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This supplementary material contains additional graph
theory, results, and definitions, as well as the proofs of
the main paper.

1 GRAPH THEORY

In the main paper, we introduce the class of DGs to rep-
resent causal structures. One can represent marginal-
ized DGs using the larger class of DMGs. A directed
mixed graph (DMG) is a graph such that any pair of
nodes α, β ∈ V is joined by a subset of the edges
{α→ β, α← β, α↔ β}.

We say that edges α → β and α ← β are directed,
and that α ↔ β is bidirected. We say that the edge
α → β has a head at β and a tail at α. α ↔ β
has heads at both α and β. We also introduced a walk
〈α1, e1, α2, . . . , αn, en, αn+1〉. We say that α1 and αn+1

are endpoint nodes. A nonendpoint node αi on a walk is
a collider if ei−1 and ei both have heads at αi, and other-
wise it is a noncollider. A cycle is a path 〈α, e1, . . . , β〉
composed with an edge between α and β. We say that α
is an ancestor of β if there exists a directed path from α to
β. We let an(β) denote the set of nodes that are ancestors
of β. For a node set C, we let an(C) = ∪β∈Can(β). By
convention, we say that a trivial path (i.e., with no edges)
is directed and this means that C ⊆ an(C).

For DAGs d-separation is often used for encoding inde-
pendences. We use the analogous notion of µ-separation
which is a generalization of δ-separation Didelez (2000,
2008); Meek (2014); Mogensen and Hansen (2020).

We use the class of DGs to represent the underlying, data-
generating structure. When only parts of the causal sys-
tem is observed, the class of DMGs can be used to rep-
resent marginalized DGs Mogensen and Hansen (2020).
This can be done using latent projection Verma and Pearl
(1991); Mogensen and Hansen (2020) which is a map that
for a DG (or more generally, for a DMG), D = (V,E),
and a subset of observed nodes/processes, O ⊆ V , pro-

vides a DMG, m(D, O), such that for all A,B,C ⊆ O,

A ⊥µ B | C [D]⇔ A ⊥µ B | C [m(D, O)].

See Mogensen and Hansen (2020) for details on this
graphical marginalization. We say that two DMGs,
G1 = (V,E1),G2 = (V,E2), are Markov equivalent if

A ⊥µ B | C [G1]⇔ A ⊥µ B | C [G2],

for all A,B,C ⊆ V , and we let [G1] denote the Markov
equivalence class of G1. Every Markov equivalence class
of DMGs has a unique maximal element Mogensen and
Hansen (2020), i.e., there exists G ∈ [G1] such that G is a
supergraph of all other graphs in [G1].

For a DMG, G, we will let D(G) denote the directed part
of G, i.e., the DG obtained by deleting all bidirected edges
from G.

Proposition 1. Let D = (V,E) be a DG, and let O ⊆ V .
Consider G = m(D, O). For α, β ∈ O it holds that
α ∈ anD(β) if and only if α ∈ anD(G)(β). Furthermore,
the directed part of G equals the parent graph of D on
nodes O, i.e., D(G) = PO(D).

Proof. Note first that α ∈ anD(β) if and only if α ∈
anG(β) Mogensen and Hansen (2020). Ancestry is only
defined by the directed edges, and it follows that α ∈
anG(β) if and only if α ∈ anD(G)(β). For the second
statement, the definition of the latent projection gives that
there is a directed edge from α to β in G if and only if
there is a directed path from α to β in D such that no
nonendpoint node is in O. By definition, this is the parent
graph, PO(D).

In words, the above proposition says that if G is a
marginalization (done by latent projection) of D, then
the ancestor relations of D and D(G) are the same among
the observed nodes. It also says that our learning target,



the parent graph, is actually the directed part of the latent
projection on the observed nodes. In the next subsection,
we use this to describe what is actually identifiable from
the induced independence model of a graph.

1.1 MAXIMAL GRAPHS AND PARENT
GRAPHS

Under faithfulness of the local independence model and
the causal graph, we know that the maximal DMG is a cor-
rect representation of the local independence structure in
the sense that it encodes exactly the local independences
that hold in the local independence model. From the max-
imal DMG, one can use results on equivalence classes
of DMGs to obtain every other DMG which encodes the
observed local independences (Mogensen and Hansen,
2020) and from this graph one can find the parent graph
as simply the directed part. However, it may require an
infeasible number of tests to output such a maximal DMG.
This is not surprising, seeing that the learning target en-
codes this complete information on local independences.

Assume that D0 = (V,E) is the underlying causal graph
and that G0 = (O,F ), O ⊆ V is the marginalized
graph over the observed variables, i.e., the latent pro-
jection of D0. In principle, we would like to output
P(D0) = D(G0), the directed part of G0. However, no
algorithm can in general output this graph by testing only
local independences as Markov equivalent DMGs may
not have the same parent graph. Within each Markov
equivalence class of DMGs, there is a unique maximal
graph. Let Ḡ denote the maximal graph which is Markov
equivalent of G0. The DG D(Ḡ) is a supergraph of D(G0)
and we will say that a learning algorithm is complete if
it is guaranteed to output D(Ḡ) as no algorithm testing
local independence only can identify anything more than
the equivalence class.

2 COMPLETE LEARNING

The CS algorithm provides sound learning of the parent
graph of a general DMG under the assumption of ances-
tral faithfulness. For a subclass of DMGs, the algorithm
actually provides complete learning. It is of interest to
find sufficient graphical conditions to ensure that the al-
gorithm removes an edge α→ β which is not in the true
parent graph. In this section, we state and prove one such
condition which can be understood as ‘the true parent set
is always found for unconfounded processes’. We let D
denote the output of the CS algorithm.

Proposition 2. If α 6→G0 β and there is no γ ∈ V \ {β}
such that γ ↔G0 β, then α 6→D β.

Proof. Let D1,D2, . . . ,DN denote the DGs that are con-

structed when running the algorithm by sequentially re-
moving edges, starting from the complete DG, D1. Con-
sider a connecting walk from α to β in G0. It must be
of the form α ∼ . . . ∼ γ → β, γ 6= α. Under ancestral
faithfulness, the edge γ → β is in D, thus γ ∈ paDi

(β)
for all Di that occur during the algorithm, and there-
fore when 〈α, β | paDi

(β) \ {α}〉 is tested, the walk
is closed. Any walk from α to β is of this form, thus also
closed, and we have that α ⊥µ β | paDi

(β) and there-
fore 〈α, β | paDi

(β) \ {α}〉 ∈ I. The edge α →Di
β is

removed and thus absent in the output graph, D.

3 ANCESTRY PROPAGATION

We state Subalgorithm 4 here.

input :a local independence oracle for IO and a
DG, D = (O,E)

output :a DG on nodes O
initialize Er = ∅ as the empty edge set;
foreach (α, β, γ) ∈ V × V × V such that α, β, γ

are all distinct do
if α ∼D β, β →D γ, and α 6→D γ then

if 〈α, γ | ∅〉 ∈ IO then
update Er = Er ∪ {β → γ};

end
end

end
Update D = (V,E \ Er);
return D

Subalgorithm 4: Ancestry propagation

Composing Subalgorithm 1, Subalgorithm 4, and Subal-
gorithm 2 is referred to as the causal screening, ancestry
propagation (CSAP) algorithm. If we use Subalgorithm
3 instead of Subalgorithm 4, we call it the CSAPC algo-
rithm (C for cheap as this does not entail any additional
independence tests compared to CS).

4 APPLICATION AND SIMULATIONS

In this section, we provide some additional details about
the c. elegans neuronal network and the simulations.

4.1 C. ELEGANS NEURONAL NETWORK

For each connection between two neurons a different
number of synapses are present (ranging from 1 to 37).
We only consider connections with more than 4 synapses
when we define the true underlying network. When sam-
pling the subnetworks, highly connected neurons were



sampled with higher probability to avoid a fully connected
subnetwork when marginalizing.

4.2 COMPARISON OF ALGORITHMS

As noted in the main paper, the dFCI algorithm solves
a strictly harder problem. By using the additional graph
theory in the supplementary material, we can understand
the output of the dFCI algorithm as a supergraph of the
maximal DMG, Ḡ. There is also a version of the dFCI
which is guaranteed to output not only a supergraph of
Ḡ, but the graph Ḡ itself. Clearly, from the output of the
dFCI algorithm, one can simply take the directed part
of the output and this is a supergraph of the underlying
parent graph.

5 PROOFS

In this section, we provide the proofs of the result in the
main paper.

Proof of Proposition 5. Let D denote the causal graph.
Assume first that α 6→D β. Then gβα is identically zero
over the observation interval, and it follows directly from
the functional form of λβt that α 6→ β | V \ {α}. This
shows that the local independence model satisfies the
pairwise Markov property with respect to D.

If instead gβα 6= 0 over J , there exists r ∈ J such
that gβα(r) 6= 0. From continuity of gβα there exists
a compact interval of positive measure, I ⊆ J , such
that infs∈I(g

βα(s)) ≥ gβαmin and gβαmin > 0. Let i0 and i1
denote the endpoints of this interval, i0 < i1. We consider
now the events

Dk = (Nα
T−i0 −N

α
T−i1 = k,Nγ

T = 0 for all γ ∈ V \ {α})

k ∈ N0. Then under Assumption 4, for all k

λβT1Dk
≥ 1Dk

∫
I

gβα(T − s) dNα
s ≥ g

βα
min · k · 1Dk

.

Assume for contradiction that β is locally independent
of α given V \ {α}. Then λβT = E(λβT | FVT ) = E(λβT |
FV \{α}T ) is constant on ∪kDk and furthermore P(Dk) >
0 for all k. However, this contradicts the above inequality
when k →∞.

Proof of Proposition 12. Let D denote the DG which is
output by the algorithm. We should then show that
P(D0) ⊆ D. Assume that α →P(D0) β. In this case,

there is a directed path from α to β in D0 such that no
nonendpoint node on this directed walk is in O (the ob-
served coordinates). Therefore for anyC ⊆ O\{α} there
exists a directed µ-connecting walk from α to β inD0 and
by ancestral faithfulness it follows that 〈α, β | C〉 /∈ I.
The algorithm starts from the complete directed graph,
and the above means that the directed edge from α to β
will not be removed.

Proof of Corollary 13. Consider some directed path from
α to β in D0 on which no node is in C. Then there is also
a directed path from α to β on which no nodes is in C in
the graph P(D0), and therefore also in the output graph
using Proposition 12.

Proof of Proposition 15. Assume that there is a µ-
connecting walk from α to β given {β}. If this walk
has no colliders, then it is a directed trek, or can be re-
duced to one. Otherwise, assume that γ is the collider
which is the closest to the endpoint α. Then γ ∈ an(β),
and composing the subwalk from α to γ with the directed
path from γ to β gives a directed trek, or it can be reduced
to one. On the other hand, assume there is a directed
trek from α to β. This is µ-connecting from α to β given
{β}.

Proof of Proposition 17. Assume β →P(D0) γ. Subalgo-
rithms 1 and 2 are both simple screening algorithms, and
they will not remove this edge. Assume for contradiction
that β → γ is removed by Subalgorithm 3. Then there
must exist α 6= β, γ and a directed trek from α to β in
D0. On this directed trek, γ does not occur as this would
imply a directed trek either from α to γ or from β to α,
thus implying α →D γ or β →D α, respectively (D is
the output graph of Subalgorithm 1). As γ does not occur
on the trek, composing this trek with the edge β → γ
would give a directed trek from α to γ. By faithfulness,
〈α, γ | γ〉 /∈ I, and this is a contradiction as α → γ
would not have been removed during Subalgorithm 1.

We consider instead CSAP. Assume for contradiction that
β → γ is removed during Subalgorithm 4. There exists
in D0 either a directed trek from α to β or a directed trek
from β to α. If γ is on this trek, then γ is not µ-separated
from α given the empty set (recall that there are loops at
all nodes, therefore also at γ), and using faithfulness we
conclude that γ is not on this trek. Composing it with the
edge β → γ would give a directed trek from α to γ and
using faithfulness we obtain a contradiction.
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