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Abstract

We develop a necessary and sufficient causal
identification criterion for maximally oriented
partially directed acyclic graphs (MPDAGs).
MPDAGs as a class of graphs include di-
rected acyclic graphs (DAGs), completed par-
tially directed acyclic graphs (CPDAGs), and
CPDAGs with added background knowledge.
As such, they represent the type of graph that
can be learned from observational data and
background knowledge under the assumption
of no latent variables. Our identification cri-
terion can be seen as a generalization of the
g-formula of Robins (1986). We further obtain
a generalization of the truncated factorization
formula (Pearl, 2009) and compare our crite-
rion to the generalized adjustment criterion of
Perković et al. (2017) which is sufficient, but
not necessary for causal identification.

1 INTRODUCTION

The gold standard method for answering causal ques-
tions are randomized controlled trials. In some cases,
however, it may be impossible, unethical, or simply too
expensive to perform a desired experiment. For this pur-
pose, it is of interest to consider whether a causal effect
can be identified from observational data.

We consider the problem of identifying causal effects
from a causal graph that represents the observational
data under the assumption of causal sufficiency. If the
causal directed acyclic graph (DAGs, e.g. Pearl, 2009) is
known, then all causal effects can be identified and es-
timated from observational data (see e.g. Robins, 1986;
Pearl, 1995; Pearl and Robins, 1995; Galles and Pearl,
1995).

In general, however, it is not possible to learn the un-
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Figure 1: (a) CPDAG C, (b) DAGs represented by C.

derlying causal DAG from observational data. When all
variables in the causal system are observed, one can at
most learn a completed partially directed acyclic graph
(CPDAG, Meek, 1995; Andersson et al., 1997; Spirtes
et al., 2000; Chickering, 2002). A CPDAG uniquely rep-
resents a Markov equivalence class of DAGs (see Section
2 for definitions).

If in addition to observational data one has back-
ground knowledge of some pairwise causal relationships,
one can obtain a maximally oriented partially directed
acyclic graph (MPDAG) which uniquely represents a
refinement of the Markov equivalence class of DAGs
(Meek, 1995). Other types of background knowledge,
such as tiered orderings, data from previous experiments,
or specific model restrictions also induce MPDAGs
(Scheines et al., 1998; Hoyer et al., 2008; Hauser and
Bühlmann, 2012; Eigenmann et al., 2017; Wang et al.,
2017; Rothenhäusler et al., 2018).

To understand the difference and connections between
DAGs, CPDAGs and MPDAGs, consider graphs in Fig-
ures 1 and 4. Graph C in Figure 1(a) is an example of a
CPDAG that can be learned given enough observational



data on variables X,V1, Y1, and Y2. All DAGs in the
Markov equivalence class represented by C are given in
Figure 1(b). Graph G in Figure 4(a) is an MPDAG that
can be obtained from CPDAG C in Figure 1(a) and back-
ground knowledge that Y1 is a cause ofX and thatX is a
cause of Y2 (see Meek, 1995 for details on incorporating
this type of background knowledge). All DAGs repre-
sented by G are given in Figure 4(b) and are a subset of
DAGs in Figure 1(b).

One can consider MPDAGs as a graph class that is gen-
erally more causally informative than CPDAGs and less
causally informative than DAGs. Conversely, a CPDAG
can be seen as a special case of an MPDAG when the
added background knowledge is not additionally infor-
mative compared to the observational data. Similarly, a
DAG is a special case of an MPDAG when the addi-
tional background knowledge is fully causally informa-
tive. We will use MPDAGs to refer to all graphs in this
paper.

The topic of identifying causal effects in MPDAGs has
generated a wealth of research in recent years. The most
relevant recent work on this topic is the generalized ad-
justment criterion of Perković et al. (2015, 2017, 2018)
which is sufficient but not necessary for the identification
of causal effects. Perković et al. (2015, 2018, 2017) build
on prior work of Pearl (1993); Shpitser et al. (2010);
van der Zander et al. (2014) and Maathuis and Colombo
(2015).

One criterion that is necessary and sufficient for identi-
fying causal effects in DAGs is the g-formula of Robins
(1986). The g-formula is one of the causal identification
methods that has seen considerable use in practice (see
e.g. Taubman et al., 2009; Young et al., 2011; Westre-
ich et al., 2012). However, the g-formula has not yet
been generalized to other types of MPDAGs (including
CPDAGs).

In this paper, we develop a necessary and sufficient
graphical criterion for identifying causal effects in
MPDAGs. We refer to our identification criterion (The-
orem 3.6) as the causal identification formula. The
causal identification formula is a generalization of the g-
formula of Robins (1986) to MPDAGs. Consequently,
we also obtain a generalization of the truncated factoriza-
tion formula (Pearl, 2009), i.e. the manipulated density
formula (Spirtes et al., 2000) in Corollary 3.7.

From a theoretical perspective, it is of interest to note
that the proof of our causal identification formula does
not consider intervening on additional variables in the
graph (Section 3.5). This alleviates concerns of whether
such additional interventions are reasonable to assume
as possible (see e.g. VanderWeele and Robinson, 2014;

Kohler-Hausmann, 2018).

We compare our result to the generalized adjustment cri-
terion of Perković et al. (2017) in Section 4. Even though
the generalized adjustment criterion is not complete for
causal identification, we characterize a special case in
which it is “almost” complete in Proposition 4.2.

Lastly, Jaber et al. (2019) recently constructed a graphi-
cal algorithm that is necessary and sufficient for identify-
ing causal effects from observational data that allows for
hidden confounders. The class of graphs that Jaber et al.
(2019) consider is fully characterized by conditional in-
dependences in the observed probability distribution of
the data. Their algorithm builds on the work of Tian and
Pearl (2002); Shpitser and Pearl (2006); Huang and Val-
torta (2006) and Richardson et al. (2017). To put our
work into wider context, we compare our approach to the
approach taken by Jaber et al. (2019) in the discussion.
Omitted proofs can be found in the Supplement.

2 PRELIMINARIES

We use capital letters (e.g. X) to denote nodes in a graph
as well as random variables that these nodes represent.
Similarly, bold capital letters (e.g. X) are used to denote
both sets of nodes in a graph as well as the random vec-
tors that these nodes represent.

Nodes, Edges And Subgraphs. A graph G = (V,E)
consists of a set of nodes (variables) V = {X1, . . . , Xp}
and a set of edges E. The graphs we consider are al-
lowed to contain directed (→) and undirected (−) edges
and at most one edge between any two nodes. An in-
duced subgraph GV′ = (V′,E′) of G = (V,E) con-
sists of V′ ⊆ V and E′ ⊆ E where E′ are all edges
in E between nodes in V′. An undirected subgraph
Gundir = (V,E′) of G = (V,E) consists of V and
E′ ⊆ E where E′ are all undirected edges in E.

Paths. A path p from X to Y in G is a sequence of
distinct nodes 〈X, . . . , Y 〉 in which every pair of suc-
cessive nodes is adjacent. A path consisting of undi-
rected edges in an undirected path. A causal path from
X to Y is a path from X to Y in which all edges are
directed towards Y , that is, X → · · · → Y . Let
p = 〈X = V0, . . . , Vk = Y 〉, k ≥ 1 be a path in G, p is a
possibly causal path if no edge Vi ← Vj , 0 ≤ i < j ≤ k
is in G. Otherwise, p is a non-causal path in G (see
Definition 3.1 and Lemma 3.2 of Perković et al., 2017)
(Lemma A.4 in the Supplement). For two disjoint sub-
sets X and Y of V, a path from X to Y is a path from
some X ∈ X to some Y ∈ Y. A path from X to Y is
proper (w.r.t. X) if only its first node is in X.

Partially Directed And Directed Cycles. A causal path



fromX to Y and the edge Y → X form a directed cycle.
A partially directed cycle is formed by a possibly causal
path from X to Y , together with Y → X .

Ancestral Relationships. If X → Y , then X is a parent
of Y . If there is a causal path from X to Y , then X
is an ancestor of Y , and Y is a descendant of X . If
there is a possibly causal path from X to Y , then X is a
possible ancestor of Y . We use the convention that every
node is a descendant, ancestor, and possible ancestor of
itself. The sets of parents, ancestors, possible ancestors
and descendants of X in G are denoted by Pa(X,G),
An(X,G), PossAn(X,G) and De(X,G) respectively.
For a set of nodes X ⊆ V, we let Pa(X,G) =
(∪X∈X Pa(X,G)) \X, An(X,G) = ∪X∈X An(X,G),
PossAn(X,G) = ∪X∈X PossAn(X,G), and
De(X,G) = ∪X∈X De(X,G).

Undirected Connected Set. A node set X is an undi-
rected connected set in graph G if for every two distinct
nodes Xi and Xj in X, there is an undirected path from
Xi to Xj in G.

Colliders, Shields, And Definite Status Paths. If a path
p contains Xi → Xj ← Xk as a subpath, then Xj is
a collider on p. A path 〈Xi, Xj , Xk〉 is an unshielded
triple ifXi andXk are not adjacent. A path is unshielded
if all successive triples on the path are unshielded. A
node Xj is a definite non-collider on a path p if the edge
Xi ← Xj , or the edge Xj → Xk is on p, or if Xi −
Xj −Xk is a subpath of p and Xi is not adjacent to Xk.
A node is of definite status on a path if it is a collider, a
definite non-collider or an endpoint on the path. A path p
is of definite status if every node on p is of definite status.

D-connection And Blocking. A definite status path p
from X to Y is d-connecting given a node set Z (X,Y /∈
Z) if every definite non-collider on p is not in Z, and
every collider on p has a descendant in Z. Otherwise,
Z blocks p. If Z blocks all definite status paths between
X and Y in MPDAG G, then X is d-separated from Y
given Z in G (Lemma C.1 of Henckel et al., 2019).

DAGs, PDAGs. A directed graph contains only directed
edges. A partially directed graph may contain both di-
rected and undirected edges. A directed graph without
directed cycles is a directed acyclic graph (DAG). A
partially directed acyclic graph (PDAG) is a partially
directed graph without directed cycles.

Markov Equivalence And CPDAGs. (c.f. Meek, 1995;
Andersson et al., 1997) All DAGs that encode the same
d-separation relationships are Markov equivalent and
form a Markov equivalence class of DAGs, which can
be represented by a completed partially directed acyclic
graph (CPDAG).

(a) (b) (c) (d)

Figure 2: Forbidden induced subgraphs of an MPDAG
(see orientation rules in Meek, 1995).

MPDAGs. A PDAG G is a maximally oriented PDAG
(MPDAG) if and only if the graphs in Figure 2 are not
induced subgraphs of G. Both a DAG and a CPDAG are
types of MPDAG (Meek, 1995).

G And [G]. A DAG D is represented by MPDAG G
if D and G have the same adjacencies, same unshielded
colliders and if for every directed edge X → Y in G,
X → Y is in D (Meek, 1995). If G is an MPDAG, then
[G] denotes the set of all DAGs represented by G.

Partial Causal Ordering. LetD = (V,E) be a DAG. A
total ordering, <, of nodes V′ ⊆ V is consistent with D
and called a causal ordering of V′ if for every Xi, Xj ∈
V′, such that Xi < Xj and such that Xi and Xj are
adjacent in D, Xi → Xj is in D. There can be more
than one causal ordering of V′ in a DAG D = (V,E).
For example, in DAG Xi ← Xj → Xk both orderings
Xj < Xi < Xk and Xj < Xk < Xi are consistent.

Let G = (V,E) be an MPDAG. Since G may contain
undirected edges, there is generally no causal ordering
of V′, for a node set V′ ⊆ V in G = (V,E). Instead,
we define a partial causal ordering, <, of V′ in G as a
total ordering of pairwise disjoint node sets A1, . . . ,Ak,
k ≥ 1, ∪ki=1Ai = V′, that satisfies the following: if
Ai < Aj and there is an edge between Ai ∈ Ai and
Aj ∈ Aj in G, then Ai → Aj is in G.

Do-intervention. We consider interventions do(X = x)
(for X ⊆ V) or do(x) for shorthand, which represent
outside interventions that set X to x.

Observational And Interventional Densities. A den-
sity f of V is consistent with a DAG D = (V,E) if
it factorizes as f(v) =

∏
Vi∈V f(vi|pa(vi,D)) (Pearl,

2009). A density f that is consistent with D = (V,E) is
also called an observational density.

Let X be a subset of V and V′ = V \X in a DAG D.
A density over V′ is denoted by f(v′|do(x)), or fx(v′),
and called an interventional density consistent with D if
there is an observational density f consistent withD such
that f(v′|do(x)) factorizes as

f(v′|do(x)) =
∏

Vi∈V′

f(vi|pa(vi,D)), (1)



for values pa(vi,D) of Pa(Vi,D) that are in agreement
with x. If X = ∅, we define f(v|do(∅)) = f(v).
Equation (1) is known as the truncated factorization for-
mula (Pearl, 2009), manipulated density formula (Spirtes
et al., 2000) or the g-formula (Robins, 1986). A density
f of V is consistent with an MPDAG G = (V,E) if f
is consistent with a DAG in [G].

A density f(v′|do(x)) of V′ ⊂ V, X = V \ V′ is
an interventional density consistent with an MPDAG
G = (V,E) if it is an interventional density consistent
with a DAG in [G]. Let Y ⊂ V′, and let f(v′|do(x))
be an interventional density consistent with an MPDAG
G = (V,E) for some X ⊂ V, V′ = V \ X, then
f(y|do(x)) denotes the marginal density of Y calculated
from f(v′|do(x)).

Probabilistic Implications Of D-separation. Let f be
any density over V consistent with an MPDAG G =
(V,E) and let X,Y, and Z be pairwise disjoint node
sets in V. If X and Y are d-separated given Z in G,
then X and Y are conditionally independent given Z in
the observational probability density f consistent withD
(Lauritzen et al., 1990; Pearl, 2009).

3 RESULTS

The causal effect of a set of treatments X on a set of
responses Y is a function of the interventional density
f(y|do(x)). For example, under the assumption of a
Bernoulli distributed treatment variable X , the causal ef-
fect of X on a singleton response Y may be defined as
the difference in expectation of Y under do(X = 1) and
do(X = 0), that is,E[Y |do(X = 1)]−E[Y |do(X = 0)]
(Chapter 1 in Hernán and Robins, 2020).

We consider a causal effect to be identifiable in an
MPDAG G if the interventional density of the response
can be uniquely computed from G. A precise definition is
given in Definition 3.1. Definition 3.1 is analogous to the
Definition 3 of Galles and Pearl (1995) and Definition 1
of Jaber et al. (2019).
Definition 3.1 (Identifiability of Causal Effects). Let
X and Y be disjoint node sets in an MPDAG G =
(V,E). The causal effect of X on Y is identifiable in
G if f(y|do(x)) is uniquely computable from any obser-
vational density consistent with G.
Hence, there are no two DAGs D1, D2 in [G] such that

1. f1(v) = f2(v) = f(v), where f is an observa-
tional density consistent with G, and

2. f1(y|do(x)) 6= f2(y|do(x)), where f1(·|do(x))
and f2(·|do(x)) are interventional densities consis-
tent with D1 and D2 respectively.

X Y
(a)

X1 X2 Y
(b)

Figure 3: (a) MPDAG C, (b) MPDAG G.

3.1 A NECESSARY CONDITION FOR
IDENTIFICATION

Proposition 3.2 presents a necessary condition for the
identifiability of causal effects in MPDAGs. This neces-
sary condition is referred to as amenability by Perković
et al. (2015, 2017).

Proposition 3.2. Let X and Y be disjoint node sets in
an MPDAG G = (V,E). If there is a proper possibly
causal path from X to Y that starts with an undirected
edge in G, then the causal effect of X on Y is not identi-
fiable in G.

Consider MPDAG C in Figure 3a. Since X − Y is in
C, by Proposition 3.2, the causal effect of X on Y is
not identifiable in C. This is intuitively clear since both
X → Y and X ← Y are DAGs represented by C. The
DAG X ← Y implies that there is no causal effect of X
on Y . Conversely, the DAG X → Y implies that there is
a causal effect of X on Y.

The condition in Proposition 3.2 is somewhat less intu-
itive for non-singleton X. Consider MPDAG G in Fig-
ure 3b and let X = {X1, X2} and Y = {Y }. The
path X1 −X2 → Y in G is a possibly causal path from
X1 to Y that starts with an undirected edge. However,
X1 −X2 → Y is not a proper possibly causal path from
X to Y , since it contains X2 and X1. Hence, the causal
effect of X on Y may still be identifiable in G.

3.2 PARTIAL CAUSAL ORDERING IN MPDAGS

For the proof of our main result, it is necessary to de-
termine a partial causal ordering for a set of nodes in an
MPDAG. In order to compute a partial causal ordering
of nodes in an MPDAG, we first define a bucket.

Definition 3.3 (Bucket). Let D be a node set in an
MPDAG G = (V,E). If B is a maximal undirected
connected subset of D in G, we call B a bucket in D.

Definition 3.3 is similar to the definition of a bucket of
Jaber et al. (2018a). One difference is that Definition
3.3 allows for directed edges between the nodes within
the same bucket, whereas the definition of Jaber et al.
(2018a) does not. For instance, {X,V1, Y1} is a bucket
in V in MPDAG G = (V,E) in Figure 4(a). Note that
since we require a bucket to be a maximal undirected
connected set, {X,V1} is not a bucket in V.
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Figure 4: (a) MPDAG G, (b) DAGs represented by G.

Definition 3.3 can be used to induce a unique partition of
any node set D in an MPDAG G = (V,E), D ⊆ V. We
refer to this partition as the bucket decomposition in the
corollary of Definition 3.3 below.

Corollary 3.4 (Bucket Decomposition). Let D be a
node set in an MPDAG G = (V,E). Then there is a
unique partition of D into B1, . . .Bk, k ≥ 1 in G in-
duced by Definition 3.3. That is

• D = ∪ki=1Bi, and

• Bi ∩Bj = ∅, i, j ∈ {1, . . . , k}, i 6= j, and

• Bi is a bucket in D for each i ∈ {1, . . . , k}.

Consider MPDAG G = (V,E) in Figure 4a. In order to
find the bucket decomposition of V in G, let us consider
the undirected subgraph Gundir of G. The only path in
Gundir is Y1−V1−X . Hence, the bucket decomposition
of V is {{X,V1, Y1}, {Y2}}.

Consider DAGs in Figure 4b, which are all DAGs repre-
sented by G in Figure 4a. Some total orderings of V that
are consistent with DAGs in Figure 4b are: V1 < Y1 <
X < Y2, Y1 < V1 < X < Y2, and Y1 < X < V1 < Y2,
from left to right respectively. These three orderings
are consistent with the following partial causal ordering
{X,V1, Y1} < Y2, which is a total ordering of the buck-
ets in the bucket decomposition of V. This motivates
Algorithm 1.

Algorithm 1 outputs an ordered bucket decomposition of
a set of nodes D in an MPDAG G. The proof that Algo-
rithm 1 will always complete is given in Lemma C.1 in
the Supplement. Next, we prove that the ordered list of
buckets output by Algorithm 1 is a partial causal order-
ing of D in G (Lemma 3.5). Algorithm 1 and Lemma 3.5
are similar to the PTO algorithm and Lemma 1 of Jaber
et al. (2018b).

Lemma 3.5. Let D be a node set in an MPDAG G =
(V,E) and let (B1, . . . ,Bk), k ≥ 1, be the output of
PCO(D,G). Then for each i, j ∈ {1, . . . k}, Bi and Bj

are buckets in D and if i < j, then Bi < Bj in G.

Consider MPDAG G = (V,E) in Figure 4a and let

Algorithm 1: Partial causal ordering (PCO)

input : Node set D in MPDAG G=(V,E).
output : An ordered list B=(B1, . . . ,Bk), k ≥ 1,

of the bucket decomposition of D in G.

1 Let ConComp be the bucket decomposition of V
in G;

2 Let B be an empty list;
3 while ConComp 6= ∅ do
4 Let C ∈ ConComp;
5 Let C be the set of nodes in ConComp that

are not in C;
6 if all edges between C and C are into C in G

then
7 Remove C from ConComp;
8 Let B∗ = C ∩D;
9 if B∗ 6= ∅ then

10 Add B∗ to the beginning of B;
11 end
12 end
13 end
14 return B;

D = {X,Y1, Y2}. We now explain how the output of
PCO(D,G) is obtained.

In line 2, the bucket decomposition of V is obtained,
ConComp = {{X,Y1, V1}, {Y2}} (as noted above).
In line 2, B is initialized as an empty list.

Let C = {X,Y1, V1} (line 4). Then C = {Y2} (line 5).
Since X → Y2 and Y1 → Y2 are in G, C does not satisfy
the condition in line 6 and hence, {X,Y1, V1} cannot be
removed from ConComp at this time.

Next, C = {Y2} (line 4) and C = {X,Y1, V1} (line 5).
Since all edges between {Y2} and {X,Y1, V1} in G are
into {Y2}, Algorithm 1 removes {Y2} from ConComp
in line 7. Since B∗ = C∩D = {Y2} (line 8), Algorithm
1 adds {Y2} to the beginning of list B (line 10).

Now, C = {X,Y1, V1} (line 4) and C = ∅ (line 5).
Hence, C satisfies condition in line 6 and C is removed
from ConComp (line 7). Then B∗ = C ∩ D =
{X,Y1} (line 8), and B = ({X,Y1}, {Y2}) (line 10).
Since ConComp is empty, Algorithm 1 outputs B.

3.3 CAUSAL IDENTIFICATION FORMULA

We present our main result which we refer to as the
causal identification formula in Theorem 3.6. Theorem
3.6 establishes that the condition from Proposition 3.2 is
not only necessary, but also sufficient for the identifica-
tion of causal effects in MPDAGs.



Theorem 3.6 (Causal identification formula). Let X
and Y be disjoint node sets in an MPDAG G = (V,E).
If there is no proper possibly causal path from X to Y
in G that starts with an undirected edge, then for any
observational density f consistent with G we have

f(y|do(x)) =
∫ k∏

i=1

f(bi|pa(bi,G))db, (2)

for values pa(bi,G) of Pa(bi,G) that are in agreement
with x, where (B1, . . . ,Bk) = PCO(An(Y,GV\X),G)
and B = An(Y,GV\X) \Y.

For a DAG D = (V,E), it is well known that in order
to identify a causal effect of X on Y in D it is enough to
consider the set of ancestors of Y, that is An(Y,D) (see
Theorem 4 of Tian and Pearl, 2002). The causal identi-
fication formula refines this notion by using a subset of
ancestors of Y to identify the causal effect of X on Y
in an MPDAG G. The variables that appear on the right
hand side of equation (2) are in An(Y,GV\X), or in X,
for those X that have a proper causal path to Y in G.

The causal identification formula is a generalization of
the g-formula of Robins (1986), the truncated factoriza-
tion formula of Pearl (2009), or the manipulated density
formula of Spirtes et al. (2000) to the case of MPDAGs.
To further exhibit this connection, we include the follow-
ing corollary.

Corollary 3.7 (Factorization and truncated factoriza-
tion formula in MPDAGs). Let X be a node set in
an MPDAG G = (V,E) and let V′ = V \ X. Fur-
thermore, let (V1, . . . ,Vk) be the output of PCO(V,G).
Then for any observational density f consistent with G
we have

1. f(v) =
∏

Vi⊆V f(vi|pa(vi,G)),

2. If there is no pair of nodes V ∈ V′ and X ∈ X
such that X − V is in G, then

f(v′|do(x)) =
∏

Vi⊆V′

f(vi|pa(vi,G)),

for values pa(vi,G) of Pa(vi,G) that are in agree-
ment with x.

Whenever f(v′|do(x)) is identifiable in MPDAG G =
(V,E), we can also identify f(y|do(x)) as

f(y|do(x)) =
∫
f(v′|do(x))dv′,

where X and Y are disjoint subsets of V, V′ = V \X,
and V′ = V \ {X ∪ Y}. Since the necessary condi-
tion for identifying f(v′|do(x)) (Corollary 3.7) is gener-
ally stronger than the necessary condition for identifying

X
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Y
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X2V3
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Figure 5: (a) MPDAG G, (b) DAG D.

f(y|do(x)) there are cases when f(y|do(x)) is identifi-
able and f(v′|do(x)) is not identifiable. One such case
is explored in Example 3.8.

3.4 EXAMPLES

Example 3.8. In this example, the causal effect of X on
Y is identifiable in an MPDAG G = (V,E), but the
effect of X on V′ = V \X is not identifiable in G.

Consider MPDAG G in Figure 4a and let f be an ob-
servational density consistent with G. Let X = {X} and
Y = {Y1, Y2}. Note that path X−V1−Y1 while proper
is not possibly causal from X to Y1 in G due to edge
Y1 → X . The only possibly causal path from X to Y in
G is X → Y2. Hence, by Theorem 3.6, the causal effect
of X on Y is identifiable in G.

To use the causal identification formula we first de-
termine that An({Y1, Y2},GV\{X}) = {Y1, Y2}, the
bucket decomposition of {Y1, Y2} is {{Y1}, {Y2}}, and
PCO({Y1, Y2},G) = ({Y1}, {Y2}). Next, Pa(Y1,G) =
∅, and Pa(Y2,G) = {X,Y1}. Hence, by Theorem 3.6,
f(y1, y2|do(x)) = f(y2|x, y1)f(y1).

Now, let V′ = V \ {X}. Since X − V1 is in G, by
Corollary 3.7, f(v′|do(x)) is not identifiable in G.

Example 3.9. In this example, both the causal effect of
X on Y and the causal effect of X on V′ = V \ {X}
are identifiable in an MPDAG G = (V,E).

Consider MPDAG G in Figure 5a and let f be an ob-
servational density consistent with G. The only possibly
causal path from X to Y in G is X → Y . Hence, the
causal effect of X on Y is identifiable in G.

In fact, there are no undirected edges connected to X , so
the causal effect of X on V′, V′ = {V1, V2, V3, Y } is
also identifiable in G. Thus, we can obtain the truncated
factorization formula with respect to X in G.

We will first determine the causal identification for-
mula for f(y|do(x)) in G. We first identify that
An(Y,GV\{X}) = {V1, V2, Y }. The bucket de-



composition of {V1, V2, Y } is {{V1, V2}, {Y }} and
PCO({V1, V2, Y },G) is ({V1, V2}, {Y }). Furthermore,
Pa({V1, V2},G) = ∅, Pa(Y,G) = {X,V1, V2}.
Hence, by Theorem 3.6, the causal identification
formula for f(y|do(x)) in G is f(y|do(x)) =∫
f(y|x, v1, v2)f(v1, v2)dv1dv2.

To use Corollary 3.7, first note that the output of
PCO(V,G) is ({V1, V2, V3}, {X}, {Y }) and that the or-
dered bucket decoposition of V′ is ({V1, V2, V3}, {Y }).
Further, Pa({V1, V2, V3},G) = ∅. Then, f(v′|do(x)) =
f(y|x, v1, v2)f(v1, v2, v3).
Example 3.10. This example shows how the causal iden-
tification formula can be used to estimate the causal ef-
fect of X on Y in an MPDAG G under the assumption
that the observational density f consistent with G is mul-
tivariate Gaussian.

Consider DAG D in Figure 5b and let f be an
observational density consistent with D. Further,
let X = {X1, X2} and Y = {Y }. Then
An(Y,DV\X) = {Y, V4}, the bucket decomposition
of {Y, V4} is {{V4}, {Y }}, and PCO({Y, V4},D) =
({V4}, {Y }) in D.

Since Pa(V4,D) = {X1}, and Pa(Y,D) =
{X1, X2, V4}, by Theorem 3.6,

f(y|do(x1, x2)) =
∫
f(y|x1, x2, v4)f(v4|x1)dv4.

Suppose that the density f consistent withD is multivari-
ate Gaussian. The causal effect of X on Y can then be
defined as the vector(

∂E[Y |do(x1, x2)]
∂x1

,
∂E[Y |do(x1, x2)]

∂x2

)T

,

(Nandy et al., 2017). Hence, consider E[Y |do(x1, x2)],

E[Y |do(x1, x2)] =
∫
yf(y|do(x1, x2))dy

=

∫ ∫
yf(y|x1, x2, v4)f(v4|x1)dv4dy

=

∫
E[Y |x1, x2, v4]f(v4|x1)dv4

= αx1 + βx2 + γ

∫
v4f(v4|x1)dv4

= βx2 + x1(α+ γδ),

where E[Y |x1, x2, v4] = αx1 + βx2 + γv4 and
E[V4|x1] = δx1 (Theorem 3.2.4 of Mardia et al., 1980,
see Theorem A.2 in the Supplement).

The causal effect of X on Y is equal to (α+γδ, β). Con-
sistent estimators for α, β, and γ are the least-squares
estimators of the respective coefficients of X1, X2, and

V4 in the regression of Y on X1, X2, and V4. Analo-
gously, the consistent estimator for δ is the least-squares
coefficient of X1 in the regression of V4 on X1.

3.5 PROOF OF THEOREM 3.6

The proof of Theorem 3.6 relies on Lemma D.1 in the
Supplement. Lemma D.1 is proven through use of do-
calculus (Pearl, 2009) and basic probability calculus.

The proofs of Theorem 3.6 and Lemma D.1 do not re-
quire intervening on additional variables in G. This fact
alleviates any concerns of whether such additional inter-
ventions are reasonable to assume as possible (see e.g.
VanderWeele and Robinson, 2014; Kohler-Hausmann,
2018).

Proof of Theorem 3.6. For i ∈ {2, . . . , k}, let Pi =
(∪i−1j=1Bi) ∩ Pa(Bi,G). For i ∈ {1, . . . , k}, let Xpi

=
X ∩ Pa(Bi,G).

Then

f(y|do(x)) =
∫
f(b,y|do(x))db

=

∫
f(b1|do(x))

k∏
i=2

f(bi|bi−1, . . . ,b1, do(x))db

=

∫
f(b1|do(x))

k∏
i=2

f(bi|pi, do(x))db (3)

=

∫
f(b1|do(xp1))

k∏
i=2

f(bi|pi, do(xpi
))db (4)

=

∫ k∏
i=1

f(bi|pa(bi,G))db, (5)

The first two equalities follow from the law of total prob-
ability and the chain rule. Equations (3), (4), and (5) fol-
low by applying results (ii), (iii), and (iv) in Lemma D.1
in the Supplement. �

4 COMPARISON TO ADJUSTMENT

The current state-of-the-art method for identifying causal
effects in MPDAGs is the generalized adjustment crite-
rion of Perković et al. (2017) stated in Theorem 4.1.

Theorem 4.1 (Adjustment set, Generalized adjust-
ment criterion; Perković et al., 2017). Let X,Y and
Z be pairwise disjoint node sets in an MPDAG G =
(V,E). Let f be any observational density consistent
with G.

Then Z is an adjustment set relative to (X,Y) in G and



we have

f(y|do(x)) =

{∫
f(y|x, z)f(z)dz , if Z 6= ∅,

f(y|x) , otherwise.

if and only if the following conditions are satisfied:

1. There is no proper possibly causal path from X to
Y that starts with an undirected edge in G.

2. Z ∩ Forb(X,Y,G) = ∅, where

Forb(X,Y,G) = {W ′ ∈ V :W ′ ∈ PossDe(W,G),
for some W /∈ Xwhich lies on a proper possibly

causal path from X toYin G}.

3. All proper non-causal definite status paths from X
to Y are blocked by Z in G.

The generalized adjustment criterion is sufficient for
identifying causal effects in an MPDAG, but it is not
necessary. However, when X and Y are singleton sets,
the generalized adjustment criterion identifies all non-
zero causal effects of X on Y in an MPDAG G. This
is shown in the following proposition.

Proposition 4.2. Let X and Y be distinct nodes in an
MPDAG G = (V,E). If Y /∈ Pa(X,G), then the causal
effect of X on Y is identifiable in G if and only if there is
an adjustment set relative to (X,Y ) in G.

Furthermore, if Y /∈ Pa(X,G), then Pa(X,G) is an ad-
justment set relative to (X,Y ) in G whenever one such
set exists.

If Y ∈ Pa(X,G), then due to the acyclicity of G, there
is no causal path from X to Y in G and therefore no
causal effect of X on Y (see Lemma E.1 in the Supple-
ment). Hence, by Proposition 4.2, the generalized ad-
justment criterion is “almost” complete for the identifi-
cation of causal effects of variable X on a response Y in
MPDAGs.

If X, or Y are non-singleton sets in G, however, the gen-
eralized adjustment criterion will fail to identify some
non-zero causal effects of X on Y. We discuss this fur-
ther in the two examples below.

Example 4.3. Consider MPDAG G in Figure 4a and let
X = {X}, and Y = {Y1, Y2} as in Example 3.8.

PathX ← Y1 is a non-causal path fromX to Y that can-
not be blocked by any set of nodes disjoint with {X,Y1}.
Hence, there is no adjustment set relative to (X,Y) in G.
But there is a causal path from X to Y in G and as we
have seen in Example 3.8, the causal effect of X on Y is
identifiable in G.

Example 4.4. Consider DAG D in Figure 5b and let
X = {X1, X2}, and Y = {Y }. Then Forb(X,Y,D) =
{V4, Y }. For a set Z to satisfy the generalized adjust-
ment criterion relative to (X, Y ) in G, Z cannot con-
tain nodes in {V4, Y }, or {X1, X2} and Z must block all
proper non-causal paths from X to Y in D.

However, X2 ← V4 → Y is a proper non-causal path
from X to Y in D that cannot be blocked by any set Z
that satisfies Z ∩ {X1, X2, V4, Y } = ∅. Hence, there
is no adjustment set relative to (X, Y ) in D. But as we
have seen in Example 3.10, the causal effect of X on Y
is identifiable inD and furthermore, bothX1 andX2 are
causes of Y in D.

5 DISCUSSION

We introduced a causal identification formula that allows
complete identification of causal effects in MPDAGs.
Furthermore, we gave a comparison of our graphical cri-
terion to the current state of the art method for causal
identification in MPDAGs.

Since the causal identification formula comes in the fa-
miliar form of the g-formula of Robins (1986) for DAGs,
our results can be used to generalize applications of the
g-formula to MPDAGs. For example, Murphy (2003),
Collins et al. (2004), and Collins et al. (2007) give crite-
ria for estimating the optimal dynamic treatment regime
from longitudinal data that are based on the g-formula.
This idea can further be combined with recent work of
Rahmadi et al. (2017) and Rahmadi et al. (2018) that es-
tablishes an approach for estimating the MPDAG using
data from longitudinal studies.

Throughout the paper, we assume no latent variables.
When latent variables are present, one can at most
learn a partial ancestral graph (PAG) over the set of
observed variables from the observed data (Richardson
and Spirtes, 2002; Spirtes et al., 2000; Zhang, 2008a,b).
PAGs represent an equivalence class of DAGs over the
set of observed and unobserved variables.

Jaber et al. (2019) recently developed a recursive graph-
ical algorithm that is both necessary and sufficient for
identifying causal effects in PAGs. Our causal identifi-
cation formula does not follow as a simplification of the
result of Jaber et al. (2019). To see this, notice that the
strategy of Jaber et al. (2019) for identifying causal ef-
fects in PAG P relies on the fact that the causal effect of
X on Y is identifiable in P if and only if the causal ef-
fect of V \PossAn(Y,PV\X) on PossAn(Y,PV\X) is
identifiable in P (see equation (8) of Jaber et al., 2019).

Consider applying this strategy to MPDAG G in Fig-
ure 4(a), with X = {X} and Y = {Y1, Y2}.



Note that PossAn(Y,GV\X) = {V1, Y1, Y2}, that
is, PossAn(Y,GV\X) = V \ X. Then, V \
PossAn(Y,GV\X) = X. The strategy of Jaber et al.
(2019) would dictate that we can identify the causal ef-
fect of X on Y by first identifying the causal effect of
X on V \ X in G. As we have seen in Example 3.8,
the causal effect of X on V \X in G is not identifiable,
whereas the causal effect of X on Y is identifiable in
G. Therefore, the approach of Jaber et al. (2019) is not
suitable for general MPDAGs. The above counter exam-
ple arises as a consequence a partially directed cycle in
the MPDAG. Hence, a modified approach of Jaber et al.
(2019) may lead to a necessary causal identification al-
gorithm in MPDAGs without partially directed cycles.

A natural question of interest is whether a similar ap-
proach to ours can be applied to PAGs. Another topic
for future work is developing a complete identification
formula for conditional causal effects in MPDAGs.
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