2. For any $0 < \alpha < 1$ and any $P = (P_X, P_Y) \in S_X \times S_Y$, we have the following calculation. In this proof Ratio stands for $\text{Ratio}_{\Lambda^*, (x_1, y_1)}$ and LR_α stands for $\text{LR}_{\alpha, \Lambda^*, (x_1, y_1)}$.

\[
\text{Ratio}(P_X, P_Y) = \frac{\sum_{k=1}^{K} \Lambda^*(x_0^k, y_1) \pi(x_0^k, y_1)}{\sum_{k=1}^{K} \pi(x_0^k, y_1)} = \frac{\sum_{k=1}^{K} \Lambda^*(x_0^k, y_1) \pi(x_0^k)}{\sum_{k=1}^{K} \pi(x_0^k)} = \text{Ratio}_{\Lambda^*, (x_1, y_1)}(P_X)
\]

It follows that for any pair of samples $(P_X, P_Y), (P_X', P_Y') \in S_X \times S_Y$, $\text{Ratio}(P_X, P_Y) \geq \text{Ratio}(P_X', P_Y')$ if and only if $\text{Ratio}_{\Lambda^*, (x_1, y_1)}(P_X) \geq \text{Ratio}_{\Lambda^*, (x_1, y_1)}(P_X')$. This means that for any (P_X, P_Y), $\text{LR}_\alpha(P_X, P_Y) = \text{LR}_\alpha, \Lambda^*, (x_1, y_1)(P_X)$. Therefore, for any $x_0 \in H_0, X$, we have

\[
\text{Size}(\text{LR}_\alpha, (x_0, y_1)) = \sum_{(P_X, P_Y) \in S_X \times S_Y} \pi(x_0, P_X) \pi(y_1, P_Y) \text{LR}_\alpha(P_X, P_Y) = \sum_{(P_X, P_Y) \in S_X \times S_Y} \pi(x_0, P_X) \pi(y_1, P_Y) \text{LR}_{\alpha, \Lambda^*, (x_1, y_1)}(P_X)
\]

Therefore, by Lemma 2, for any $(x_0^k, y_1) \in \text{Spt}(\Lambda^*)$, we have $\text{Size}(\text{LR}_\alpha, (x_0, y_1)) = \text{Size}(\text{LR}_\alpha, \Lambda^*, X_1, x_0) = \alpha$ because $x_0^k \in \text{Spt}(\Lambda)$; for any $(x_0, y) \in H_0, X \times \Theta_Y$, we have $\text{Size}(\text{LR}_\alpha, (x_0, y)) = \text{Size}(\text{LR}_\alpha, \Lambda^*, X_1, x_0) \leq \alpha$. This means that the two conditions in Lemma 2 are satisfied, which proves the theorem.

Lemma 7. For any model \mathcal{M}_X and any $t \in \mathbb{N}$, suppose Λ is a uniformly least favorable distribution for composite vs. simple test (H_0, h_1) under \mathcal{M}_X. Then $\text{Ext}(\Lambda, h_1, t)$ is a uniformly least favorable distribution for $\text{Ext}(H_0, h_1, t)$ vs. \bar{h}_1 in $(\mathcal{M}_X)^t$.

This proves the lemma.
Claim 1 For any \(k_\alpha \) and any \(\bar{x} \in S^t \), \(\sum_{j=1}^t \text{Ratio}_{\Lambda, h_1}^{-1}(x_j) = t \cdot \text{Ratio}_{\Lambda}^{-1}(\bar{x}) \).

Proof: we have \(\text{Ratio}_{\Lambda}^{-1}(\bar{x}) = \frac{1}{t} \sum_{j=1}^t \sum_{h_0 \in H_0} \Lambda(h_0) \cdot \pi_{h_0, [\pi]_1_j}(\bar{x})}{\pi_{\Lambda}(\bar{x})} = \frac{1}{t} \sum_{j=1}^t \text{Ratio}_{\Lambda, h_1}^{-1}(x_j) \)

The next lemma proves the following: For any \(\bar{x} \in H_0^\ast \) and any \(j \leq t \), suppose the \(j \)-th component is not in \(\text{Spt}(\Lambda) \cup \{ h_1 \} \). If we fix all components except \(j \)-th in \(\bar{x} \) and change the \(j \)-th component to \(h_0^\ast \in \text{Spt}(\Lambda) \), then the size of \(\text{LR}_\alpha \) will increase. If we further change the \(j \)-th component to \(h_1 \), then the size of \(\text{LR}_\alpha \) will further increase.

Lemma 9 For any \(0 \leq \alpha \leq 1 \), any \(j \leq t \), any \(\bar{x}, j \in \Theta^{-1} \), any \(h_0 \in H_0 \), and any \(h_0^\ast \in \text{Spt}(\Lambda) \), we have \(\text{Size}(\text{LR}_\alpha, (h_0, \bar{x})) \leq \text{Size}(\text{LR}_\alpha, (h_0^\ast, \bar{x})) \leq \text{Size}(\text{LR}_\alpha, (h_1, \bar{x})) \).

Proof: For any \(\bar{x}, j \in \Theta^{-1} \), we have
\[
\text{Size}(\text{LR}_\alpha, (h_0, \bar{x})) = \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Ratio}(\bar{x}) > k_\alpha^\ast \}) + \gamma_\alpha^\ast \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Ratio}(\bar{x}) = k_\alpha^\ast \})
\]
For any \(\bar{x} \), we let \(\text{Sum}(\bar{x}) = \sum_{i=t}^t \text{Ratio}_{\Lambda, h_1}^{-1}(x_i) \) and for any \(j \leq t \), we let \(\text{Sum}(\bar{x}, j) = \sum_{i \neq j} \text{Ratio}_{\Lambda, h_1}^{-1}(x_i) \). By Claim 1, we have
\[
\pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Ratio}(\bar{x}) > k_\alpha^\ast \}) = \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Sum}(\bar{x}) < t/k_\alpha^\ast \}) = \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Sum}(\bar{x}) + \text{Ratio}_{\Lambda, h_1}^{-1}(x_j) < t/k_\alpha^\ast \})
\]
\[
= \int_0^{t/k_\alpha^\ast} \sum_{x_j \in S^t : \text{Sum}(\bar{x}, j) = p} \frac{1}{t/k_\alpha^\ast} \pi_{(h_0, \bar{x})}(\bar{x}) dp
\]
\[
= \int_0^{t/k_\alpha^\ast} \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Sum}(\bar{x}, j) = p \}) \cdot \pi_{h_0}(\{ x_j : \text{Ratio}_{\Lambda, h_1}^{-1}(x_j) < t/k_\alpha^\ast - p \}) dp
\]
where \(Q(\bar{x}, p) = \pi_{(h_0, \bar{x})}(\{ \bar{x} \in S^t : \text{Sum}(\bar{x}, j) = p \}) \). Given \(p \) and \(\gamma_\alpha^\ast \), let \(\alpha' \) denote the size of the likelihood ratio test \(\text{LR}_{\alpha', \Lambda, h_1} \), where the threshold \(k_{\alpha'} \) is \(1/(t/k_\alpha^\ast - p) \) and \(\gamma_{\alpha'} = \gamma_\alpha^\ast \). We have
\[
\text{Size}(\text{LR}_\alpha, (h_0, \bar{x})) = \int_0^{t/k_\alpha^\ast} Q(\bar{x}, p) \cdot \text{Size}(\text{LR}_{\alpha', \Lambda, h_1}, h_0) dp
\]
(3)
We note that in Equation (3), \(\alpha' \) is a function of \(t, p, k_{\alpha'}^\ast \), and \(\gamma_{\alpha'}^\ast \). Because \(\Lambda \) is a uniformly least favorable distribution, it follows from Lemma 2 that for any \(h_0^\ast \in \text{Spt}(\Lambda) \) and any \(h_0 \in (H_0 - \text{Spt}(\Lambda)) \), we have
\[
\text{Size}(\text{LR}_{\alpha', \Lambda, h_1}, h_0) \leq \alpha' \leq \text{Size}(\text{LR}_{\alpha', \Lambda, h_1}, h_0^\ast)
\]
Then by Equation (3), for any \(h_0 \in (H_0 - \text{Spt}(\Lambda)) \) and any \(h_0^* \in \text{Spt}(\Lambda) \), we have

\[
\text{Size}(\text{LR}_\alpha, (h_0, \bar{z}_{-j})) = \int_0^{t/k_\alpha^*} Q(\bar{z}_{-j}, p) \cdot \text{Size}(\text{LR}_{\alpha' \cdot \Lambda, h_1}, h_0) dp
\]

\[
\leq \int_0^{t/k_\alpha^*} Q(\bar{z}_{-j}, p) \cdot \text{Size}(\text{LR}_{\alpha' \cdot \Lambda, h_1}, h_0^*) dp
= \text{Size}(\text{LR}_\alpha, (h_0^*, \bar{z}_{-j}))
\]

To prove the last inequality in the lemma, we prove a claim that holds for any least favorable distribution and the corresponding likelihood ratio test. The \(\text{Size}(\cdot) \) function in the claim is extended to \(h_1 \in H_1 \) in the natural way.

Claim 2 For any model, any composite vs. simple test \((H_0 \text{ vs. } h_1)\), suppose \(\Lambda \) is a level-\(\eta \) least favorable distribution. Then we have \(\text{Size}(\text{LR}_\eta, h_1) \geq \eta = \text{Size}(\text{LR}_\eta, h_0^\Lambda) \).

Proof: For the sake of contradiction suppose this is not true, that is, for any \(h_0^* \in \text{Spt}(\Lambda) \) we have \(\text{Size}(\text{LR}_\eta, h_1) < \eta = \text{Size}(\text{LR}_\eta, h_0^\Lambda) \). It follows that \(k_\eta < 1 \), otherwise we have

\[
\text{Size}(\text{LR}_\eta, h_1) = \sum_{P \in \mathcal{S}: \text{Ratio}(P) > k_\eta} \pi_{h_1}(P) + \gamma_\eta \sum_{P \in \mathcal{S}: \text{Ratio}(P) = k_\eta} \pi_{h_1}(P)
\]

\[
\geq \sum_{P \in \mathcal{S}: \text{Ratio}(P) > k_\eta} \pi_\Lambda(P) \cdot k_\eta + \gamma_\eta \sum_{P \in \mathcal{S}: \text{Ratio}(P) = k_\eta} \pi_\Lambda(P) \cdot k_\eta
\]

\[
> \sum_{P \in \mathcal{S}: \text{Ratio}(P) > k_\eta} \pi_\Lambda(P) + \gamma_\eta \sum_{P \in \mathcal{S}: \text{Ratio}(P) = k_\eta} \pi_\Lambda(P) = \eta,
\]

which is a contradiction. Therefore, we have

\[1 = \text{Size}(\text{LR}_\eta, h_1) + \sum_{P \in \mathcal{S}: \text{Ratio}(P) < k_\eta} \pi_{h_1}(P) + (1 - \gamma_\eta) \sum_{P \in \mathcal{S}: \text{Ratio}(P) = k_\eta} \pi_{h_1}(P)
\]

\[
< \eta + \sum_{P \in \mathcal{S}: \text{Ratio}(P) < k_\eta} \pi_\Lambda(P) \cdot k_\eta
\]

\[
+ (1 - \gamma_\eta) \sum_{P \in \mathcal{S}: \text{Ratio}(P) = k_\eta} \pi_\Lambda(P) \cdot k_\eta
\]

\[
\leq \eta + k_\eta(1 - \text{Size}(\text{LR}_\eta, h_0^\Lambda)) \leq 1,
\]

which is a contradiction. \(\square \)

Applying Claim 2 to \(\text{LR}_{\alpha' \cdot \Lambda, h_1} \), we have

\[
\text{Size}(\text{LR}_\alpha, (h_0^*, \bar{z}_{-j})) = \int_0^{t/k_\alpha^*} Q(\bar{z}_{-j}, p) \cdot \text{Size}(\text{LR}_{\alpha' \cdot \Lambda, h_1}, h_0^*) dp
\]

\[
\leq \int_0^{t/k_\alpha^*} Q(\bar{z}_{-j}, p) \cdot \text{Size}(\text{LR}_{\alpha' \cdot \Lambda, h_1}, h_1) dp
= \text{Size}(\text{LR}_\alpha, (h_1, \bar{z}_{-j}))
\]

\[4\text{We recall that } h_0^\Lambda \text{ is the combined } H_0 \text{ by } \Lambda.\]
This finishes the proof of Lemma 9.

It follows from Lemma 9 that for any \(j \leq t \) and any \(h^*_0 \in \text{Spt}(\Lambda) \), we have that \(\text{Size}(LR_\alpha, (h^*_0, [\bar{h}_1]_{-j})) \) is the same. Due to symmetry, for any \(\bar{h}_0 \in H_0^t \), \(\text{Size}(LR_\alpha, h^*_0) \) is the same and is therefore equivalent to \(\alpha \). This verifies condition (i) in Lemma 2.

Condition (ii) in Lemma 2 is verified by recursively applying Lemma 9. Given any \(\bar{h}_0 \in H_0^t - \text{Spt}(\Lambda^*) \), there must exist \(j \leq t \) such that \([\bar{h}_0]_j \neq h_1 \). We then change \([\bar{h}_0]_j \) to an arbitrary \(h^*_0 \in \text{Spt}(\Lambda) \), then change the other components of \(\bar{h}_0 \) to \(h_1 \) one by one. Each time we make the change the size of \(LR_\alpha \) does not decrease according to Lemma 9. At the end of the process we obtain \((h^*_0, [\bar{h}_1]_j) \in \text{Spt}(\Lambda^*) \), at which the size of \(LR_\alpha \) is \(\alpha \). The theorem follows after applying Lemma 2.

We now define a test \(\tilde{f}_{\alpha,a} \) for \(H_0 = (\mathcal{L}(\mathcal{A}) - H_1) \) vs. \(H_1 = L_{a>\text{others}} \), and prove that if a UMP test exists, then \(\tilde{f}_{\alpha,a} \) must also be a UMP test. For any \(V \in \mathcal{L}(\mathcal{A}) \) and any alternative \(a \in \mathcal{A} \), we let \(\text{Borda}_a(V) \) denote the Borda score of \(a \) in \(V \). That is, \(\text{Borda}_a(V) \) is the number of alternatives that are ranked below \(a \) in \(V \). For any \(V \in \mathcal{L}(\mathcal{A}) \), we let

\[
\tilde{f}_{\alpha,a}(V) = \begin{cases}
1 & \text{if } \text{Borda}_a(V) > K_\alpha \\
0 & \text{if } \text{Borda}_a(V) < K_\alpha \\
\Gamma_\alpha & \text{if } \text{Borda}_a(V) = K_\alpha
\end{cases}
\]

\(\tilde{f}_{\alpha,a} \) calculates the Borda score of \(a \) in the input profile, and if it is larger than a threshold \(K_\alpha \), then \(H_0 \) is rejected. It is not hard to see that \(f_{\alpha,a} \) equals to \(f_{\alpha,a} \) with a possibly different level \(\alpha' \) (defined in Theorem 3).

Lemma 10 If there exists a level-\(\alpha \) UMP test for \(H_0 = (\mathcal{L}(\mathcal{A}) - H_1) \) vs. \(H_1 = L_{a>\text{others}} \), then \(\tilde{f}_{\alpha,a} \) is also a level-\(\alpha \) UMP test.

Proof: Let \(f_\alpha \) denote a level-\(\alpha \) UMP test. For any permutation \(M \) over \(\mathcal{A} - \{a\} \), we let \(M(f_\alpha) \) denote the test such that for any \(V \in \mathcal{L}(\mathcal{A}) \), \(M(f_\alpha)(V) = f_\alpha(M(V)) \). Because the Kendall-Tau distance is invariant to permutations, we have that for any \(h_0 \in H_0 \), \(\text{Size}(f_\alpha, h_0) = \text{Size}(M(f_\alpha), M(h_0)) \), and for any \(h_1 \in H_1 \), \(\text{Power}(f_\alpha, h_1) = \text{Power}(M(f_\alpha), M(h_1)) \). Therefore \(\text{Size}(M(f_\alpha)) = \alpha \). Also because the multi-set of \(\{\text{Power}(f_\alpha, h_1) : h_1 \in H_1\} \) is the same as the multi-set \(\{\text{Power}(M(f_\alpha), h_1) : h_1 \in H_1\} \), for all \(h_1 \in H_1 \), we must have \(\text{Power}(f_\alpha, h_1) = \text{Power}(M(f_\alpha), h_1) \), otherwise there exists \(h_1 \in H_1 \) such that \(\text{Power}(f_\alpha, h_1) < \text{Power}(M(f_\alpha), h_1) \), which contradicts the assumption that \(f_\alpha \) is UMP.

It follows that for any permutation \(M \) over \(\mathcal{A} - \{a\} \), \(M(f_\alpha) \) is also UMP. Therefore, \(\tilde{f}_\alpha = \frac{1}{(m-1)!} \sum M(f_\alpha) \) is also UMP. We note that for any \(V, V' \) where \(a \) has the same Borda score, there exists a permutation \(M \) over \(\mathcal{A} - \{a\} \) so that \(M(V) = V' \). This means that \(\tilde{f}_\alpha(V) = \tilde{f}_\alpha(V') \).

We now prove that \(f_\alpha \) must be \(\tilde{f}_{\alpha,a} \) as in the statement of the Lemma. More precisely, we will prove that for any \(V, V' \) such that \(\text{Borda}_a(V) > \text{Borda}_a(V') \), if \(\tilde{f}_\alpha(V') > 0 \) then \(\tilde{f}_\alpha(V) = 1 \). Suppose for the sake of contradiction that this is not true, and there exist \(V, V' \) such that \(s_1 = \text{Borda}_a(V) > \text{Borda}_a(V') = s_2, \tilde{f}_\alpha(V') > 0, \) and \(\tilde{f}_\alpha(V) < 1 \). For any \(s \leq m - 1 \), we let \(T_s \) denote the set of rankings where the Borda score of \(a \) is \(s \). That is, \(T_s = \{V \in \mathcal{L}(\mathcal{A}) : \text{Borda}_a(V) = s \} \). We will prove that for any \(s_1 > s_2, T_{s_1} \) as a whole is more “cost effective” than \(T_{s_2} \) as a whole for any \(h_0 \in H_0 \) against any \(h_1 \in H_1 \). More precisely, we will prove that \(\text{Ratio}_{h_0, h_1}(T_{s_1}) > \text{Ratio}_{h_0, h_1}(T_{s_2}) \).

For any \(s \leq m - 2 \) and any \(h_0 \in T_s \), let \(h_1 \) denote the ranking in \(T_{s-1} = H_1 \) that is obtained from \(\theta \) by raising \(a \) to the top position. For any \(V_{s_1} \in T_{s_1} \), we let \(\text{Down}_{s_1, s_2}(V_{s_1}) \in T_{s_2} \) denote the ranking that is obtained from \(V_{s_1} \) by
moving a down for \(s_1 - s_2 \) positions, that is, from the \((m - s_1)\)-th position to the \((m - s_2)\)-th position. We have

\[
\frac{\pi_{h_0}(T_{s_2})}{\pi_{h_0}(T_{s_1})} = \frac{\sum_{V \in T_{s_2}} \pi_{h_0}(V)}{\sum_{V \in T_{s_1}} \pi_{h_0}(V)} = \frac{\sum_{V \in T_{s_1}} \pi_{h_0}(\text{Down}^a_{s_1-s_2}(V))}{\sum_{V \in T_{s_2}} \pi_{h_0}(V)}
\]

\[
= \frac{\sum_{V \in T_{s_1}} \phi_{\text{KT}(h_0,\text{Down}^a_{s_1-s_2}(V))}}{\sum_{V \in T_{s_2}} \phi_{\text{KT}(h_0,V)}}
\]

\[
> \frac{\sum_{V \in T_{s_1}} \phi_{\text{KT}(h_0,V)} \cdot \phi_{\text{KT}(V,\text{Down}^a_{s_1-s_2}(V))}}{\sum_{V \in T_{s_2}} \phi_{\text{KT}(h_0,V)}}
\]

\[
= \phi^{s_1-s_2} = \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_1}(T_{s_1})}
\]

The inequality is due to triangle inequality for Kendall-Tau distance. It is strict because for any \(V \in T_{s_1} \), where the top-ranked alternative in \(h_0 \) is ranked between the \((m - s_1)\)-th and \((m - s_2)\)-th position, \(\text{KT}(h_0,\text{Down}^a_{s_1-s_2}(V)) < \text{KT}(h_0,V) + \text{KT}(V,\text{Down}^a_{s_1-s_2}(V)) \). Therefore, \(\frac{\pi_{h_0}(T_{s_2})}{\pi_{h_0}(T_{s_1})} > \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_1}(T_{s_1})} \), which means that \(\text{Ratio}_{h_0,h_1}(T_{s_1}) = \frac{\pi_{h_1}(T_{s_1})}{\pi_{h_0}(T_{s_1})} > \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_0}(T_{s_2})} = \text{Ratio}_{h_0,h_1}(T_{s_2}) \).

Therefore, we can find sufficiently small \(\epsilon, \delta > 0 \), and replace \(\epsilon T_{s_2} \) by \(\delta T_{s_1} \), without changing the size. This will increase the power of \(\hat{f}_\alpha \) because \(T_{s_1} \) is strictly more cost effective than \(T_{s_2} \), which contradicts the assumption that \(\hat{f}_\alpha \) is a UMP test. Therefore, \(\hat{f}_\alpha = \hat{f}_{\alpha,a} \), which proves the lemma. \(\square \)