
High Dimensional Discrete Integration over the Hypergrid

Raj Kumar Maity Arya Mazumdar Soumyabrata Pal

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA 01003
{rajkmaity,arya,spal}@cs.umass.edu

Abstract

Recently Ermon et al. (2013) pioneered a way
to practically compute approximations to large
scale counting or discrete integration problems
by using random hashes. The hashes are used
to reduce the counting problem into many sep-
arate discrete optimization problems. The op-
timization problems then can be solved by an
NP-oracle such as commercial SAT solvers or
integer linear programming (ILP) solvers. In
particular, Ermon et al. showed that if the do-
main of integration is {0, 1}n then it is possible
to obtain a solution within a factor of 16 of the
optimal (16-approximation) by this technique.
In many crucial counting tasks, such as com-
putation of partition function of ferromagnetic
Potts model, the domain of integration is natu-
rally {0, 1, . . . ,q � 1}n ,q > 2, the hypergrid.
The straightforward extension of Ermon et
al.’s method allows a q2-approximation for this
problem. For large values of q, this is unde-
sirable. In this paper, we show an improved
technique to obtain an approximation factor
of 4 +O(1/q2) to this problem. We are able to
achieve this by using an idea of optimization
over multiple bins of the hash functions, that
can be easily implemented by inequality con-
straints, or even in unconstrained way. The NP
oracle in this setting can be simulated by using
an ILP solver as in Ermon et. al. We provide
simulation results to support the theoretical
guarantees of our algorithms.

1 INTRODUCTION

Large scale counting problems, such as computing the
permanent of a matrix or computing the partition func-
tion of a graphical probabilistic generative model, come

Proceedings of the 36th Conference on Uncertainty in Arti�cial
Intelligence (UAI), PMLR volume 124, 2020.

up often in variety of inference tasks. These problems
can, without loss of generality, be written as discrete inte-
gration: the summation of evaluations of a nonnegative
functionw : � ! R+ [{0} over all elements of �:

S�(w) ⌘
’
� 2�

w(�). (1)

These problems can be computationally intractable be-
cause of the often exponential (and sometime super-
exponential) size of �. A special case is the set of prob-
lems #P, counting problems associated with the decision
problems in NP. For example, one might ask how many
variable assignments a given CNF (conjunctive normal
form) formula satis�es. The complexity class #P was
de�ned by Valiant [25], in the context of computing the
permanent of a matrix. The permanent of a matrix A is
de�ned as,

Perm(A) ⌘
’
� 2Sn

n÷
i=1

Ai,� (i), (2)

where Sn is the symmetric group of n elements and Ai, j
is the (i, j)-th element of A. Clearly, here Sn is playing
the role of �, and w(�) = Œn

i=1Ai,� (i). Therefore com-
puting permanent of a nonnegative matrix is a canonical
example of a problem de�ned by eq. (1).

Similar counting problems arise when one wants to com-
pute the partition functions of the well-known probabilis-
tic generative models of statistical physics, such as the
Ising model, or more generally the Ferromagnetic Potts
Model [19]. Given a graph G(V ,E), and a label-space
Q ⌘ {0, 1, 2, . . . ,q � 1}, the partition function Z (G) of
the Potts model is given by,

’
� 2Q |V |

exp
⇣
��

⇣
�

’
(u,�)2E

� (� (u),� (�)) (3)

+H
’
u 2V

� (� (u), 0)
⌘⌘
,

where � , � and H are system-constants (representing the
temperature, spin-coupling and external force respec-
tively), � (x ,�) is the delta-function that is 1 if and only
if x = � and otherwise 0, and � represents a label-vector,
where � (u) is the label of vertex u.
It has been shown that, under the availability of an NP-
oracle, every problem in #P can be approximated within
a factor of (1 ± �), � > 0, with high probability via a
randomized algorithm [23]. This result says #P can be
approximated by BPPNP and the power of an NP-oracle
and randomization is su�cient. However, depending on
the weight functionw(·), eq. (1) may not be in #P. There
are related approaches to count the number of models
of propositional formulas based on SAT-solvers, such as
[3, 15, 28, 18, 4, 5] among others.

The standard techniques to evaluate eq. (1) include
the very in�uential fast variational methods [27], and
Markov-Chain-Monte-Carlo based sampling schemes
[13]. In practice, except for limited number of cases,
these approaches are mostly used in a heuristic manner
without nonasymptotic qualitative guarantees. Recently,
Ermon et al. proposed an alternative approach (that they
call WISH - Weighted-Integrals-And-Sums-By-Hashing)
to solve these counting problems [7, 9] by breaking them
into multiple optimization problems. Namely, they use
families of hash functions h : � ! �̃, |�̃ | < |� |, and use
a (possibly NP) oracle that can return the correct solution
of the optimization problem: max� :h(�)=a w(�), for any
a 2 �̃. We call this oracle a MAX-oracle. In particular,
when � = {0, 1}n , and h(·) is a random hash function,
assuming the availability of a MAX-oracle, Ermon et
al. [7] propose a randomized algorithm that approxi-
mates the discrete sum within a factor of sixteen (a 16-
approximation) with high probability. Ermon et al. use
simple linear sketches over F2 (the �nite �eld of size 2),
i.e., the hash functionhA,b : Fn2 ! Fm2 ,A 2 Fm⇥n

2 ,b 2 Fm2
is de�ned to be

hA,b (x) = Ax + b, (4)

where the arithmetic operations are over F2. The matrix
A and the vector b are randomly and uniformly chosen
from the respective sample spaces. The MAX-oracle in
this case simply provides solutions to the optimization
problem: max� 2Fn2 :A�=b w(�).
The constraint space {� 2 Fn2 : A� = b} is nice since
it is a coset of the nullspace of A, and experimental re-
sults showed them to be manageable by optimization
softwares/SAT solvers. In particular it was observed
that being Integer Programming constraints, real-world
instances are often solved in reasonable time. Since
the implementation of the hash function heavily a�ects
the runtime, it makes sense to keep constraints of the

MAX-oracle as an a�ne space as above. These con-
straints are also called parity constraints. The idea of
using such constraints to show reduction among class
of problems appeared in several papers before, including
[21, 26, 11, 24, 12] among others. The key property that
the hash functions {hA,b } satisfy is that they are pairwise
independent. This property can be relaxed somewhat -
and in a subsequent paper Ermon et al. show that a hash
family would work even if the matrixA is sparse and ran-
dom, thus e�ectively reducing the randomness as well as
making the problem more tractable empirically [8]. Sub-
sequently, Achlioptas and Jiang [2] have shown another
way of achieving similar guarantees. Instead of arriving
at the set {� 2 Fn2 : A� = b} as a solution of a system of
linear equations (over F2), they view the set as the image
of a lower-dimensional space. This is akin to the gen-
erator matrix view of a linear error-correcting code as
opposed to the parity-check matrix view. This viewpoint
allows their MAX-oracle to solve just an unconstrained
optimization problem.

Drawbacks of obvious extensions of [7] to large al-
phabets. Note that, some crucial counting problems,
such as computing the partition function of the Ferro-
magnetic Potts model of Eq. (3), naturally have � =
{0, 1, . . . ,q � 1}n ,q > 2, i.e., a hypergrid. It is worth
noting that while there exists polynomial time approxi-
mation (FPRAS) for the Ising model (q = 2), FPRAS for
general Potts model (q > 2) is signi�cantly more chal-
lenging (and likely impossible [10]). There are a few
possible obvious extensions of Ermon et al. [7] to larger
alphabets.

• (The straightforward extension). The method of [7]
can be used for q-ary in stead of binary. However, the
drawback is that it provides a q2-approximation at best
that is particularly bad if q is large or growing with n.

• (Convert q-ary to binary). To use the binary-domain
algorithm of [7] for any � = {0, 1, . . . ,q�1}n , we need
to use a look-up table to map q-ary numbers to binary.
In this process the number of variables (and also the
number of constraints) increases by a factor of logq.
This makes the MAX-oracle signi�cantly slower, espe-
cially when q is large. Also, for the permanent problem,
where |� | = exp(n logn), this creates a computational
bottleneck. It would be useful to extend the method
of [7] for � = Fnq without increasing the number of
variables.

Furthermore, when q is not a power of 2, by converting
q-ary con�gurations to binary, we introduce exponen-
tiallymany invalid con�gurations. To account for these,
the MAX-oracle must be adjusted accordingly which is
a di�cult task. This motivates us to keep the problem

in its original domain and not convert the domain to
binary.

• For the binary setting, it has been noted in [7, section
5.3] that the approximation ratio can be improved to
any � > 1 by increasing the number of variables, which
extends to this q-ary setting. However this also results
in an increase in number of variables by a factor of
log� (q2) which is undesirable.

Our contributions. Our �rst contribution in this paper
is to provide a new and improved algorithm to handle
counting problems over nonbinary domains. For any hy-
pergrid � = {0, 1, . . . ,q � 1}n ,q is a power of prime, our
algorithm provides a 4(1 + 1

q�1)2-approximation, when
q is odd, and 4(1 + 2

q�2)2-approximation, when q > 2
is even, to the optimization problem of (1) assuming
availability of the MAX-oracle. Our algorithm utilizes an
idea of using optimization over multiple bins of the hash
function that can be easily implemented via inequality
constraints. The constraint space of the MAX-oracle re-
mains an a�ne space and still can be represented as a
modular integer linear program (ILP). Our multi-bin tech-
nique can also be used to extend the generator-matrix
based algorithm of Achlioptas and Jiang [2]. As a result,
we need the MAX-oracle to only perform unconstrained
maximization, as opposed to constrained. This lead to
signi�cant speed-up in the system, while resulting in the
same approximation guarantees.

Finally, we show the performance of our algorithms to
compute the partition function of the ferromagnetic Potts
model by running experiments on both synthetic datasets
and real-worlds datasets. While in this paper we con-
centrate on theoretical results, the experiments serve as
good ‘proof of concepts’ for applications. We also use
our algorithm to compute the Total Variation (TV) dis-
tance between two joint probability distributions over
a large number of variables. In addition to comparing
with the straightforward generalization of Ermon et al.’s
method [7], we also show comparisons with the popular
Markov-Chain-Monte-Carlo (MCMC) method and the
belief propagation method for discrete integration. All
the experiments exhibit good performance guarantees.

Organization. In Section 2 we describe the technique
by [7] called the WISH algorithm, and then elaborate our
new ideas and main results. In Section 3, we provide the
main technical results that lead to an improved approx-
imation. We provide an algorithm with unconstrained
optimization oracle (similar to [2]) and its analysis in Sec-
tion 4. The experimental results on computation of parti-
tion functions and total variation distance are provided in
Section 5. Most of the proofs and some experimental re-
sults are delegated to the appendix in the supplementary

material.

While only of auxiliary interest here, we note that it
is possible to derandomize the hash families based on
parity-constraints to the optimal extent while maintain-
ing the essential properties necessary for their perfor-
mance. Namely, it can be ensured that the hash family
can still be represented as {x 7! Ax + b} while using
information theoretically optimal memory to generate
them. We discuss this in Appendix C in the supplement.

It turns out that, by using our technique and some modi-
�cations to the MAX-oracle, it is possible to obtain close-
to-4-approximation to the problem of computing per-
manent of nonnegative matrices (assuming existence of
NP-oracles). The NP-oracle still is amenable to be imple-
mented in a commercial optimization solver. The idea
of optimization over multiple bins is crucial here, since
the straightforward generalization of Ermon et al.’s re-
sult would have given an approximation factor of �(n2).
Since there exists polynomial time randomized approxi-
mation scheme (1 ± �-approximation) of permanent of
a nonnegative matrix [14], the point of this exercise is
to show that our method extends to �nd permanent of a
matrix (albeit not with the best guarantees). We discuss
this in Appendix D in the supplementary material.

2 BACKGROUND AND OUR
TECHNIQUES

In this section we describe the main ideas developed by
[7] and provide an overview of the techniques that we
use to arrive at our new results.

Let the elements in � be �1,�2, . . . ,� |� | arranged accord-
ing to a decreasing order of their weight, i.e., w(�1) �
w(�2) � · · · � w(� |� |). Let �i = w(�qi), for i =
0, 1, . . . ,n0, where n0 is the smallest integer such that
qn

0 � |� |. When qn0
> |� | we set �n0 = 0 .

Clearly �0 � �1 � · · · � �n0 . As we have not made
any assumption on the values of the weight function,
�i and �i+1 can be far from each other. On the other
hand we can try to bound the sum S�(w) by bounding
the area of the slice between �i and �i+1. This area is at
least qi (�i � �i+1) and at most qi+1(�i � �i+1). Therefore:Õn0�1

i=0 qi (�i � �i+1) + qn0
�n0  S�(w)  Õn0�1

i=0 qi+1(�i �
�i+1) + qn

0
�n0 which implies

�0 + (q � 1)
n0’
i=1

qi�1�i  S�(w)  �0 + (q � 1)
n0’
i=1

qi�i .

(5)

Hence �0+(q�1)Õn0
i=1 q

i�1�i is a q-factor approximation
of S�(w) and if we are able to �nd a k-approximation

of each value of �i we will be able to obtain a kq-factor
approximation of S�(w). In [7], subsequently the main
idea is to estimate the coe�cients {�i , 0  i  n0}.
Now note that, qi = |{� 2 � : w(�) � �i }|, for
i = 0, 1, . . . ,n0 � 1. This also hold for i = n0 unless
qn

0
> |� | in which case �n0 = 0. Suppose, using a

random hash function h : � ! {0, 1, . . . ,qi � 1} we
compute hashes of all elements in �. The pre-image
of an entry in {0, 1, . . . ,qi � 1} is called the bin corre-
sponding to that value, i.e., {� 2 � : h(�) = x} is the
bin corresponding to the value x 2 {0, 1, . . . ,qi � 1}.
In every bin for the hash function, there is on aver-
age one element � such that w(�) � �i . So for a ran-
domly and arbitrarily chosen bin x 2 {0, 1, . . . ,qi � 1},
if w⇤ = max� :h(�)=x w(�), then w⇤ is a ‘good’ approxi-
mation of �i (this will be made rigorous later). Indeed,
suppose one performs this random hashing ` = O(logn0)
times and then take the aggregate (in this case the me-
dian) value ofw⇤s. That is, let ŵ⇤ = median(w⇤

1 , . . . ,w
⇤
`);

then by using the independence of the hash functions,
it can be shown that the aggregate is an upper bound
on �i with high probability. In [7], � = Fn2 and if the
hash family is pairwise independent, then by using the
Chebyshev inequality it was shown that ŵ⇤ 2 [�i+2, �i�2]
with high probability. The WISH algorithm proposed
by [7] makes use of the above analysis and provides a
22·2 = 16-approximation of Sw (�). If we naively extend
this algorithm for Sw (�) = Fnq ,q > 2, then it can be
shown that ŵ⇤ 2 [�i+1, �i�1] with high probability. This
gives an approximation factor of q2. E.g., for a ternary
alphabet, � = Fn3 , we have a 9-approximation to Sw (�).
Instead of using a straightforward analysis for the q-
ary case, in this paper we use a MAX-oracle that can
optimize over multiple bins of the hash function. Us-
ing this oracle we proposed a modi�ed WISH algorithm
and call it MB-WISH (Multi-Bin WISH). Just as in the
case of [7, 8], the MAX-oracle constraints can be in-
teger linear programming constraints and commercial
softwares such as CPLEX can be used. The main in-
tuition of using an optimization over multiple bins is
that it boosts the probability that the w⇤ we are get-
ting above is close to �i . To be precise, we rede�ned
�i ⌘ w(� b(qr)i c) for i = 1, 2, . . . ,n0 ⌘ dn logq/r qe. If we
de�ne T (u) ⌘ |{� 2 � : w(�) � u}|, then Figure 1
illustrate the T (u) vs. u curve and locates �is therein.
Note that, we would like to �nd the area under the T (u)
vs. u curve, for which we use the sum of the vertical
slices. Now to estimate the new �i , we choose a hash
function as before, and optimize over r i bins of the hash
function. These steps are made rigorous in Section 3.
However if we restrict ourselves to the binary alphabet
then (as will be clear later) there is no immediate way
to represent such multiple bins in a compact way in the

b(q/r)ci+3

�i+3

b(q/r)ci+2

�i+2

b(q/r)ci+1

�i+1

b(q/r)ci
�i

N
um

be
ro

fc
on

�g
ur
at
io
ns

Weights

Figure 1: The T (u) vs. u curve and the illustration of �i s.

MAX-oracle. For the non-binary case, it is possible to
represent multiple bins of the hash function as simple
inequality constraints.

This idea leads to an improvement in the approximation
factor of Sw (�) to 4+� , where � decays to 0 proportional to
q�1. Note that we need to choose q to be a power of prime
so that Fq is a �eld.

In [2], the bins (as described above) are produced as
images of some function, and not as pre-images of hashes.
Since we want the number of bins to be qi , this can be
achieved by looking at images of � : Fn�iq ! � where
|{�(�) : � 2 Fn�iq }| = qn�i . The rest of the analysis of [2]
is almost same as above. The bene�t of this approach is
that the MAX-oracle just has to solve an unconstrained
optimization here. Implementing our multi-bin idea for
this perspective of [2] is not straight-forward as we can
no longer use inequality constraints for this. However, as
we show later, we found a way to combine bins here in a
succinct way generalizing the design of �. As a result, we
get the same approximation guarantee as in MB-WISH,
with the oracle load heavily reduced (this algorithm, that
we call Unconstrained MB-WISH, can be found
in Section 4).

3 THE MB-WISH ALGORITHM AND
ANALYSIS

Let us assume � = Fnq where q is a prime-power. Let
us also �x an ordering among the elements of Fq ⌘
{�0,�1, . . . ,�q�1} and write �0 � �1 � · · · � �q�1. In
this section, the symbol ‘�’ just signi�es a �xed ordering
and has no real meaning over the �nite �eld. Extend-
ing this notation, for any two distinct vectors x ,� 2 Fmq ,
we will say x � � if and only if the ith coordinates of
x and �, satisfy xi < �i for all i = 1, . . . ,m. Below 1
denotes an all-one vector of a dimension that would be

clear from context. Also, for any event E let 1[E] denote
the indicator for the event E.
The MAX-oracle for MB-WISH performs the following
optimization, given A 2 Fm⇥n

q ;b, s 2 Fmq :
max

� 2Fnq :A�+b�s
w(�). (6)

The modi�ed WISH algorithm is presented as Algorithm
1. The main result of this section is below.

Algorithm 1MB-WISH algorithm for � = Fnq , a weight
functionw and an input parameter r  b q�12 c
Initialize: � =

q
3r (12 � r

q)2, ` = d 1� ln 2n
� e, n0 =

dn logq/r qe
M0 ⌘ max� 2Fnq w(�)
for i 2 {1, 2, . . . ,n0} do
for k 2 {1, . . . , `} do
Sample hash functions hi ⌘ hAi ,b i uniformly at
random fromHi,n as de�ned in (7)
w (k)
i = max� :Ai�+b i ��r ·1w(�)

end for
Mi = Median(w (1)

i ,w
(2)
i , . . . ,w

(`)
i)

end for
ReturnM0 + (qr � 1)Õn0�1

i=0 Mi+1
� q
r
� i

Theorem 1. Suppose q > 2 is a prime power, � = Fnq
and r  b q�12 c is a positive integer. For any � > 0, Al-
gorithm 1 makes �(n log n

�) calls to the MAX-oracle, and
with probability � 1 � � outputs a (qr)2-approximation of
Sw (�).
By setting r = b q�12 c, our algorithm provides a 4(1 +
1

q�1)2-approximation, when q is odd, and 4(1 + 2
q�2)2-

approximation, when q > 2 is even.

The constant in the big-O term in the number of calls to
the oracle is a function of q and r . In particular, when
r = b q�12 c and q odd, this constant varies as q2 logq. We
can tune the value of r to reduce the number of calls to
the oracle at the expense of the approximation factor.

The theorem will be proved by a series of lemmas. The
key trick that we are using is to ask the MAX-oracle to
solve an optimization problem over not a single bin, but
multiple bins of the hash function. This is going to boost
the probability that our estimates of �is are good. In
particular we will solve the optimization over rm bins
of the hash function. The hash family is de�ned in the
following way. We have hA,b : Fn ! Fm : x 7! Ax + b,
the operations are over Fq . Let

Hm,n = {hA,b : A 2 Fm⇥n
q ,b 2 Fmq }. (7)

For readers familiar with coding theory, the basis behind
our technique is simple. The set of con�gurations {� 2
Fnq : A� = 0} forms a linear code of dimension n �m.
The bins of the hash function de�ne the cosets of this
linear code. We would like to chose qr cosets of a random
linear code and the �nd the optimum value of w over
the con�gurations of these cosets as the MAX-oracle. To
choose a hash function uniformly and randomly from
H , we can just choose the entries of A and b uniformly
at random from Fq independently.

Note that, the hash familyHm,n as de�ned in (7) is uni-
form and pairwise independent.
Lemma 1. Let us de�ne Z� to be the indicator random
variable denotingA�+b � �r ·1 for some r 2 {0, . . . ,q�1}
and A,b randomly and uniformly sampled from Hm,n .
Then Pr(Z� = 1) = � r

q
�m and for any two distinct con�g-

urations �1,�2 2 Fnq the random variables Z�1 and Z�2 are
independent.

Fix an ordering of the con�gurations (�i , 1  i  qn)
such that 1  j  qn ,w(�j) � w(�j+1). For i 2
{0, 1, 2, . . . ,n0 ⌘ dn logq/r qe}, de�ne �i = w(� bt i c),
where t = q

r . We takew(�k) = 0 for k > qn . See Figure 1
for an illustration.

To prove Thm. 1 we need the following crucial lemma.
Lemma 2. Let Mi = Median(w (1)

i , . . . ,w
(`)
i) be de�ned

as in the Algorithm 1. Then for � = q
3r (12 � r

q)2, we have,
Pr

✓
Mi 2 [�min(i+1,n0), �max(i�1,0)]

◆
� 1 � 2 exp(�� `).

From Lemma 2, the output of the algorithm lies in the
range [L0,U 0] with probability at least 1 � � where
L0 = �0 + (t � 1)Õn0�1

i=0 �min{i+2,n0 }t i and U 0 = �0 +

(t � 1)Õn0�1
i=0 �it i . L0 and U 0 are a factor of t2 apart.

Now, following an argument similar to (5), we can show
L0  Sw (�)  U 0. Therefore Algorithm 1 provides a
t2-approximation to S�(w) and the total number of calls
to the MAX-oracle is n0` + 1 = O(n log(n/�)). The full
proof of Theorem 1 is deferred to the Appendix A in the
supplementary material.

To exemplify this result, suppose q = 3. In this case
the algorithm provides a 9-approximation. Later, in the
experimental section, we have used a ferromagnetic Potts
model with q = 5. MB-WISH provides a 25

4 = 6.25-
approximation in that case. Note that, for a 5-ary Potts
model, it is only natural to use our algorithm instead of
converting it to binary in conjunction with the original
algorithm of Ermon et al.

Instead of pairwise independent hash families, if we em-
ploy k-wise independent families, it leads to a better
decay probability of error. However it does not improve
the approximation factor.

4 MB-WISHWITH UNCONSTRAINED
OPTIMIZATION ORACLE

In this section, we modify and generalize the results of
Achlioptas and Jiang [2] to formulate a version of MB-
WISH that can use unconstrained optimizers as theMAX-
oracle. We call this algorithm Unconstrained MB-
WISH. Let us assume � = Fnq where q is a prime-power.
As before, let us �x an ordering among the elements of
Fq ⌘ {�0,�1, . . . ,�q�1} and write �0 � �1 � · · · � �q�1.
Recall that, here the symbol ‘�’ signi�es a �xed ordering
and has no real meaning over the �nite �eld.

The MAX-oracle for Unconstrained MB-WISH
performs an unconstrained optimization of the following
form, given A 2 Fn⇥mq ,b 2 Fnq and a set B ✓ Fmq :

max
� 2B

w(A� + b). (8)

The aim is to carefully design B so that all the desir-
able statistical properties are satis�ed. This part is quite
di�erent from the hashing-based analysis and not an
immediate extension of [2]. We provide the algorithm
(Unconstrained MB-WISH) and its analysis in the
next section.

The Unconstrained MB-WISH algorithm is pre-
sented as Algorithm 2. The main result of this section is
the following.

Theorem 2. Suppose q > 2 is a power of a prime and a
positive integer r  b q�12 c. Let � = Fnq . For any � > 0,
Algorithm 2 makes �(n log n

�) calls to the MAX-oracle
(cf. (8)), and with probability at least 1 � � outputs a (qr)2-
approximation of Sw (�).

To prove this theoremwe borrow some ideas from coding
theory. We de�ne a linear q-ary code C of dimension
n �m and length n as the set of vectors {Ax : x 2 Fn�mq }
where A is a full-rank matrix of size n ⇥ n �m and rank
n �m. For a vector a 2 Fnq , we de�ne the set {a +C} as a
coset of C . It is well known that Fnq is partitioned by the
qm distinct cosets, each of size qn�m . The main technique
behind our algorithm is that for a random linear code C
of size qn�m , we randomly sample rm distinct cosets of
C . Subsequently, we �nd the maximum valuew(x) of an
element among those rm cosets.

Let E 2 Fn⇥nq be an n ⇥ n full rank matrix randomly
and uniformly chosen from the set of all n ⇥ n rank-n
matrices over Fq . One can choose such a matrix via
rejection sampling: independently and uniformly sample
the entries of the matrix from Fq and then reject the
matrix and resample it if it is not full rank. Let A denote
the random matrix formed by the �rst n �m columns
of E as columns and let R be the random matrix formed

Algorithm 2 Unconstrained MB-WISH algo-
rithm for � = Fnq and a weight functionw

Initialize: ` ! d 1� ln 2n
� e, r ,n0 = dn logq/r qe

M0 ⌘ max� 2Fnq w(�)
for i 2 {1, 2, . . . ,n} do
for k 2 {1, . . . , `} do
Sample a full rank matrix uniformly at random
from the set of all full rank n⇥n matrices in Fn⇥nq
and construct matricesA and R by taking the �rst
n � i columns and the last i columns respectively.
Sample b 2 Fnq uniformly at random
w (k)
i = max x 2Fn�iq

�2{�0,�1, ...,�r�1 }i
w(Ax + R� + b)

end for
Mi = Median(w (1)

i ,w
(2)
i , . . . ,w

(`)
i)

end for
for i 2 {n + 1, . . . ,n0} do
for k 2 {1, . . . , `} do
Sample full rank matrix A 2 Fn⇥nq ,b 2 Fnq uni-
formly at random. Set Si as de�ned in Equation
(10)
w (k)
i = max�2Si w(A� + b)

end for
Mi = Median(w (1)

i ,w
(2)
i , . . . ,w

(`)
i)

end for
ReturnM0 + (qr � 1)Õn0�1

i=0 Mi+1
� q
r
� i

by the remainingm columns of E as columns. Also let
b be a vector sampled randomly and uniformly from Fnq .
The MAX-oracle for Unconstrained MB-WISH
is going to perform the following optimization when
m  n:

max
�12Fn�mq ,�22{�0,�1, ...,�r�1 }m

w(A�1 + R�2 + b). (9)

Analogous to Theorem 1, here we are creating union of
rm distinct random bins. If we can prove that, for any
element of Fnq , the probability that it belongs to one of
these bins is (rq)m and for any pair of di�erent elements
from Fnq , whether they belong to one of these bins are
independent (pairwise independence), the rest of the
proof of Theorem 2 will just follow that of Theorem 1.

In particular, we just have to prove the lemma that is
analogous to Lemma 1. De�ne a set

SA,R,b ⌘ {Ax + b + R� | x 2 Fn�mq ,

� 2 {�0,�1, . . . ,�r�1}m}.

For each con�guration � 2 Fnq , associate an indicator
random variable Z� denoting whether � 2 SA,R,b .

Lemma 3. For each con�guration � 2 Fnq , we must have

Pr(Z� = 1) =
⇣
r
q

⌘m
and moreover for any two distinct

distinct con�gurations �1,�2 2 Fnq , we must have Pr(Z�1 =

1 ^ Z�2 = 1)  (Pr(Z� = 1))2.
Although the two random variables Z�1 and Z�2 de�ned
above are not independent, we show that they are nega-
tively correlated. Note that, the pairwise independence
was then subsequently used in computing a variance for
the Chebyshev’s inequality (see Lemma 2). However,
the negative correlation is su�cient to obtain an upper
bound on the variance. From Algorithm 2 it is clear
that Lemma 3 allows us to obtain the values of Mi for
i 2 {1, 2, . . . ,n}. Indeed, the MAX-oracle is not well de-
�ned whenm > n. In order to obtain the values ofMi for
i 2 {n + 1, . . . ,n0}, we propose the following technique.
Recall that the elements of Fnq can be represented as n
dimensional vectors where each element belongs to Fq .
Moreover we de�ned an ordering over the elements of
the �nite �eld Fq ⌘ {�0,�1, . . . ,�q�1} so that �i � � j
for i < j. Consider the lexicographic ordering of the
elements (vectors) of Fnq . Let sm be the d rm

qm�n e th element
in this ordering of Fnq . De�ne the set

Sm = {x 2 Fnq | x � sm} (10)

for allm > n. Now, let A 2 Fn⇥nq be an n ⇥ n full rank
matrix randomly and uniformly chosen from the set of all
n ⇥ n rank-n matrices over Fq , which can be generated
by rejection sampling as before. Let b 2 Fnq be a uni-
form random vector. Subsequently, the MAX-Oracle for
Unconstrained MB-WISH solves the following
optimization problem form > n:

max
�2Sm

w(A� + b).

In order to analyze the statistical properties of this oracle,
de�ne the random setTA,b,m ⌘ {A�+b | � 2 Sm}. Again,
for each con�guration � 2 Fnq , associate an indicator
random variable Z� denoting � 2 TA,b,m .
Lemma 4. For each con�guration � 2 Fnq , we must have⇣
r
q

⌘m � 1
qn  Pr(Z� = 1) 

⇣
r
q

⌘m
and moreover for any

two distinct con�gurations �1,�2 2 Fnq , Pr(Z�1 = 1^Z�2 =

1)  (Pr(Z� = 1))2.
Given the two lemmas, the remainder of the proof of
Theorem 2 follows that of Theorem 1 straightforwardly.

5 EXPERIMENTAL RESULTS

All the experiments were performed in a shared par-
allel computing environment that is equipped with 50

compute nodes with 28 cores Xeon E5-2680 v4 2.40GHz
processors with 128GB RAM. Further experiments on
estimating the TV distance is reported in Appendix B.

Experiments on simulated Pottsmodel (regular de-
gree graph). We implemented our algorithm to esti-
mate the partition function of Potts Model. Recall that
the partition function of the Potts model on a graph
G = (V ,E) is given in Eq. (3). First of all, we com-
puted partition functions for small graphs where a brute-
force algorithm can also be used to compute the ground
truth function values. For our simulation, we have ran-
domly generated the graph G with number of nodes
n ⌘ |V | varying in 4, 5, 6, 7, 8, 9, and corresponding regu-
lar degree d = 2, 2, 4, 4, 4, 4, using a python library net-
workx. We took the number of states of the Potts model
q = 5, the external force H and the spin-coupling � to
be 0.1 and then varied the values of � . The partition
functions for di�erent cases are calculated using both
brute force and our algorithm (MB-WISH). We have
used a python module constraint to handle the con-
strained optimization for MAX-oracle. The obtained ap-
proximation factors for di�erent � are listed in Table 1.
The worst approximation factor observed in all these
trials is 5.442. Note that the theoretical guarantee on
the approximation ratio for this setting obtained from
Theorem 1 is 6.25. This experiment shows that, for small
graphs the partition functions computed by MB-WISH
are good approximations to the actual values.

For graphs with larger number of vertices, it is not pos-
sible to compute the ground truth partition function
of Potts Model by brute force. Therefore, we compare
the partition function computed by Unconstrained
MB-WISH (Ẑ) with two standard techniques: Belief
propagation (BP) [16] and Markov-Chain-Monte-Carlo
(MCMC) [13]. It is known that BP provides exact result
when the underlying graph is cycle-free [16]. To imple-
ment this we use the PGMPY library in python [1].
For MCMC, we employ the popular Metropolis-Hastings
(MH) algorithm [17] to sample random points from �,
where we evaluate the function w : � ! R and take a
scaled-sum to estimate the discrete integration problem.
We have calculated the average of the partition function
over 10 di�erent trials of theMH algorithm, and each trial
was given the same time as that of Unconstrained
MB-WISH.

Again, for our simulation, we have randomly generated
the graph G with number of nodes n ⌘ |V | varying
in 10, . . . , 50, and with regular degree d = 4 using a
python library networkx. We took the number of
states of the Potts model q = 5, the external force H and
the spin-coupling to be 0.1 and then varied the values
of � . In our experiments each optimization instances

� n = 4,d = 2 n = 5,d = 2 n = 6,d = 4 n = 7,d = 4 n = 8,d = 4 n = 9,d = 4
0 0.976 1.220 0.610 1.907 0.953 1.192
5 0.580 0.708 1.639 0.755 0.630 0.599
10 0.7470 1.191 3.271 0.989 1.875 1.25
15 1.430 1.036 1.013 1.224 1.399 1.692
20 1.032 1.590 1.141 1.173 1.365 1.491
25 0.839 1.118 1.339 1.035 1.429 1.326
30 0.510 4.0562 2.226 1.060 0.690 2.122
35 1.073 5.442 0.489 2.871 1.639 1.263
40 1.210 2.434 0.980 0.582 0.666 0.969
45 1.127 4.640 2.348 1.336 0.3673 1.341
50 1.152 1.025 2.511 3.4307 1.1522 2.636

Table 1: The ratio of the partition function calculated by MB-WISH (r = 2) and the actual value calculated by brute
force: Ẑ

Z .

n
� = 1 � = 2 � = 5

MB-WISH BP MCMC MB-WISH BP MCMC MB-WISH BP MCMC
10 15.16 15.51 12.60 14.35 14.98 12.06 13.07 13.56 10.65
15 23.10 23.27 20.51 22.35 22.47 19.70 19.95 20.35 17.59
20 31.04 31.03 28.69 29.98 29.96 27.62 26.93 27.13 24.80
25 38.28 38.79 36.63 37.41 37.45 35.29 33.41 33.92 31.76
30 46.23 46.55 44.49 44.51 44.94 42.89 40.82 40.705 38.65
40 61.88 62.06 59.75 59.55 59.92 57.61 54.96 54.27 51.96
50 77.31 77.58 75.28 74.69 74.90 72.59 68.62 67.84 65.54

Table 2: Log-partition function computed by unconstrained MB-WISH, Belief Propagation (BP) and Markov Chain Monte
Carlo (MCMC) respectively for the cases of � = 1, 2 and 5.

are run with a timeout of 10, 15, 20, 20, 25 minutes for
n = 20, 25, 30, 40, 50 respectively (we let the n = 10 case
run without a time constraint). The results are summa-
rized in Table 2. It can be observed that the partition func-
tions computed with MCMC deviate somewhat from that
computed with belief propagation, whereas MB-WISH
gives values closer to the belief propagation results.

Since for cycle-free graphs, BP can provide exact result,
it gives an opportunity to compare MB-WISH with the
single-bin version (i.e., Ermon et al.’s original algorithm)
for moderate values of n and q. We perform the next ex-
periment on a path-graph, which is an undirected graph
where there are exactly two nodes of degree 1 and every
other node has degree 2. We perform the experiment
with the number of nodes n ⌘ |V | varying in 20, . . . , 50
on a path-graph such that the number of states q = 31
and the external parameters � = 0.1, H = 0.5 and � = �5.
For two di�erent values of r , respectively 1 (single-bin)
and 15 (multi-bin) we compute the estimates of the parti-
tion function. We have plotted the ratio of the estimates
with the corresponding ones computed by BP (which
is exact), in Figure 2. It is clear from the �gure and the
table that the Unconstrained MB-WISH performs

much better than its single-bin counterpart. The timeout
for each call to the oracle is chosen to be n/10 where n
is the number of nodes in the graph.

Real-world constraint satisfaction problem (CSPs).
Many instances of real-world graphical models are
available in http://www.cs.huji.ac.il/
project/PASCAL/showExample.php. No-
tably, some of them (e.g., image alignment, protein
folding) are de�ned on non-Boolean domains, which
justify the use of MB-WISH. We have computed the
partition functions for several of them.

The dataset Network.uai is a Markov network with
120 nodes each having a binary value. A con�guration
here is a binary sequence of length 120. To calculate the
partition function, we need to �nd the sum of weights
for 2120 di�erent con�gurations. In order to use Uncon-
strained MB-WISH, we view each con�guration
as a 16-ary string of length 30. Our results for the log-
partition came out to be 156.00 with one hour time out
for each call to the MAX-oracle. The benchmark for the
log-partition function is provided to be 163.204.

Figure 2: Comparison of approximation ratios obtained
by using Unconstrained MB-WISH (red) and
single-bin (Ermon et al.’s method) (blue). A ratio closer
to 1 is better.

The Object detection dataset comprised of 60
nodes each having a 11-ary value and by Uncon-
strained MB-WISH we found the log-partition
function to be �38.9334. The CSP dataset is a Markov
network with 30 node having a ternary value: we found
the log partition function to be �39.9933. For these
datasets there were no baselines available for compari-
son. The purpose of these experiments were to establish
the scalability of MB-WISH.

6 CONCLUSION

Large scale counting problems (or discrete integrations of
nonnegative weight functions) are often computationally
intractable, but come up frequently in variety of infer-
ence tasks, most prominently as evaluations of partition
functions. In this paper we extend a recent technique of
hashing and optimization due to Ermon et al. for discrete
integration over hypercube {0, 1}n to that over hyper-
grids {0, 1, . . . ,q � 1}n . The trivial generalization results
in an approximation factor that rapidly becomes worse
as q increases. We remedy the situation by providing
constant factor approximation algorithms for all q.

The main drawback of this approach of discrete integra-
tion is the delegation of a hard combinatorial optimiza-
tion to an oracle. In this line of work, an open problem
is to come up with hash functions that maintain the es-
sential properties (such as pairwise independence), but
make the oracle optimization amenable. While in general
this is not possible, for certain classes of weight func-
tions this may be a plausible task and requires further

exploration.

Acknowledgements: This research is supported in
parts by NSF awards CCF 1642658, CCF 1618512, CCF
1909046 and CCF 1934846.

References

[1] PGMPY documentation. http://pgmpy.
org/. Accessed: 2018-06-28.

[2] Dimitris Achlioptas and Pei Jiang. Stochastic inte-
gration via error-correcting codes. In Conference
on Uncertainty in Arti�cial Intelligence (UAI), pages
22–31, 2015.

[3] Elazar Birnbaum and Eliezer L Lozinskii. The good
old davis-putnam procedure helps counting models.
Journal of Arti�cial Intelligence Research, 10:457–
477, 1999.

[4] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S.
Meel, Sanjit A. Seshia, and Moshe Y. Vardi.
Distribution-aware sampling and weighted model
counting for SAT. In Proceedings of the Twenty-
Eighth AAAI Conference on Arti�cial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada.,
pages 1722–1730, 2014.

[5] Supratik Chakraborty, Kuldeep S. Meel, and
Moshe Y. Vardi. Algorithmic improvements in
approximate counting for probabilistic inference:
From linear to logarithmic SAT calls. In Proceedings
of the Twenty-Fifth International Joint Conference
on Arti�cial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 3569–3576, 2016.

[6] Luc Devroye and Gábor Lugosi. Combinatorial
methods in density estimation. Springer Science
& Business Media, 2012.

[7] Stefano Ermon, Carla Gomes, Ashish Sabharwal,
and Bart Selman. Taming the curse of dimensional-
ity: Discrete integration by hashing and optimiza-
tion. In Proceedings of the 30th International Confer-
ence on Machine Learning (ICML-13), pages 334–342,
2013.

[8] Stefano Ermon, Carla Gomes, Ashish Sabharwal,
and Bart Selman. Low-density parity constraints for
hashing-based discrete integration. In International
Conference on Machine Learning, pages 271–279,
2014.

[9] Stefano Ermon, Carla P Gomes, Ashish Sabharwal,
and Bart Selman. Optimization with parity con-
straints: From binary codes to discrete integration.

In Uncertainty in Arti�cial Intelligence, page 202,
2013.

[10] Leslie Ann Goldberg and Mark Jerrum. Approxi-
mating the partition function of the ferromagnetic
potts model. Journal of the ACM (JACM), 59(5):25,
2012.

[11] Carla P Gomes, Ashish Sabharwal, and Bart Selman.
Model counting: A new strategy for obtaining good
bounds. In AAAI, pages 54–61, 2006.

[12] Carla P Gomes, Willem Jan van Hoeve, Ashish Sab-
harwal, and Bart Selman. Counting csp solutions
using generalized xor constraints. In AAAI, pages
204–209, 2007.

[13] Mark Jerrum and Alistair Sinclair. The Markov
chain Monte Carlo method: an approach to approx-
imate counting and integration. Approximation al-
gorithms for NP-hard problems, pages 482–520, 1996.

[14] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A
polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries.
Journal of the ACM (JACM), 51(4):671–697, 2004.

[15] Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek.
Counting models using connected components. In
Proceedings of the Seventeenth National Conference
on Arti�cial Intelligence and Twelfth Conference on
on Innovative Applications of Arti�cial Intelligence,
July 30 - August 3, 2000, Austin, Texas, USA., pages
157–162, 2000.

[16] Daphne Koller and Nir Friedman. Probabilistic
graphical models: principles and techniques. MIT
press, 2009.

[17] DP Kroese, T Taimre, and ZI Botev. Handbook of
Monte Carlo Methods. John Willey & Sons Inc.,
Hoboken, New Jersey, 2011.

[18] Gilles Pesant. Counting solutions of csps: A struc-
tural approach. In IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Arti�cial
Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005, pages 260–265, 2005.

[19] Renfrey Burnard Potts. Some generalized order-
disorder transformations. In Mathematical pro-
ceedings of the cambridge philosophical society, vol-
ume 48, pages 106–109. Cambridge University Press,
1952.

[20] Igal Sason and Sergio Verdú. f -divergence in-
equalities. IEEE Transactions on Information Theory,
62(11):5973–6006, 2016.

[21] Michael Sipser. A complexity theoretic approach to
randomness. In Proceedings of the �fteenth annual
ACM symposium on Theory of computing, pages
330–335. ACM, 1983.

[22] Douglas R Stinson. On the connections between
universal hashing, combinatorial designs and error-
correcting codes. Congressus Numerantium, pages
7–28, 1996.

[23] Larry Stockmeyer. On approximation algorithms
for# p. SIAM Journal on Computing, 14(4):849–861,
1985.

[24] Marc Thurley. An approximation algorithm for#
k-sat. arXiv preprint arXiv:1107.2001, 2011.

[25] Leslie G Valiant. The complexity of computing the
permanent. Theoretical computer science, 8(2):189–
201, 1979.

[26] Leslie G Valiant and Vijay V Vazirani. NP is as easy
as detecting unique solutions. Theoretical Computer
Science, 47:85–93, 1986.

[27] Martin J Wainwright, Michael I Jordan, et al. Graph-
ical models, exponential families, and variational in-
ference. Foundations and Trends® in Machine Learn-
ing, 1(1–2):1–305, 2008.

[28] WeiWei and Bart Selman. A new approach tomodel
counting. In International Conference on Theory and
Applications of Satis�ability Testing, pages 324–339.
Springer, 2005.

