
Statistically Efficient Greedy Equivalence Search

David Maxwell Chickering
Microsoft Research

Redmond, WA 98052
dmax@microsoft.com

Abstract

We establish the theoretical foundation for
statistically efficient variants of the Greedy
Equivalence Search algorithm. If each node
in the generative structure has at most k par-
ents, we show that in the limit of large data, we
can recover that structure using greedy search
with operator scores that condition on at most
k variables. We present simple synthetic ex-
periments that compare a backward-only vari-
ant of the new algorithm to GES using finite
data, showing increasing benefit of the new
algorithm as the complexity of the generative
model increases.

1 INTRODUCTION

Greedy Equivalence Search (GES) is a score-based
search algorithm that searches over the space of equiv-
alence classes of Bayesian-network structures. The al-
gorithm is appealing because (1) it explicitly (and greed-
ily) searches for the highest-scoring model, and (2) in the
large-sample limit, assuming the generative distribution
is perfect with respect to a DAG model G defined over
the observables, it is guaranteed to result with G’s equiv-
alence class; in other words, in the large-sample limit
there are no local maxima in the search space and G is
the global maximum. The GES algorithm consists of
two simple phases: Forward Equivalence Search (FES)
and Backward Equivalence Search (BES). In FES, we
greedily add edges until we reach a local maximum, and
in BES we greedily remove edges until we reach a local
maximum.

There are two potential problems with the GES algorithm
in practice. First, the branching factor of the search space
can grow to be exponential in the number of nodes if the
models reached by FES are complex. Chickering and

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

Meek (2015) solved this problem by introducing Selec-
tive Greedy Equivalence Search (SGES), which is an im-
plementation of GES that in the worst case completes in
polynomial time, yet retains the large-sample correctness
guarantees.

The second potential problem, which is addressed in the
current paper, is that of statistical efficiency: we ex-
pect the volume of data needed to attain the large-sample
guarantees of GES to grow with the number of variables
used to score the search operators. This is particularly
problematic in discrete domains, where the scoring func-
tions are effectively estimating separate multinomial dis-
tributions for each configuration of the values of a node’s
parents; the number of these configurations grows expo-
nentially with the number of parents. If GES reaches
highly-connected models as it traverses the search space,
it can prescribe calls to the scoring function that condi-
tion on almost every node in the domain.

In this paper, we show how to score BES search oper-
ators in highly-connected models using low-order calls
to the scoring function. We show that if in the genera-
tive model no node has more than k parents, we get the
large-sample guarantees of GES using calls to the scor-
ing function that “condition on” at most k nodes, and are
functions of at most k + 2 variables. We guarantee com-
putational efficiency by combining this method with the
search-space pruning of SGES, and we call the result-
ing algorithm Statistically Efficient Greedy Equivalence
Search or SE-GES for short.

We do not explore variants of the forward phase of SE-
GES that can be combined with our modified backward
phase. For practical variants of SE-GES, we want to
modify FES to reach more complex models than what
would be prescribed by the ’normal’ (i.e., not statistically
efficient) scoring function. In our experiments, we avoid
this issue by starting SE-GES with the fully-connected
model.

Our paper is organized as follows. In Section 2 we dis-

cuss related work. In Section 3, we describe our nota-
tion. In Section 4, we provide a detailed description of
both GES and SGES. In Section 5, we provide the details
of our new SE-GES algorithm. We also present the main
theorems that demonstrate the large-sample optimality of
SE-GES, although we defer the proofs of these results to
the supplemenary material. In Section 6, we present the
results of a synthetic-data experiment that compares SE-
GES to both GES and SGES. Finally, we conclude in
Section 7.

2 RELATED WORK

The relationship between GES and SE-GES mirrors, to
some extent, the relationship between the SGS algo-
rithm and the PC algorithm (Spirtes et al., 2000), which
are constraint-based approaches to learning Bayesian-
network structures. Like GES, the SGS algorithm can re-
quire scores that are functions of a large number of vari-
ables, even if the generative distribution is sparse. Like
SE-GES, the PC algorithm solves this problem by itera-
tively increasing a complexity bound.

Although SE-GES is based on scores, it traverses through
dense regions of the search space by scoring low-order
“independence facts”. As a result, SE-GES could be con-
sidered a hybrid approach that uses both a score and an
independence oracle. There are many other such hybrid
approaches to learning that leverage the constraints from
an independence test to reduce the complexity of a score-
based search algorithm. Examples include the Sparse
Candidate method of Friedman et al. (1999), the max-
min hill-climbing algorithm Tsamardinos et al. (2006),
and the H2PC algorithm of Gasse at al. (2014). Nandy
et al. (2018) prove both classical and high-dimensional
consistency for two hybrid variants of GES.

We call SE-GES statistically efficient without any for-
mal treatment of sample complexity; our main result is
that we can limit the size of the conditioning sets dur-
ing search to be as small as possible. Other researchers
have studied sample complexity of structure search more
formally, including Kalisch and Buhlmann (2007), who
prove uniform consistency for the PC algorithm, and Zuk
et al. (2006) who provide asymptotic upper and lower
bounds on the number of samples that are needed for
the generative model to be globally optimal in the score-
based setting.

3 NOTATION

We use upper-case letters (e.g., A) to denote variables,
and we use bold-face letters to represent sets of vari-
ables (e.g., A). We use calligraphic letters (e.g., G, E)

to denote statistical models and graphs. A Bayesian-
network model for a set of variables U is a pair (G,θ).
G = (V,E) is a directed acyclic graph—or DAG for
short—consisting of nodes in one-to-one correspondence
with the variables and directed edges that connect those
nodes. θ is a set of parameter values that specify all of
the conditional probability distributions. The Bayesian
network represents a joint distribution over U that fac-
tors according to the structure G. The structure G of
a Bayesian-network model represents the independence
constraints that must hold in the distribution. The set of
all independence constraints implied by the structure G
can be characterized by the Markov conditions, which
are the constraints that each variable is independent of
its non-descendants given its parents. All other inde-
pendence constraints follow from properties of indepen-
dence. A distribution defined over the variables from G
is perfect with respect to G if the set of independencies
in the distribution is equal to the set of independencies
implied by the structure G.

Two DAGs G and G′ are equivalent1—denoted G ≈ G′—
if the independence constraints in the two DAGs are
identical. Because equivalence is reflexive, symmetric,
and transitive, the relation defines a set of equivalence
classes over network structures. An equivalence class of
DAGs is an independence map (IMAP) of another equiv-
alence class of DAGs if all independence constraints im-
plied by the first class are also implied by the second
class. For two DAGs G and H, we use G ≤ H to de-
note that the equivalence class of H is an IMAP of the
equivalence class of G; we use G < H when G ≤ H and
the two equivalence classes are not the same. Verma and
Pearl (1991) show that two DAGs are equivalent if and
only if they have the same skeleton (i.e., the graph re-
sulting from ignoring the directionality of the edges) and
the same v-structures (i.e., pairs of edges X → Y and
Y ← Z where X and Z are not adjacent). As a result,
we can use a partially directed acyclic graph—or PDAG
for short—to represent an equivalence class of DAGs:
for a PDAG P , the equivalence class of DAGs is the set
that has the same skeleton and the same v-structures as
P2.

We use NAPX,Y to denote, within PDAG P , the set of
nodes that are neighbors of X (i.e., connected with an
undirected edge) and also adjacent to Y (i.e., without re-

1We make the standard conditional-distribution assump-
tions of multinomials for discrete variables and Gaussians for
continuous variables so that if two DAGs have the same inde-
pendence constraints, then they can also model the same set of
distributions.

2The definitions for the skeleton and set of v-structures for
a PDAG are the obvious extensions to these definitions for
DAGs.

gard to whether the connecting edge is directed or undi-
rected).

An edge in G is compelled if it exists in every DAG that
is equivalent to G. If an edge in G is not compelled, we
say that it is reversible. A completed PDAG (CPDAG) C
is a PDAG with two additional properties: (1) for every
directed edge in C, the corresponding edge in G is com-
pelled and (2) for every undirected edge in C the corre-
sponding edge in G is reversible. Unlike non-completed
PDAGs, the CPDAG representation of an equivalence
class is unique.

We use PaPY and ChPY to denote the parents and chil-
dren, respectively, of node Y in P . We use CCPX,Y to
denote the common children of X and Y in P . For any
pair of nodes X and Y in some DAG H, we use DHX,Y

to denote the set of all descendants of the common chil-
dren CCHX,Y . Importantly, DHX,Y includes CCHX,Y as
degenerate descendants.

4 GREEDY EQUIVALENCE SEARCH
AND SELECTIVE GREEDY
EQUIVALENCE SEARCH

The GES algorithm is a two-phase greedy search through
the space of DAG equivalence classes. The algorithm
represents the states of the search using CPDAGs, per-
forming transformation operators to these graphs to
move in the space. Each operator corresponds to a DAG
edge modification, and is scored using a DAG scoring
function that we assume has three properties. First, we
assume the scoring function is score equivalent, which
means that it assigns the same score to equivalent DAGs.
Second, we assume the scoring function is locally con-
sistent, which means that, given enough data, (1) if the
current state is not an IMAP of G, the score prefers edge
additions that remove incorrect independencies, and (2)
if the current state is an IMAP of G, the score prefers
edge deletions that remove incorrect dependencies. Fi-
nally, we assume the scoring function Sc is decompos-
able, which means we can express it as a sum of node-
specific scores:

Sc(G,D) =

n∑
i=1

Sc(Xi,PaGi) (1)

Note that the data D is implicit in the right-hand side of
Equation 1.

We use node score to refer to a node-specific score. We
call the second argument of each node score the condi-
tioning set for the node score. We use the size of the
conditioning set as our measure of its complexity; we are

Operator: Delete(X,Y,H) applied to C

Preconditions: (1) X − Y or X → Y ∈ C, (2) H ⊆
NACY,X , (3) H = NACY,X \H is a clique.

Scoring:
Sc(Y, {PaCY ∪H} \X)− Sc(Y, {PaCY ∪H} ∪X)

Transformation:

Remove edge between X and Y
foreach H ∈ H do

Replace Y −H with Y → H
if X −H then Replace with X → H;

end
Convert to CPDAG

Figure 1: Preconditions, scoring, and transformation al-
gorithm for a Delete operator.

implicitly assuming that the number of states for each
variable is constant.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators un-
til no operator has a positive score; these operators cor-
respond precisely to the union of all single-edge addi-
tions to all DAG members of the current (equivalence
class) state. After FES reaches a local maximum, GES
switches to the second phase—called backward equiva-
lence search or BES—and greedily applies GES delete
operators until no operator has a positive score; these op-
erators correspond precisely to the union of all single-
edge deletions from all DAG members of the current
state.

Theorem 1 (Chickering, 2002) Let C be the CPDAG
that results from applying the GES algorithm to m
records sampled from a distribution that is perfect with
respect to DAG G. Then in the limit of large m, C ≈ G.

In Figure 1, we provide the details of the Delete oper-
ator that is used during the second phase of GES. After
applying the edge modifications in the transformation,
the resulting PDAG P is not necessarily completed and
hence we may have to convert P into the corresponding
CPDAG representation. As shown by Chickering (2002),
this conversion can be accomplished easily by using the
structure of P to extract a DAG that we then convert into
a CPDAG by undirecting all reversible edges. The com-
plexity of this procedure for a P with n nodes and e
edges is O(n · e), and requires no calls to the scoring
function.

Note that in Figure 1 the score for the delete operator—
which we will call the deletion score—is the difference

Algorithm 1: SELECTIVE-GEN-OPS(C, X, Y, k)
Input : CPDAG C with adjacent X ,Y and parent

limit k
Output: Ops = {H1, . . . ,Hm}
Ops←− ∅
S←− Generate maximal cliques C1, ...,Cm

from NACY,X
foreach Ci ∈ S do

H0 ←− NACY,X \Ci

foreach C ⊆ Ci with |C| ≤ k do
H←− H0 ∪C

7 if KEEPOPERATOR(C, X, Y,H, k) then
Add H to Ops

return Ops

between the node scores for Y under two conditioning
sets: with X excluded from the conditioning set and with
X included in the conditioning set. Thus the number
of variables in the second node-score function is exactly
one more than the number of variables in the first. We say
that the order of a deletion operator Delete(X,Y,H) is
the number of variables in {PaCY ∪ H} \ X . In other
words, the order of the deletion operator is the number
of variables excluding X and Y that are needed to com-
pute its score. This means that to score an order-k delete
operator, we need to use a node score that is a function
of k + 2 variables.

The role of FES in the large-sample limit is to identify a
state C for which G ≤ C; Theorem 1 holds if FES is re-
placed with any algorithm that results in an IMAP of G.
The implementation details of such an algorithm can be
important in practice because what constitutes a “large”
amount of data depends on the order of the deletion op-
erators. In our experiments, we use the degenerate algo-
rithm that simply returns the complete (i.e., no missing
edges) graph. This algorithm is guaranteed to return an
IMAP regardless of the number of rows in the data be-
cause it imposes no independence constraints, but it is
not a realistic candidate to use for GES in practice.

Assuming a computationally efficient implementation of
FES, Chickering and Meek (2015) show how to restrict
the set of deletion operators during BES so that the re-
sulting selective GES algorithm (SGES) runs in poly-
nomial time. The algorithm used by Chickering and
Meek (2015) to generate the restricted set of operators,
SELECTIVE-GEN-OPS, is reproduced as Algorithm 1
with an additional test for the condition “KEEPOPER-
ATOR” shown in red on Line 7 that we discuss later; the
original algorithm works as if this function always re-
turns true.

Algorithm 2: SE-GES(D)
Input : Data D
Output: CPDAG C

1 C ←− FINDIMAP
M−1 ←− UNDEFINED for all node pairs
k ←− 0
Repeat

5 Mk ←− UPDATESEPARATORS(Mk−1, k)
6 C ←− SE-BES(C, k)
7 if every node in C has ≤ k parents then

return C
else

k ←− k + 1

Algorithm 3: SE-BES(C, k)
Input : CPDAG C, Bound k
Output: CPDAG C
Repeat

Ops←− ∅
foreach Adjacent (X,Y) in C do

Ops←− Ops ∪
SELECTIVE-GEN-OPS(C, X, Y, k)

5 Op←− highest-scoring operator in Ops
if Op score is negative then

return C
else
C ←− Apply Op to C

5 STATISTICALLY EFFICIENT
GREEDY EQUIVALENCE SEARCH

In this section, we introduce Statistically Efficient
Greedy Equivalence Search. In Algorithm 2 we provide
pseudo-code for SE-GES, and in Algorithm 3 we provide
pseudo-code for its main subroutine SE-BES. To sim-
plify the presentation, we assume that the data D passed
into SE-GES and the minimal separating sets Mk up-
dated by SE-GES are global variables that are available
to SE-BES and all of its subroutines.

SE-GES works as follows. First, in Line 1, we apply an
algorithm whose goal is to identify an IMAP of the gen-
erative model. Assuming infinite data, FES is guaranteed
to identify an IMAP, but because of statistical-efficiency
concerns, we may decide to use alternative algorithms
instead. Next, we progressively iterate through the val-
ues of a bound k on the order of the deletion operators,
initially set to zero. For each value of k we identify, on
Line 5, all order-k separators Mk; the separators capture
inferred conditional independence relationships and are
discussed in detail in Section 5.1. Next, on Line 6, we
call SE-BES.

SE-BES is the same as the selective variant of Chicker-
ing and Meek (2015) described in Section 4, except that
when given a delete operator of order larger than k, it
either (1) filters that operator from consideration or (2)
it uses the order-k separators to evaluate an alternative
deletion score. The decision of which operators to fil-
ter is based on whether the alternative deletion score is
provably “correct” in the large-sample limit.

SE-BES implements the deletion-operator filter using
the KEEPOPERATOR predicate in the implementation of
SELECTIVE-GEN-OPS shown in Algorithm 1; we define
this predicate rigorously in Section 5.2. SE-BES applies
the alternative deletion score to deletion operators of or-
der greater than k on Line 5 in Algorithm 3; we describe
the details of how this scoring works in Section 5.3.

After SE-BES completes, SE-GES checks on Line 7 if
the resulting CPDAG is consistent with the bound k,
meaning that each node in any DAG model contained
in the CPDAG has at most k parents. Because all DAGs
in an equivalence class have the same maximum num-
ber of parents (see Chickering, 1995), this check can be
done by extracting an arbitrary DAG from C and count-
ing parents. If the CPDAG is consistent with the bound,
SE-GES terminates with the CPDAG as its final state;
otherwise, it increments k by one and loops back to Line
5.

As we discuss in Section 5.2.3, in the large-sample limit,
SE-GES is guaranteed to return the generative structure.
Furthermore, if each node has at most k parents in that
structure, SE-GES will terminate after running SE-BES
with bound k, and therefore the algorithm will complete
using only node scores that are functions of k+2 or fewer
variables.

5.1 Minimal Separating Sets

In this section, we describe the separators Mk used by
SE-GES. Each time SE-GES reaches Line 5, it identi-
fies an order k minimal separating set for each pair of
nodes. Intuitively, an order k minimal separating set for
X and Y —denoted Mk

XY —is any set of size at most k
that renders X and Y independent in the data D and for
which no subset of Mk

XY also has this property; note that
we leave the data D implicit in our notation for Mk

XY .
Using the scoring function as our indicator of indepen-
dence, we can define Mk

XY to be any minimal set of size
at most k for which

Sc(Y,Mk
XY)− Sc(Y,X ∪Mk

XY) > 0 (2)

Note that—just like the deletion-operator scores—all of
the order-k minimal separating sets are defined by node
scores containing at most k+2 variables. Also, like other

independence-based search algorithms in the literature,
we can include a “significance” threshold to use in place
of 0 in Equation 2 above.

We can show that for any score-equivalent scoring func-
tion, the role of X and Y is symmetric in the definition
of the minimal separating sets. Note that even if the scor-
ing function acts as a perfect independence oracle for the
generative distribution, the minimal separating set for a
pair of nodes is not unique; it turns out that any minimal
set is sufficient to guarantee that SE-GES is asymptoti-
cally optimal. This leaves open various implementations
that break ties based on an approximate low-order score.

If no order-k separating set between X and Y exists, we
say that Mk

XY is undefined. By convention, we define
the size of any undefined minimal separating set to be∞.
Thus, the test for |Mk

XY | ≤ j will hold for any order-k
separating set that is defined and contains no more than
j elements.

Similar to the PC algorithm of Spirtes et al. (2000), we
can limit our search for the separating sets of a particu-
lar order using the previously-computed lower-order de-
pendencies. In some sense, we can view UPDATESEP-
ARATORS as a partial implementation of the PC algo-
rithm that SE-GES uses as a subroutine; the difference
is that the separators are not interpreted directly as miss-
ing edges in the CPDAG, but are rather used as an aid to
score the deletion operators.

Assuming there are n nodes in the domain, to compute
Mk

XY for a pair of variables X and Y , we in the worst
case have to enumerate over all subsets of variables up to
size k, which will require O(nk) evaluations of Equation
2; we require a worst-case O(n2+k) evaluations to com-
pute the sets for all pairs of nodes. Importantly, the node
scores used in Equation 2 are functions of no more than
k + 2 variables.

5.2 k-Certified Delete Operators

In this section, we define the KEEPOPERATOR predicate
used in Line 7 of Algorithm 1; we provide the pseudo-
code as Algorithm 4. This predicate automatically keeps
those delete operators that can be scored using a normal
order-k deletion score. In addition, it also keeps those
delete operators that, assuming that the separators Mk

are consistent with the independencies in the generative
structure, provably result in an IMAP of the generative
distribution; we call these additional operators k-certified
delete operators because they can be “certified” using the
independence facts implied by the order-k separators.

For the remainder of this section, we define what it
means to be a k-certified delete operator.

Algorithm 4: KEEPOPERATOR(C, X, Y,H, k)
Input : CPDAG C, Operator Delete(X,Y,H),

Bound k
Output: TRUE to keep the operator
H←− NACY,X \H
if |{PaCY ∪H} \X| ≤ k OR Delete(X,Y,H) is
k-certified in C then return TRUE
else return FALSE

5.2.1 Maximum Parent Bound

Given a DAG model H that is an independence map of
the generative structure G, we can use the structure of H
to bound the number of parents for any node in G, as we
show in the following proposition. We defer the proof to
the supplement.

Proposition 1 Let G and H be two DAGs with G ≤ H.
Let Y be any node that has k parents in G. Then some
node in {Y } ∪ChHY has at least k parents inH.

Proposition 1 motivates the following upper bound
BH(Y) on the number of parents of Y in the generative
structure G:

BH(Y) = max
N∈{Y }∪ChHY

|PaHN |

Note that Proposition 1 applies to DAG models, whereas
we are using equivalence classes of DAG models in SE-
GES. We can leverage Proposition 1 for our implemen-
tation of SE-GES given the following lemma:

Lemma 1 IfH ≈ H′, then for every node Y , BH(Y) =
BH

′
(Y).

From Lemma 1, we see that the bound BH(Y) is the
same for every DAG in an equivalence class, and thus
we can compute the upper bound for every node by ex-
tracting an arbitrary member of the equivalence class and
counting parent sets. As a result, for any CPDAG C, we
will use BC(Y) to denote this upper bound for all the
DAGs contained in C.

5.2.2 k-Certified Children

We can use the parent bound to guarantee in some
situations—and in the large-sample limit—that a node C
must be a common child of two nodes X and Y . To this
end, we have the following definition:

Definition 1 C is a k-certified common child of X and
Y in C if the following conditions hold: (1) |Mk

XY | ≤ k,

(2) C 6∈ Mk
XY , (3) |Mk

XC | > k, (4) |Mk
Y C | > k, and

(5) BC(C) ≤ k

To understand this definition, it is useful to think of the
d-separation constraints that must hold in any generative
DAG model G. Condition (1) implies that X and Y are
not adjacent. Given the parent bound (5), conditions (3)
and (4) imply that C must be adjacent to X and Y , re-
spectively. Adding condition (2) implies that C cannot
be a parent of either X or Y . More formally, we have the
following result.

Theorem 2 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with
respect to G, then any k-certified common child of X and
Y is a common child of X and Y in G.

5.2.3 Main Result

With the definition of the max-parent bound and k-
certified children, we can now define a k-certified delete
operator.

Definition 2 A delete operator Delete(X,Y,H) is a k-
certified delete operator in C if the following conditions
hold:

1. |Mk
XY | ≤ k

2. Every node in C = {CCCX,Y ∪H} is a k-certified
common child of X and Y in C

3. With H = NACY,X\H, for every node E ∈ {PaCY ∪
H} \Mk

XY either

(a) Mk
EX ≤ k and every semi-directed path from

C to Mk
EX passes through a node in H∪X∪Y

(b) Mk
EY ≤ k and every semi-directed path from

C to Mk
EY passes through a node in H∪X∪Y

The following two theorems codify the significance of
the above definition.

Theorem 3 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with
respect to G, then applying any k-certified delete opera-
tor to C results in an IMAP of G.

Theorem 4 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with
respect to G, where each node in G has at most k par-
ents, then for any CPDAG Cwith G < C, there exists a
k-certified delete operator in C.

Combining these two results with the observation that
algorithm SELECTIVE-GEN-OPS only eliminates delete
operators that already fail requirement (2) in the defini-
tion of k-certification, we see that in the large-sample
limit, if we define the predicate KEEPOPERATOR to re-
turn TRUE precisely for the k-certified delete operators,
SE-BES will reach the equivalence class of the genera-
tive distribution by repeatedly applying k-certified delete
operators.

We defer the proofs of Theorem 3 and Theorem 4 to the
supplement, but now explain the intuition behind the spe-
cific conditions in Definition 2, under the assumptions
(1) we can use the separating sets Mk as an order-k in-
dependence oracle and (2) the current CPDAG C is an
IMAP of the generative model G. Condition 1 of Def-
inition 2 simply tests that X and Y are not adjacent in
G.

We show in the supplement that if X and Y are not
adjacent in G, then applying Delete(X,Y,H) to C re-
sults in an IMAP of G if no non-Mk

XY “extra” node
E from the conditioning set S of the delete (i.e., S =

{PaCY ∪H} \X) is contained in DGX,Y . Condition 3 of
Definition 2 provides a test that can rule out E ∈ DGX,Y

that requires only order-k separators, but the test is only
correct in the case where the post-delete common chil-
dren of X and Y in the CPDAG are common children of
X and Y in G; condition 2 of Definition 2 guarantees this
property.

What allows condition 3 to work is the following tech-
nical result: if E ∈ DGX,Y , then E cannot be separated
from either X or Y without conditioning on some node
in DHX,Y , where H is any DAG member of the post-
delete equivalence class. Furthermore, we can identify
the nodes in DHX,Y precisely as those nodes reachable
by a semi-directed path that does not reach any node in
H ∪X ∪ Y .

The existence result of Theorem 4 leverages both (1) the
result of Chickering and Meek (2015) that we can always
find an edge to delete where the induced subgraph “be-
low” the edge is correct3, and (2) we can always identify
the necessary order-k separators in Definition 2 given a
parent bound k from G.

5.3 Scoring k-Certified Operators

We now consider how to score high-order operators that
are k certified; namely, how we implement Line 5 in Al-
gorithm 3 for those operators of order greater than k.

If we interpret the minimal separating sets as outputs
from an independence oracle, then the k-certified oper-

3Corollary 3 of Chickering and Meek (2015).

ators can be understood as an unordered set of candidate
deletions that are all “correct” in the sense that they re-
sult in an IMAP of the generative distribution. Under this
interpretation, we can apply any of the candidate dele-
tions and will end up with the generative structure once
this algorithm returns no operators. We see that in the
large sample limit, this approach will guide SE-BES out
of the “dense” region of the search space using an inde-
pendence oracle in much the same way that the PC algo-
rithm works; the main difference being that the SE-BES
delete operators necessarily result in non-empty equiva-
lence classes.

But there are a number of advantages to using score-
based search algorithms. Perhaps the most important
is that in many real-world applications, we have finite
data and a score that we have designed for the purpose
of maximization. By discretizing the score to “inde-
pendent” and “not independent”, we lose the granularity
of the score and end up solving a constraint-satisfaction
problem instead of a maximization problem.

To leverage the scoring function, we can score
delete operators using the separator set MXY directly:
Sc(Y,MXY) − Sc(Y,X ∪MXY). By definition, this
score will be greater than zero, but it allows us to prior-
itize deletions based on the magnitude of the “indepen-
dence score”; this score can be understood as an approx-
imate lower bound under the large-sample convergence
of the scoring function to the Bayesian Information Cri-
terion (Schwarz, 1978).

6 EXPERIMENTS

In this section, we present the results of a synthetic exper-
iment that demonstrates that a particular implementation
of SE-GES—which starts its search from the complete
model—can identify the structure of the generative dis-
tribution more often than GES, and that this benefit in-
creases with the complexity of the generative structure.
We conducted our experiment using a small number of
variables with the goal of demonstrating both that (1)
GES can fail to reach sparse generative structures due
to the need to explore dense regions of the search space,
and (2) SE-GES can successfully traverse out of dense re-
gions of the search space during the backward phase by
leveraging its low-order scoring function. Importantly,
we are not endorsing the complete-model variant of SE-
GES for large domains, but rather hope to understand
the behavior of the backward phase of the algorithm in
the case when a (more practical) variant of FES reaches
states with similarly-sized clusters of nodes of increas-
ingly dense dependence structure.

For our experiment, we generated gold-standard net-

(a)

0

50

100

15 Edges

GES SBES SE-GES

(b)

0

50

100

20 Edges

GES SBES SE-GES

(c)

0

50

100

25 Edges

GES SBES SE-GES

(d)

0

50

100

30 Edges

GES SBES SE-GES

Figure 2: Percent of times the generative structure was identified for each algorithm as a function of the sample size
for generative structures containing (a) 15 edges, (b) 20 edges, (c) 25 edges and (d) 30 edges.

works randomly, sampled data from those networks, and
then ran competing structure-search algorithms using the
sampled data. We evaluated the algorithms based on
their ability to recover exactly the structure (i.e., the
equivalence class) of the gold-standard network. Ev-
ery gold-standard network contained 12 nodes, and every
node had 3 discrete states. We generated random gold-
standard structures with an increasing number of edges,
but with the constraint that each node had at most 3 par-
ents.

To implement the cap on the number of parents, we
started with a random “maximally dense” network struc-
ture that was created as follows. First, we took a random
permutation of the nodes, and for each node in order, we
added a random 3 parents from the predecessors in the
permutation. Thus, every node has exactly 3 parents ex-
cept for the first three in the permutation (which have 0,
1 and 2 parents, respectively).

Given a maximally dense network and a desired num-
ber of edges for a gold-standard network, we simply ran-
domly deleted edges until we had the given number of
edges remaining. To specify the distribution for the gold-
standard network, we sampled the parameters of each
conditional distribution from a uniform Dirichlet distri-
bution.

In our experiment, we varied the edge count in the gold-
standard networks from 15 to 30 in steps of 5, and for
each edge count, we varied the data size from 500 to
10000 in steps of 500. For each edge count and data size,
we generated 100 random gold-standard networks, sam-
pled the given number of rows from that network, and
then ran the structure-search algorithms. For each algo-
rithm, we recorded the percent of times that algorithm
identified the generative structure.

We compared SE-GES to both GES and SGES. We used
the Bayesian Information Criterion to score search states

for all algorithms; this criterion satisfies the required
properties described in Section 4. For both SE-GES and
SGES, we used the “complete model” implementation
of FES, so that both of these algorithms started with the
no-missing-edges graph. We stopped both SE-GES and
SGES after we hit the (known) parent limit of 3. For each
parent limit, when SE-GES reached a local minimum, we
continued from that point on with SGES. For both SE-
GES and SGES, we kept track of the final model reached
after each parent limit, and ran GES from the best one
after stopping.

In Figure 2, we show the percent of times—out of the 100
random instances—that the final model reached by each
algorithm was equivalent to the gold-standard network.
As expected, for each of the 4 levels of gold-standard
complexity, we see that all of the algorithms perform bet-
ter with higher sample sizes. The figure demonstrates
that GES has an increasingly difficult time identifying
the gold-standard network as the complexity of that net-
work increases, and that of the three algorithms, SE-GES
is the most robust to increasing complexity of the gold-
standard model. In Figure 3, we show the average time
for each algorithm to complete as a function of the num-
ber of rows, for the gold-standard network consisting of
30 edges.

7 CONCLUSION

We have provided theoretical building blocks for a class
of greedy structure-search algorithms that require only
low-order scores while retaining the large-sample guar-
antees of GES. The benefits of SE-GES (and SGES)
are manifest when both (1) the generative distribution is
sparse and (2) GES needs to reach a dense IMAP during
forward search. In our experiments, we tried to simulate
both of these conditions by creating generative distribu-
tions with increasing number of edges while maintaining

0

10

20

GES SBES SE-GES

Figure 3: Average time in seconds to run each algorithm
as a function of the sample size for the generative struc-
tures containing 30 edges.

a maximum-parent constraint.

In real-world scenarios, there remain many open ques-
tions about how to best leverage the low-order scoring
of SE-GES. We expect, for example, that there should
be much better ways to run FES than starting from the
complete graph; we believe there is opportunity in using
heuristic forward-search algorithms that use low-order
scores when adding edges.

There are also many alternatives to scoring the k-certified
delete operators. In this paper and in the experiments,
we considered using the separator sets as if they were
the parent sets in a “normal” delete operator. But an
operator is k-certified only if a number of indepen-
dence/dependence facts hold simultaneously. In partic-
ular, we require two dependencies to hold for each k-
certified common child, and we require at least one in-
dependence to hold for each “extra” parent. If the scor-
ing function only has weak evidence for any one of these
facts, we might want to lower the priority the correspond-
ing operator.

Acknowledgments

We thank Chris Meek for the valuable discussions on this
work.

References

[1] David Maxwell Chickering. A transformational
characterization of Bayesian network structures. In
S. Hanks and P. Besnard, editors, Proceedings of
the Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, Montreal, QC, pages 87–98. Mor-
gan Kaufmann, August 1995.

[2] David Maxwell Chickering. Optimal structure
identification with greedy search. Journal of Ma-

chine Learning Research, 3:507–554, November
2002.

[3] David Maxwell Chickering and Christopher Meek.
Selective greedy equivalence search: Finding opti-
mal Bayesian networks using a polynomial number
of score evaluations. In Proceedings of the Thirty
First Conference on Uncertainty in Artificial Intel-
ligence, Amsterdam, Netherlands, 2015.

[4] Nir Friedman, Iftach Nachman, and Dana Peer.
Learning bayesian network structure from massive
datasets: The “sparse candidate” algorithm. In
Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, Stockholm, Swe-
den. Morgan Kaufmann, 1999.

[5] Maxime Gasse, Alex Aussem, and Haytham Elg-
hazel. A hybrid algorithm for Bayesian network
structure learning with application to multi-label
learning. Expert Systems with Applications, 2014.

[6] Markus Kalisch and Peter Buhlmann. Estimating
high-dimensional directed acyclic graphs with the
PC algorithm. Journal of Machine Learning Re-
search, 8:613–636, 2007.

[7] Preetam Nandy, Alain Hauser, and Marloes H.
Maathuis. High-dimensional consistency in score-
based and hybrid structure learning. Annals of
Statistics, 46(6A):3151–3183, 2018.

[8] G. Schwarz. Estimating the dimension of a model.
Annals of Statistics, 6:461–464, 1978.

[9] Peter Spirtes, Clark Glymour, and Richard
Scheines. Causation, Prediction, and Search (sec-
ond edition). The MIT Press, Cambridge, Mas-
sachussets, 2000.

[10] Ioannis Tsamardinos, Laura E. Brown, and Con-
stantin F. Aliferis. The max-min hill-climbing
Bayesian network structure learning algorithm.
Machine Learning, 2006.

[11] Thomas Verma and Judea Pearl. Equivalence
and synthesis of causal models. In M. Henrion,
R. Shachter, L. Kanal, and J. Lemmer, editors, Pro-
ceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, pages 220–227, 1991.

[12] Or Zuk, Shiri Margel, and Eytan Domany. On
the number of samples needed to learn the correct
structure of a Bayesian network. In Proceedings
of the Twenty Second Conference on Uncertainty in
Artificial Intelligence, Canbridge, MA, 2006.

Supplement to: Statistically Efficient Greedy Equivalence Search

Abstract

This supplement contains the proofs for the main
results of our paper: Theorem 2, Theorem 3 and
Theorem 4.

8 INTRODUCTION

In this supplement, we provide the proofs to the results
from our paper Statistically Efficient Greedy Equivalence
Search. The supplement is organized as follows. In Section
9, we present additional notation and definitions needed for
the proofs. In Section 10, we provide a number of prelim-
inary results regarding active paths in DAG models, most
of which have been proved elsewhere. In Section 11, we
prove Proposition 1 and Lemma 1 from the main paper. In
Section 12, we prove Theorem 2 from the main paper. In
Section 13, we prove results about the implications that ac-
tive paths in a DAG model have on any IMAP of that DAG
model. In Section 14, we explore statistically efficient dele-
tions in DAG models. In Section 15, we show how to ex-
tend many of the DAG-model results from Section 14 to
CPDAGs. Finally, in Section 16, we prove Theorem 3 and
Theorem 4 from the main paper.

For the entirety of this supplement, we assume that all sta-
tistical models are defined over the same set of variables.
To simplify the presentation of all the results for DAGs be-
low, unless G and H are defined explicitly in the statement
of a result, the results all assume that G and H are DAG
models and that G ≤ H.

9 ADDITIONAL NOTATION

A node sequence is an ordered sequence (N1, . . . , Nk) of
nodes in a DAG. We typically use the symbol π to denote a
node sequence; we use π(N1, Nk) to represent a node se-
quence when we want to emphasize that the first and last
points are N1 and Nk, respectively. A node sequence is a
path in G if every pair of consecutive nodes is connected

by an edge in G. Note that our definition of a path is not
a function of the direction of the edges. The edges of a
path in G are the ordered intermediate edges in G. Often
the graph is clear from context, and we refer simply to the
edges of π. We often represent paths in a graph by specify-
ing the edges in the path, as in π = X → Y → Z; this is
shorthand for specifying the node sequence π = (X,Y, Z)
and the intermediate edges X → Y and Y → Z from G. A
path π is a directed path in G if all of the edges of π in G
along π are directed in the same way.

A fragment of a node sequence π is a contiguous subset
of the node sequence. For example, if π = (A,B,C,D),
then (A,B,C) and (B,C) are both fragments of π. If π is
a path in G, we call the path corresponding to a fragment
of π a path fragment in G. For example, for path π = A→
B → C → D in some graph G, the paths A → B → C
and B → C are both path fragments of π in G.

When a path has converging arrows at some node W (i.e.,
the path contains → W ←), we call the node W a col-
lider along the path; we call all other nodes in the path—
including the endpoints—the non-colliders. For a path π
in G, we use INCG

π to represent the intermediate non-
colliders in that path. We use E(π) to denote the set con-
taining the two endpoints of π.

A path detour in G of a node sequence π(X,Y) is a path
between X and Y in G that contains a (not necessarily
strict) subsequence of the node sequence. Unlike a path
fragment, the sequence of nodes in the subset need not be
contiguous. For example, suppose there is a path π in G. A
path detour of π inH is a path that traverses a subset of the
nodes in π, in the same order, but may skip over some of
the intermediate nodes.

A path π(X,Y) is a S-active path in G if neither X nor Y
belongs to S, and for every intermediate node W along the
path, either (1) W is a collider and W ∈ S or (2) W is not
a collider and W 6∈ S 1.

1An equivalent (and perhaps more prevalent) definition of an
active path states that for condition (1), either W or a descen-
dant of W in G is in S. For those readers familiar with the cel-

A S-active path π(X,Y) in G is compact if its endpointsX
and Y do not appear as intermediate points along π(X,Y),
and no node S ∈ S occurs more than once.

The independence constraints implied by a DAG structure
are characterized by the d-separation criterion. Two nodes
A and B are said to be d-separated in a DAG G given a
set of nodes S if and only if there is no active path in G
between A and B given S. We sometimes use the nota-
tion X⊥⊥GY|S to denote that in G, all nodes in X are d-
separated from all nodes in Y given S; conversely, we use
X 6⊥⊥GY|S to denote the fact that there exists a S-active
path between some node in X and some node in Y.

The direction of each terminal edge in an active path—that
is, the first and last edge encountered in a traversal from one
end of the path to the other—is important for determining
whether we can concatenate two active paths together to
make a third active path. We say that a path π(A,B) is into
A if the terminal edge incident to A is oriented toward A
(i.e., A ←). Similarly, the path is into B if the terminal
edge incident to B is oriented toward B. If a path is not
into an endpoint A, we say that the path is out of A.

We say a nodeX is G-lowest from set X if no directed path
exists in G from X to some other node in X.

For any PDAG P and subset of nodes V, we use P[V] to
denote the subgraph of P induced by V; that is, P[V] has
as nodes the set V and has as edges all those from P that
connect nodes in V.

A set of nodes T holds a tree in G if there is some node
R ∈ T for which there is a directed path in G from R
to every other node in T, where each such directed path
passes entirely through the nodes in T. In other words, the
induced subgraph G[T] contains a directed tree in its edges
among all nodes in T. We call the top-most node of the set
T the root of the tree

Given DAGs G and H for which G < H, we say that an
edge e from H is deletable in H with respect to G if, for
the DAGH′ that results after removing e fromH, we have
G ≤ H′. We will say that an edge is deletable in H or
simply deletable if G or both DAGs, respectively, are clear
from context.

10 PRELIMINARY DAG RESULTS

In this section, we include a number of preliminary results
regarding Bayesian networks, many of which have been
proven elsewhere.

Lemma 8. (Chickering, 2002) Let π(A,B) be a S-active
path between A and B, and let π(B,C) be a S-active path
between B and C. If either path is out of B, then the con-

ebrated “Bayes ball” algorithm of Shachter (1998) for testing d-
separation, the definition in this paper is simply a valid path that
the ball can take between two nodes.

catenation of π(A,B) and π(B,C) is a S-active path be-
tween A and C.

Proposition 8. Any ∅-active path π(X,Y) in G that is out
of X is a directed path from X to Y in G.

Proof: Because π is out of X , we know the first edge in π
is directed away from X . Because the path is ∅-active, it
cannot contain a collider, and thus all subsequent edges in
the path must also be directed away from X .

Proposition 9. If X and Y are not adjacent to each other
in G, then X⊥⊥GY |PaGX ∪PaGY .

Proposition 10. (Chickering, 2002) If there is an edge be-
tween X and Y in G, then there is an edge between X and
Y inH.

From Proposition 10, the following result is immediate:

Proposition 11. If π is a path in G then π is a path inH.

Lemma 9. (Chickering, 2002) If G contains the collider
X → Z ← Y , then either H contains the same collider or
X and Y are adjacent inH.

The following two results follows immediately from the
definition of an active path.

Proposition 12. Every ∅-active path π(X,Y) in G either
(1) is a directed path from one endpoint to the other or (2)
contains an intermediate node R and is the concatenation
of a directed path from R to X and a directed path from R
to Y .

Proposition 13. If π is a S-active path in G, then every
path fragment π′ is S \E(π′)-active in G.

Note that in the statement of Proposition 13, the endpoints
of the fragment are explicitly excluded from the condition-
ing set in order to satisfy this requirement of an active path.

Proposition 14. If π is a S-active path in G, then for any
{Ni, Nj} ⊆ INCG

π ∪ E(π), there is a S-active fragment
π′(Ni, Nj) in G.

Proof: Every node in INCG
π ∪ E(π) is reached by π and

consequently a fragment between every pair in the set must
exist. Because none of the nodes in INCG

π ∪E(π) belong
to S, the result follows from Proposition 13.

Lemma 10. (Chickering and Meek, 2015) An edge X →
Y is deletable in H with respect to G if and only if
Y⊥⊥GX|PaHY \X .

The final results in this section regard holding a tree in a
DAG model.

Proposition 15. If G contains a directed path π, then the
set of nodes in the path holds a tree in G.

Proposition 16. T holds a tree in G if and only if G[T] has
a ∅-active path between every pair of nodes.

Proof: Assume G[T] has a ∅-active path between every
pair of nodes, and let R ∈ T be any node in that induced
subgraph that has no parents. By assumption, there is a ∅-
active path between R and all other nodes in T. Because R
has no parents, every such path must be out of R, and we
conclude from Proposition 8 that there is a directed path
from R to all other nodes in T, and thus T holds a tree in
G[T]; because every edge in G[T] exists in G, T must hold
a tree in G as well.

Assume T holds a tree in G. By definition, T must hold a
tree in G[T] as well. Let R denote the root of T. Consider
any pair {Ti, Tj} ∈ T. If Ti = R or Tj = R, the directed
path from R to the other node constitutes an ∅-active path
in G[A]; otherwise, from Lemma 8, we can concatenate (1)
the directed path from R to Ti and (2) the directed path
from R to Tj to create an ∅-active path in G[T].

Lemma 11. If T holds a tree in G, then T holds a tree in
H.

Proof: From Proposition 16, we know that for every pair
of nodes {Ti, Tj} ⊆ T, there is a ∅-active path between Ti
and Tj in G that passes entirely through the set T. From
Lemma 13, we know that for every such active path in G,
there is a ∅-active detour between Ti and Tj inH, and thus
by Proposition 16 the lemma follows.

11 PROOF OF PROPOSITION 1 AND
LEMMA 1

In this section, we prove Proposition 1 and Lemma 1 from
the main paper.

Proposition 1 Let G andH be two DAGs with G ≤ H. Let
Y be any node that has k parents in G. Then some node in
{Y } ∪ChH

Y has at least k parents inH.
Proof: If PaHY ⊇ PaGY then the proposition follows imme-
diately. Otherwise, consider theH-lowestL ∈ PaGY \PaHY .
From Proposition 10 we know L must be a child of Y inH
and from Lemma 9 we know L must be adjacent to every
other member of PaGY in H; because L is lowest, its par-
ents inH must contain Y and every other element of PaGY ,
which means |PaHL | ≥ k.

For any DAG G = (V,E), we say an edge X → Y ∈ E
is covered in G if X and Y have identical parents, with the
exception that X is not a parent of itself. That is, X → Y
is covered in G if PaGY = PaGX ∪ X . The significance of
covered edges is evident from the following result:

Lemma 12. (Chickering, 1995) Let G be any DAG model,
and let G′ be the result of reversing the edge X → Y in
G. Then G′ is a DAG that is equivalent to G if and only if
X → Y is covered in G.

Lemma 1 If H ≈ H′, then for every node Y , BH(Y) =
BH′

(Y).

Proof: From Lemma 12, we can establish the result by
showing that it holds for any covered edge reversal. From
the definition of a covered edge, if we reverse a covered
edge A → B, then the number of parents of A after the
reversal will be equal to the number of parents of B before
the reversal, and the number of parents ofB after the rever-
sal will be equal to the number of parents of A before the
reversal. In other words, A and B “swap” the number of
parents. Given this, we see that any covered edge reversal
that does not change the elements in the set {Y } ∪ ChH

Y

cannot change the bound BH(Y) either. Consequently, we
must have B = Y and A is some parent of Y . But after
the reversal, A will be a child of Y and have the same num-
ber of parents that Y did before the reversal, and thus the
lemma follows.

12 PROOF OF THEOREM 2

In this section, we prove Theorem 2 from the main paper,
which we re-state here:

Theorem 2 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with re-
spect to G, then any k-certified common child of X and Y
is a common child of X and Y in G.
Proof: Let C be any k-certified common child. First we
show that C cannot be an ancestor of either X or Y in G.
To simplify notation, let T = Mk

XY .

Because |Mk
XC | > k and |Mk

Y C | > k (properties 3 and 4
in the definition of a k-certified common child), we know
that there must be a T-active path both between X and C
and between Y and C. These two paths must meet at C
as a collider, else their concatenation would constitute a T-
active path between X and Y . Suppose we are wrong, and
that C is an ancestor of X (or Y). Then if the directed path
from C to X (Y) is not blocked by a node in T, it would
constitute a T-active path fromC toX (Y) that is out-ofC,
and thus could be concatenated to the T-active path from Y
(X) to C to create a T-active path between X and Y . But
if the directed path from C to X (Y) is blocked by a node
in T, then we can use the highest such T ∈ T to identify a
T-active segment

C → . . .→ T ← . . .← C

between C and itself—that is out-of C on both ends—that
we can insert between the X −C path and the Y −C path
to once again identify a T-active path between X and Y .

Given thatC is not an ancestor ofX or Y—or equivalently,
neither X or Y is a descendant of C—we know that either
C is a common child of X and Y , or C is independent
of at least one of them given PaGC ; we know |PaGC | ≤ k
from property 5, and thus properties 3 and 4 rule out either
independence, and we concludeC must be a common child
of X and Y .

13 CONSTRAINTS BETWEEN ACTIVE
PATHS IN G AND THE STRUCTURE
OFH

In this section, we show how the existence of active paths
in a DAG model G constrain the structure of any IMAPH.
For the majority of these results, we posit the existence of
a {PaHY \ X}-active path in G between X and Y—which
means that any edge X → Y in H would not be deletable
per Lemma 10—and derive consequences aboutH.

Lemma 13. For any S-active path π in G, there is a S-
active detour of π inH.

Proof: Assume E(π) = {X,Y }. We prove the lemma by
induction on the number of nodes k from INCG

π .

For the basis, we consider k = 0, and thus the path edges
of π in G either (1) consists of a single edge betweenX and
Y , in which case the lemma follows by Proposition 10, or
(2) consists of a collider X → S ← Y for some S ∈ S, in
which case the lemma follows by Lemma 9.

For the induction step, assuming k > 0, we know there
must be some intermediate node along the path that does
not belong to S; let H be the highest such node in G. From
Proposition 13, we know that there is a S-active path in G
both between X and H and between Y and H; from the
induction hypothesis, both of these paths have a S-active
detour in H. If either of these two detours are out-of H ,
we know from Lemma 8 that we can concatenate them to-
gether to construct the desired detour between X and Y in
H. Otherwise, these two paths meet as a collider:

X − . . .− L→ H ← R− . . .− Y

Because both paths from X and Y are S active in H, we
know that neither of the two in-coming nodes L and R can
be in S. Both of these nodes are higher than H , yielding a
contradiction.

Lemma 14. For any PaHY -active path π between Y and
some other node in G, every node in INCG

π is a descendant
of Y inH.

Proof: H asserts that Y is independent of every non-
descendant given its parents, and because G ≤ H, these
independences must also hold in G. Because in G, there is
a PaHY -active path between Y and every node in INCG

π

the lemma follows.

Proposition 17. Let X → Y be any edge in H, and let
S = PaHY \ X be the parents of Y excluding X . For any
compact S-active path π between X and Y in G, every
node in INCG

π is a descendant of both X and Y inH.

Proof: From Proposition 14, we know that for every N ∈
INCG

π , there is a S-active fragment π(Y,N) of π in G. Be-
cause π is compact, we know that X does not occur any-
where along the fragment, and thus π(Y,N) is PaHY active

in G as well. Thus from Lemma 14 we conclude that N
must be a descendant of Y in H. Because H contains the
edge X → Y , every descendant of Y is also a descendant
of X .

Lemma 15. Let X → Y be any edge in H, and let S =
PaHY \X be the parents of Y excluding X . If there exists
a compact S-active path π between X and Y in G, then for
every S-active path fragment π′ of π in G, there exists a
∅-active detour of π′ inH.

Proof: Suppose the lemma is wrong. From Lemma 13,
we know there exists a S-active detour π′′ of π′ in H.
If π′′ is not ∅ active, then it must contain some segment
L → S ← R, where S ∈ S. Because π′′ is a detour
of a fragment of π, it contains a subset of the nodes in π,
and thus because neither endpoint of π′′ can belong to S,
at least one of {L,R} must belong to INCH

π . But from
Proposition 17 all of these nodes are descendants of Y in
H, and thus because S is a parent of Y in H, H must con-
tain a cycle.

Lemma 16. Let X → Y be any edge in H, and let
S = PaHY \ {X} be the parents of Y excluding X . For
any compact S-active path π between X and Y in G, if
INCG

π 6= ∅, then the H-highest element of INCG
π is a

common child of X and Y inH.

Proof: Let NH be theH-highest element of INCG
π . From

Lemma 15, H must contain a ∅-active fragment of π be-
tween both (1) X and NH and (2) Y and NH . From
Proposition 17, we know both X and Y are ancestors of
every node in INCG

π , and becauseNH is theH-highest el-
ement of INCG

π , NH is an ancestor of every other node in
INCG

π . This means that neither of the ∅-active fragments
can contain any node from INCG

π other than NH , lest the
fragment would contain a collider, and thus these two frag-
ments must consist of a single edge. Because both X and
Y are ancestors of NH , the lemma follows.

Lemma 17. Let π(X,Y) be any directed path in G. If G ≤
H, then either (1) every node in π(X,Y) is a descendant
of X in H, or (2) there exists a node in π(X,Y) that is a
parent of X inH.

Proof: Induction on the length of the path. If the path is
of length one, we know from Proposition 10 that X and Y
must be adjacent in H, in which case either X is a parent
of Y—and hence every node in the path is a descendant of
X inH—or Y is a parent of X inH.

Suppose the lemma is correct for all paths of length k − 1,
and consider a length-k path π(X,Y) in G, and let Z be
the next-to-last node in the path. Because there is a di-
rected path of length k − 1 from X to Z in G, we know
by the induction hypothesis that either (1) all nodes in the
fragment π(X,Z) are descendants of X in H or (2) there
exists a node in the fragment π(X,Z) that is a parent of
X in H. Because π(X,Z) is a fragment of π(X,Y), if

(2) holds for π(X,Z) then (2) holds for π(X,Y) and the
lemma follows. For the remainder of the proof, we assume
that all nodes in π(X,Z) are descendants of X inH.

From Lemma 13, we know that there must be a ∅-active
detour π′ of π(X,Y) inH. From Proposition 12, we know
that π′ inHmust either be a directed path fromX to Y—in
which case the lemma follows because Y is a descendant
of X—or there is some node R other than X along the
path for which π′ is the concatenation of a directed path
from R to X and a directed path from R to Y . Because all
intermediate nodes of π(X,Y) are descendants of X inH,
R cannot be any intermediate node, elseH would contain a
cycle. Thus we conclude that R = Y and the directed path
contains no intermediate nodes, and hence Y is a parent of
X inH.

Lemma 18. Let X → Y be any edge in H, and let C ∈
CCG

X,Y ∩CCH
X,Y be any common child ofX and Y in both

G and H. Let π be any directed path in G that starts at C.
If π reaches any node that does not belong to DH(X,Y),
then the first such node is an element of PaHY .

Proof: Because C ∈ DH(X,Y), we know π starts with a
fragment πF (C,L) containing at least one edge where all
nodes except for the last one, L, are in DH(X,Y). Let T
be the set of nodes reached by this segment.

From Proposition 15, we know that T holds a tree in G
(with root C), and from Lemma 11 T must also hold a tree
in H. L must be the root of the tree in H, else by virtue
of L being a descendant of a node in DH(X,Y), it would
also have to belong to this set.

Because C is a common child of X and Y in G, we can
prepend the edgeX → C or Y → C to π to create a longer
directed path, and thus from Proposition 15 we know that
both T ∪X and T ∪ Y hold a tree in G, and from Lemma
11 they both hold a tree inH as well.

First we consider the set T ∪ Y . Because all nodes in T
except for L are descendants of Y in H, we know that the
root of the T ∪ Y tree in H must be either Y or L. If L is
the root, it must be a parent of Y because, again, all other
nodes are descendants of Y , and the lemma follows.

We complete the proof by showing that it is impossible for
Y to be the root of the T ∪ Y tree inH.

Assume we are wrong, and that Y is the root of the T ∪ Y
tree inH. Because L is the root of the T tree inH, it must
be the case that Y is a parent of L inH.

Now we consider the set T ∪ X . As in the case of Y ,
the root of this tree in H must either be X or L. Because
X → Y is in H and we just argued that Y → L is in H,
L cannot be the root of the tree, lest H contains a cycle.
Because L is the root of the T tree inH, it must be the case
thatX is a parent of L inH. But this means L is a common
child of X and Y in H and thus belongs to DH(X,Y),

yielding a contradiction, and we conclude that indeed Y
cannot be the root of the T ∪ Y tree.

Proposition 18. If X⊥⊥GY |T, then T ∩DG(X,Y) = ∅.

Proof: Suppose there is some highest T ∈ T that is a de-
scendant of a common child C of X and Y . We can con-
struct a T-active path between X and Y that consists of
the two directed paths from X and Y to T through their
common child:

X → C → . . .→ T ← . . .← C ← Y

Any intermediate node that blocks any portion of this path
would constitute a higher node in T.

14 STATISTICALLY EFFICIENT
DELETION IN DAG MODELS

In this section, we show how to use low-order indepen-
dence facts to prove deletability in DAG models.

Theorem 8. Let X → Y be any edge in H for which
X⊥⊥GY |T and CCH

X,Y ⊆ CCG
X,Y . Then X → Y is

deletable in H if for every E ∈ PaHY \ T, there exists a
set Q for which (1) Q ∩ DH(X,Y) = ∅ and (2) either
E⊥⊥GX|Q or E⊥⊥GY |Q (or both).

Proof: Let S = PaHY \ {X}. If the lemma is wrong, then
X → Y is not deletable in H, and thus from Lemma 10
there must exist a S-active path π between X and Y in G.

We first argue that INCG
π must contain at least one ele-

ment. If this set were empty, then either π consists of a
single edge between X and Y or π consists of a single col-
lider X → S ← Y for some S ∈ S. The first case is
ruled out by the existence of T that renders X and Y inde-
pendent. For the second case, we know S 6∈ T, or else we
would have a T-active path betweenX and Y in G; but this
means that S ∈ PaHY \T (i.e., it is one of the “E” nodes),
and given that X and Y are both parents of S, no set Q can
exist that renders it independent from X or Y .

Given that INCG
π is non-empty, we conclude from Lemma

16 that π must reach some nodeC ∈ CCH
X,Y , and from the

conditions of the theorem C is in CCG
X,Y as well. Because

C is not a collider along π in G, it cannot be in the con-
ditioning set, and thus both of the path fragments π(C,X)
and π(C, Y) are S active in G, and at least one of them
must be out-of C in G. Without loss of generality, assume
the S-active fragment π(C,X) is out-of C in G.

From the definition of an active path, the (out-of) fragment
π(C,X) must consist of a directed path from C to either
X or some node S ∈ S. If the directed path reaches X , we
know from Proposition 18 that it cannot be blocked by any
node in T (any such node would belong to DG(X,Y) by
virtue of being a descendant of C ∈ CCG

X,Y), and thus we

could prepend this path with the edge Y → C to identify a
T-active path between X and Y , a contradiction.

We conclude that the fragment π(C,X) must start with a
directed path starting with C and reach some node S ∈ S.
Because S is a parent of Y inH, we know S 6∈ DH(X,Y),
and thus from Lemma 18, the directed path must hit some
first such S. If we prepend this directed path with X → C
or Y → C, we have identified a directed path between
both X and Y to S for which all the intermediate nodes
are in DH(X,Y). This contradicts the existence of a Q
with Q ∩ DH(X,Y) = ∅ for which either S⊥⊥GX|Q or
S⊥⊥GY |Q, and we conclude that no S-active path between
X and Y can exist.

Corollary 8. (Chickering and Meek, 2015) If there exists
a deletable edge in H, then there exists a deletable edge
X → Y inH for which DH(X,Y) = DG(X,Y).

Recall that in the main paper we use Mk
XY to denote a

minimal separating set of size at most k between X and
Y in G, and that if no such set exists, we say that this set
is undefined. For the remainder of this section, take k to
be the number of variables in the domain and use MXY to
represent separating sets of any size.

Proposition 19. MXY is undefined if and only if X and Y
are adjacent in G.

Proof: If X and Y are adjacent, no set can separate them.
If they are not adjacent, they are either d-separated by the
parents of Y or by the parents of X (or both).

Lemma 19. Every node in MXY is an ancestor of either
X or Y (or both) in G.

Proof: Suppose the lemma is wrong. Then MXY must be
defined and contain at least one node that is not an ancestor
of either X or Y ; let L be any G-lowest such node, and
let R = MXY \ {L} be the remaining nodes from the
minimal separating set. Because MXY is minimal, there
must be some R-active path betweenX and Y that reaches
L as an intermediate node. One of the subpaths between L
and either X or Y must be out-of L, or else L would be a
collider along the path. Without loss of generality, assume
that the sub-path between L and Y is out-of L. This sub-
path cannot be ∅-active, or else the path is a directed path
from L to Y . But if the sub-path is not ∅-active, there must
be a directed path from L to some node R ∈ R. R cannot
be an ancestor of X or Y , or else L would be also, but if R
is not an ancestor of either X or Y , then L is not the lowest
node with this property, yielding a contradiction.

Proposition 20. If in G, nodes X and Y are not adjacent
and both have no more than k parents, then MXY ≤ k.

Proof: Follows because, given that X and Y are not adja-
cent in G we have either X⊥⊥GY |PaGX or X⊥⊥GY |PaGY
(or both), and thus given the parent bound there exists a
separating set of size ≤ k.

Theorem 9. If there exists a deletable edge in H, then
there exists a deletable edge X → Y in H for which (1)
CCH

X,Y ⊆ CCG
X,Y and (2) for every E ∈ PaHY \MXY ,

either (a) MEX is defined and MEX ∩DH(X,Y) = ∅ or
(b) MEY is defined and MEY ∩DH(X,Y) = ∅.

Proof: From Corollary 8, we know there exists a deletable
edge X → Y for which DH(X,Y) = DG(X,Y); for
the remainder of the proof we assume X → Y has this
property.

Because CCG
X,Y ⊆ DG(X,Y) and CCH

X,Y ⊆
DH(X,Y), property (1) follows immediately.

Consider any E ∈ PaHY \MXY . E cannot be adjacent to
both X and Y in G, else either (1) it would be a common
child, in which case X → Y would not be deletable, or (2)
it would have to belong to MXY to ensureX⊥⊥GY |MXY .
Without loss of generality, assume E is not adjacent to X
in G, and let Q be any element of MEX . We establish the
theorem by showing that Q 6∈ DH(X,Y).

From Lemma 19, we know that Q must be an ancestor
of either E or X (or both) in G. If Q is an ancestor of
X in G, it cannot be in DH(X,Y) because, given that
DH(X,Y) = DG(X,Y), that would imply that Q is also
a descendant of X in G, which implies G contains a cycle.
IfQ is an ancestor ofE in G, it cannot be in DH(X,Y) be-
cause, given that DH(X,Y) = DG(X,Y), that would im-
ply that E is also in DH(X,Y), which implies—because
E is a parent of Y inH—thatH contains a cycle.

We now define the DAG equivalent of a k-certified delete
operator. In particular, we define a k-deletable edge in
a DAG H—which is completely parallel to the CPDAG
variant—as follows.

Definition 8. An edge X → Y is a k-deletable edge in H
if the following conditions hold:

1. |MXY | ≤ k

2. Every node in CCH
X,Y is a k-verifiable common child

of X and Y

3. For every E ∈ PaHY \MXY , either (a) |MEX | ≤ k
and MEX ∩DH(X,Y) = ∅ or (b) |MEY | ≤ k and
MEY ∩DH(X,Y) = ∅.

The following is the DAG variant of Theorem 3 from the
main paper.

Theorem 10. Any k-deletable edge inH is deletable inH.

Proof: Let X → Y be any k-deletable edge, and let S =
PaHY \ {X}. If the lemma is wrong, then X → Y is not
deletable in H, and thus there must exist a S-active path π
between X and Y in G.

From property 1 from Definition 8, we know there exists a
set T = MXY that d-separates X and Y in G.

We first argue that INCG
π must contain at least one ele-

ment. If this set were empty, then either π consists of a
single edge between X and Y or π consists of a single col-
lider X → S ← Y for some S ∈ S. The first case is ruled
out by the existence of set T that renders X and Y inde-
pendent. For the second case, we know S 6∈ T, or else we
would have a T-active path betweenX and Y in G; but this
means that S ∈ PaHY \T (i.e., it is one of the “E” nodes),
and given that X and Y are both parents of S, no set Q can
exist that renders it independent from X or Y .

Given that INCG
π is non-empty, we conclude from Lemma

16 that π must reach some node C ∈ CCH
X,Y , and because

all such nodes are k-verifiable common children, we know
from Theorem 2 that C is in CCG

X,Y as well. Because C
is not a collider along π in G, it cannot be in the condition-
ing set, and thus both of the path fragments π(C,X) and
π(C, Y) are S active in G, and at least one of them must
be out-of C in G. Without loss of generality, assume the
S-active fragment π(C,X) is out-of C in G.

From the definition of an active path, the (out-of) fragment
π(C,X) must consist of a directed path from C to either
X or some node S ∈ S. If the directed path reaches X , we
know from Proposition 18 that it cannot be blocked by any
node in T (any such node would belong to DG(X,Y) by
virtue of being a descendant of C ∈ CCG

X,Y), and thus we
could prepend this path with the edge Y → C to identify a
T-active path between X and Y , a contradiction.

We conclude that the fragment π(C,X) must start with a
directed path starting with C and reach some node E ∈
S \ T. Because E is a parent of Y in H, we know E 6∈
DH(X,Y), and thus from Lemma 18, the directed path
must hit some first suchE. If we prepend this directed path
with X → C or Y → C, we have identified a directed path
between both X and Y to E for which all the intermediate
nodes are in DH(X,Y). This contradicts the third property
of a k-deletable edge.

The following is the DAG variant of Theorem 4 from the
main paper.

Theorem 11. If each node in G has at most k parents, and
if there exists a deletable edge in H, then there exists a k-
deletable edge inH.

Proof: From Theorem 9, we know there exists a j-
deletable edge in H, where j is the maximum size of a de-
fined separating set in the statement of that theorem. From
Proposition 20, and the fact that no node in G has more than
k parents, we conclude j ≤ k.

15 COMPLETED PDAG RESULTS

In this section, we show that the results about deletability
in DAG models can be extended to deletion operators in
CPDAGs.

A described in detail by Chickering (2002), when we use
equivalence classes of DAG models as search states, the
search operators are defined and scored by edge additions
and deletions to the DAGs that belong to the equivalence
class; we gain efficiency in the representation by grouping
together all DAGs that result in the same equivalence class.

More formally, for an equivalence class C and deletion op-
erator O = Delete(X,Y,H), we say a DAG model H is a
representative consistent extension for O in C if (1) H is a
consistent extension of C and (2) deleting X → Y from H
results in a DAG model that is a consistent extension of the
equivalence class resulting from applying O to C. We use
R(C, O) to denote the set of all representative consistent
extensions for O in C.

Chickering (2002) shows that the set of DAG models in
R(C, O) is characterized by the presence of the edge X →
Y and the set H defined from the operator O. In particular,
we have the following lemma2.

Lemma 20. (Chickering 2002) Let C be any CPDAG,
let H be any consistent extension of C and let O =
Delete(X,Y,H) be any valid edge-deletion operator.
Then H ∈ R(C, O) if any only if H contains the edge
X → Y and CCH

X,Y = CCCX,Y ∪H.

Corollary 9. Let C be any completed PDAG, let O =
Delete(X,Y,H) be any valid edge-deletion operator, and
let H = NAY,X \ H. Then for every H ∈ R(C, O),
H ⊆ PaHY .

Proof: Suppose not, and let Z be any node in H that is
not a parent of Y in H. Because Z is in NAY,X it must
be a child of Y in H, and because X → Y is in H, the
edge between X and Z must be directed as X → Z, lest
H contains a cycle. But this means Z is a common child
of X and Y inH, which from Lemma 20 means Z ∈ H, a
contradiction.

Lemma 21. Let H be any DAG containing a deletable
edge X → Y , and let C be the equivalence class contain-
ing H. Then for H = CCH

X,Y \ CCCX,Y , the operator
Delete(X,Y,H) is a valid edge-deletion operator for C.

Proof: From the preconditions of a valid delete operator,
we need to show (1) H ⊆ NAY,X and (2) NAY,X \H is
a clique.

Property (1) follows by the definition of H by the following
argument. Because all nodes in this set are common chil-
dren of X and Y inH, they must all be adjacent to both X
and Y in C. We have explicitly excluded any C children of

2The lemma is stated slightly differently in Chickering (2002).
Instead of defining the set of common children of X and Y in H
explicitly as we do here, the lemma in Chickering (2002) only
specifies that the common children in H that are connected to
Y by reversible edges must be H; the common children that are
connected to Y by compelled edges are precisely the common
children in C.

Y , and the set cannot contain any C parents or Y lest these
would have been parents (i.e., not children) of Y inH; thus
they must all be neighbors of Y that are adjacent to X in C.

For Property (2), assume the lemma is wrong and there ex-
ists two nodes A and B from NAY,X \H that are not ad-
jacent. InH, we know thatA andB cannot both be parents
of Y , lest A → Y ← B would be a v-structure in H and
thus the edges would be directed in C, contradicting the
fact that they are both neighbors in C. Without loss of gen-
erality, assume that A is a child of Y in H. Because A is
adjacent to X andH contains the edge X → Y , A must be
a common child of X and Y in H, lest H contains a cycle.
But because A 6∈ CCCX,Y , this means it must be in H, a
contradiction.

Lemma 22. (Chickering, 2002a) IfX−Y is an undirected
edge in a completed PDAG C, then PaCX = PaCY .

Proposition 21. Let C be any completed PDAG. If C con-
tains a semi-directed path π from X to Y , then C contains
a detour of π consisting of (1) an undirected path of length
zero or more edges from X to Z, and (2) a directed path of
zero or more edges from Z to Y .

Proof: As we traverse the edges of π from X to Y , if we
ever reach a segment A→ B − C, we know from Lemma
22 that A is a parent of C, and we can replace the segment
with A→ C. Repeating this replacement until we reach Y
establishes the result.

Lemma 23. (Chickering, 1995) Let {X,Y, Z} be any
three nodes that form a clique of size three in PDAG P .
If any two of the edges in the clique are undirected, then
the third edge is undirected as well.

For a completed PDAG C, we use SDC(C,B) to denote
the set of all nodes reachable in C from a node in C via a
semi-directed path that does not pass through any node in
set B of “blocking” nodes.

Theorem 12. Let C be any CPDAG, let O =
Delete(X,Y,H) be any valid edge-deletion operator, let
H = NAY,X \ H, let C = CCCX,Y ∪ H, and let
B = H ∪ X ∪ Y . Then for every H ∈ R(C, O),
DH(X,Y) = SDC(C,B).

Proof: We break the proof into two parts. For Part I, we
show that SDC(C,B) ⊆ DH(X,Y), and for Part II, we
show DH(X,Y) ⊆ SDC(C,B).

Part I: We demonstrate that SDC(C,B) ⊆ DH(X,Y)

by considering only those nodes in SDC(C,B) that are
reachable by an undirected path; once this is established,
Part I of the lemma follows because, from Proposition 21,
any node reachable by a semi-directed path can be reached
by a detour of that path that first traverses undirected edges
only, then follows directed edges that must also exist inH.

Let S be the nodes in SDC(C,B) that are reachable by
some undirected path in C that does not pass through any
node in H ∪X ∪ Y , and let S be any node in S. We prove
Part I by showing S ∈ DH(X,Y) using an induction on
the length of the shortest undirected path from some C ∈
C to S in CPDAG C.

For the basis, we consider paths both of length zero and of
length one. For length zero, S ∈ CCCX,Y ∪H and thus by
Lemma 20 S ∈ CCH

X,Y ⊆ DH(X,Y).

For length one, we consider the undirected edge C − S
in C. If the edge is directed as C → S in H, the lemma
follows immediately. Otherwise, the edge must be directed
as C ← S in H, in which case S must be adjacent to both
X and Y in both C and H, lest H contains a v-structure
not in C. If S is a child of Y in H, then because we know
(from Lemma 20) that H contains the edge X → Y , S
must also be a child ofX (lestH contains a cycle) and thus
S ∈ CCH

X,Y ⊆ DH(X,Y). If S is a parent of Y in H,
then we have a directed path S → Y → C in H. Because
the edge between C and S is undirected in H, we know
that either (1) both of the edges S → Y and Y → C are
directed in C, which means C ← S would also have to be
directed in C, contradicting the fact thatC−S is undirected,
or (2) neither of the edges S → Y nor Y → C are directed
in C, which means that S ∈ H, another contradiction. Thus
S cannot be a parent of Y and the lemma follows.

For the induction step, assume the lemma holds for any
shortest path of length k, and we consider a shortest path
of length k + 1 between C and S. Because k > 1, we
know there is some previous pair of nodes A and B with
A − B − S being the last two edges in the shortest path.
Because the path from C to S is shortest, the sub-path from
C to B must also be a shortest path, and we conclude from
the induction hypothesis that B ∈ DH(X,Y). Thus, if
the edge between B and S is directed in H as B → S,
the lemma follows immediately. For the remainder of the
proof, we assume the edge between B and S is directed in
H as B ← S.

We now consider the first edge C − F along the shortest
path to S. From the proof of the length-one induction hy-
pothesis, we know that either F ∈ C—in which case the
undirected path from C to S is not the shortest path from a
node in C to S—or the edge is directed as C → F . If the
first edge is directed as C → F and the last edge is directed
as B ← S, then there must be some intermediate collider
L → I ← R along the path. Because both edges are undi-
rected in C, we know L and R must be adjacent, and via
Lemma 23 the edge L−R is undirected in C, which means
we can create a shorter undirected path by replacing the
segment L− I −R in the path by L−R. With this contra-
diction, we conclude that Part I of the lemma follows.

Part II: We now demonstrate that DH(X,Y) ⊆

SDC(X,Y). Consider any S ∈ DH(X,Y), and let π de-
note any directed path from C ∈ CCH

X,Y to S in H. Be-
cause H is identical to a consistent extension of C, except
that the edgeX → Y has been deleted, we know that corre-
sponding to the directed path inH must be a semi-directed
path in C. It remains to be shown that this semi-directed
path does not pass through any node in E = H ∪X ∪ Y ;
but given Corollary 9 and the fact that bothX and Y are an-
cestors in H of every node in π, this follows immediately
given thatH is acyclic.

The following two corollaries follow from the equivalence
of the definitions of (1) a k-deletable edge in DAG H
and (2) a k-certified delete operator O in C for which
H ∈ R(C, O). Both of these definitions have three proper-
ties: property 1 is identical in the two definitions, property
2 is equivalent as a result of Lemma 20, and property 3 is
equivalent from Theorem 12.

Corollary 10. If delete operator O = Delete(X,Y,H) in
C is k certified, then the edge X → Y is k deletable in
everyH ∈ R(C, O).

Corollary 11. Given a delete operator O =
Delete(X,Y,H) in C, if there exists an edge X → Y that
is k deletable in someH ∈ R(C, O), then O is k certified.

16 PROOF OF THEOREM 3 AND
THEOREM 4 FROM MAIN PAPER

Theorem 3 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with re-
spect to G, then applying any k-certified delete operator to
C results in an IMAP of G.
Proof: LetO = Delete(X,Y,H) be any k-certified delete
operator, and let H be any element of R(C, O). From
Corollary 10, we know that X → Y is k-deletable in H,
and from Theorem 10, X → Y is deletable inH. From the
definition of a deletable edge, the resulting DAG H′ must
be an IMAP of G. From the definition of R(C, O), H′ is
a member of the CPDAG resulting from applying O to C,
and thus the theorem follows.

Theorem 4 If the separator sets Mk are consistent with
the independencies in a distribution that is perfect with re-
spect to G, where each node in G has at most k parents,
then for any CPDAG Cwith G < C, there exists a k-certified
delete operator in C.
Proof: From Theorem 1, we know that as long as G <
C, there must exist some valid delete operator O =
Delete(X,Y,H). This means that for any H ∈ R(C, O),
the edge X → Y is deletable in H, and from Theo-
rem 11, we conclude that there must also exist some k-
deletable edge Z → W in H. From Lemma 21, we
know there must be a corresponding valid delete operator
O′ = Delete(Z,W,H′) for C. From Corollary 11, we
conclude that O′ is a k-certified delete operator in C.

References

[1] David Maxwell Chickering. Learning equivalence
classes of Bayesian-network structures. Journal of Ma-
chine Learning Research, 2:445–498, February 2002.

[2] Ross Shachter. Bayes-ball: The rational pastime (for
determining irrelevance and requisite information in
belief networks and influence diagrams). In G. Cooper
and S. Moral, editors, Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence,
Madison, Wisconsin, pages 480–487. Morgan Kauf-
mann, August 1998.

