
Amortized Nesterov’s Momentum: A Robust Momentum and Its
Application to Deep Learning

Kaiwen Zhou1 Yanghua Jin2 Qinghua Ding1 James Cheng1

1 Department of Computer Science and Engineering, The Chinese University of Hong Kong
2 Preferred Networks, Inc.

kwzhou@cse.cuhk.edu.hk, jinyh@preferred.jp,
qhding@cse.cuhk.edu.hk, jcheng@cse.cuhk.edu.hk

Abstract

This work proposes a novel momentum tech-
nique, the Amortized Nesterov’s Momentum,
for stochastic convex optimization. The pro-
posed method can be regarded as a smooth
transition between Nesterov’s method and mir-
ror descent. By tuning only a single param-
eter, users can trade Nesterov’s acceleration
for robustness, that is, the variance control of
the stochastic noise. Motivated by the recent
success of using momentum in deep learning,
we conducted extensive experiments to evalu-
ate this new momentum in deep learning tasks.
The results suggest that it can serve as a favor-
able alternative for Nesterov’s momentum.

1 INTRODUCTION

In convex optimization, momentum methods have been
widely adopted to minimize an objective function f :
Rn → R, and recently they have been extended into
training deep neural networks. The most notable momen-
tum techniques are classical momentum (Polyak, 1964)
and Nesterov’s momentum (Nesterov, 1983, 2013b). Be-
tween these two, Nesterov’s method is famous for its op-
timal convergence rates for a wider range of convex prob-
lems, and it has the following scheme1 (constant step)
(Nesterov, 2013b) (y ∈ Rn, η, β ∈ R and y0 = x0):

yk+1 = xk − η · ∇f(xk),

xk+1 = yk+1 + β · (yk+1 − yk), for k ≥ 0,
(1)

where ∇f(xk) is the gradient of f at xk and we call
β · (yk+1 − yk) the momentum. Note that if β = 0,
scheme (1) reduces to gradient descent (GD). Thus, we
can regard scheme (1) as injecting the momentum into

1We exchange the notations of x and y in Nesterov (2013b).

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

the sequence of GD, and the momentum comes from the
previous iterate generated by GD.

The setting where the gradient oracle can be inexact
arises naturally in many optimization tasks, and it has
been extensively studied for decades. If the inexactness
is stochastic, stochastic gradient descent (SGD) (Rob-
bins and Monro, 1951) is a classical choice of optimizer,
and due to its low iteration cost, SGD has also been
widely used for deep learning tasks. Under the classic
bounded noise setting, notable schemes have been pro-
posed: Robust SA (and its generalized variant, mirror
descent SA) (Nemirovski et al., 2009), which is a more
robust SA approach; AC-SA (Lan, 2012), which incor-
porates Nesterov-style acceleration into SA and achieves
the optimal rate in the convex setting. In the con-
stant step case, AC-SA is equivalent to the scheme (1)
with ∇f(xk) replaced by a stochastic gradient. Such a
scheme is called the SGD with Nesterov’s momentum,
which is very popular in training deep neural networks.

There are also recent studies which focus on momen-
tum acceleration in different stochastic settings that al-
low unbounded noise: Yuan et al. (2016) questioned the
benefit of momentum in the constant step case and pro-
posed to use decaying momentum. Vaswani et al. (2019)
leveraged interpolation-like conditions (Ma et al., 2018;
Belkin et al., 2018) and proposed a parameter setting for
stochastic Nesterov’s method which recovers the acceler-
ated rates. Jain et al. (2018); Kidambi et al. (2018); Liu
and Belkin (2020) studied the non-acceleration issues of
stochastic momentum schemes on least squares and pro-
posed new schemes that converge faster than SGD.

If the gradient noise is deterministic, Devolder et al.
(2014) noted that under their notion of noise, Nesterov’s
method can lead to an accumulation of error and diverge
while GD is much more robust to the noise. Lessard et al.
(2016) proposed to use robust control theory to study the
trade-off between robustness and convergence rate when
the gradient is subject to multiplicative noise. Inspired

by their work, Cyrus et al. (2018) proposed the Robust
Momentum Method (RMM), which has a parameter that
can be tuned to trade convergence rate for robustness.
RMM can be regarded as a smooth transition between an
accelerated scheme and GD.

In this work, we propose a novel momentum technique,
the Amortized Nesterov’s Momentum. Similar to RMM,
it introduces a parameter to trade Nesterov’s acceleration
(not convergence rate) for robustness, while our notion
of robustness2 is for stochastic gradient noise. At one ex-
treme, the proposed method is equivalent to AC-SA and
enjoys the optimal rate. At the other extreme, the method
becomes mirror descent SA, which has a constant-factor
better variance control than AC-SA. Unlike RMM, our
trade-off does not necessarily lead to a slower conver-
gence rate and our technique has clearer intuition.

High-level idea: stochastic Nesterov’s momentum can be
unreliable since it is provided only by the previous it-
erate. The iterate potentially has large variance, which
may lead to a false momentum that perturbs the train-
ing process. We thus propose to use the stochastic Nes-
terov’s momentum based on several past iterates, which
provides robust acceleration. In other words, instead of
immediately using an iterate to provide momentum, we
put the iterate into an “amortization plan” and use it later.

We analyze the proposed methods in a general setting
that covers smooth/non-smooth, deterministic/stochastic
convex problems and allows choosing non-Euclidean
norm for the problem space.

We mainly focus on evaluating this new momentum in
deep learning, which is motivated by the following facts:

• Sutskever et al. (2013) found that using SGD
with Nesterov’s momentum achieves substantial
speedups for training neural networks, which es-
sentially turns it into the benchmarking method
of neural network design, especially for classifica-
tion tasks (He et al., 2016a,b; Zagoruyko and Ko-
modakis, 2016; Huang et al., 2017).

• Ma and Yarats (2019) proposed the QHM method,
which shows good performance for deep learning
tasks. QHM can be regarded as a reformulation of
RMM (see Appendix C.4 in Ma and Yarats (2019)).

We conducted extensive deep learning experiments to ex-
plore the benefits of this new momentum, which shows
that it can serve as a nice alternative for Nesterov’s mo-
mentum. We also conducted convex experiments (in Ap-
pendix A.8) as sanity checkers for the theoretical results.

2In this work, robustness refers to how well the method con-
trols the variance of the stochastic noise, i.e., the variance term
in the expected error and the probability of large deviations.

2 PRELIMINARIES

Notations and generalities We use E to denote a
finite-dimensional real vector space and E∗ is its dual
space. The value of a linear function g ∈ E∗ at x ∈ E is
represented by 〈g, x〉. ‖·‖ denotes an arbitrary norm inE
and the dual norm ‖·‖∗ on E∗ is defined in the standard
way: ‖g‖∗ , max‖x‖=1 〈g, x〉. Scalar multiplication for
v ∈ E and β ∈ R is denoted as β · v. The notation [m]
refers to the set {1, . . . ,m} and the symbol ← denotes
assignment. We use E to denote expectation and the
conditional expectation for a random process i0, i1, . . .
is denoted as Eik [·] , E [· | (i0, . . . , ik−1)].

Problem setup We consider the convex composite
problem (Beck and Teboulle, 2009; Nesterov, 2013a):
minx∈X

{
F (x) , f(x) + h(x)

}
, where X ⊆ E is a

non-empty closed convex set and h is a proper convex
function. We denote x? ∈ X as a solution to this prob-
lem. ∇f(x) ∈ E∗ represents (one of) the (sub)gradient
of f at x. Given an input x ∈ E, the stochastic gradi-
ent oracle outputs an unbiased ∇fi(x) ∈ E∗, where the
random variable i is independent of x.

We introduce the proximal setting, which generalizes the
usual Euclidean setting. The distance generating func-
tion d : X → R is required to be continuously differ-
entiable and 1-strongly convex with respect to ‖·‖, i.e.,
d(x)−d(y)−〈∇d(y), x− y〉 ≥ 1

2 ‖x− y‖
2
,∀x, y ∈ X.

The prox-term (Bregman divergence) associated with d is
Vd(x, y) , d(x) − d(y) − 〈∇d(y), x− y〉 ,∀x, y ∈ X .
By adjusting ‖·‖ and d(·) to the geometry of the problem,
mirror descent achieves a smaller problem-dependent
constant than the Euclidean algorithms, which is its key
benefit (Nemirovski and Yudin, 1983). Typical proximal
setups can be found in Section 5.3.3 in Ben-Tal and Ne-
mirovski (2013). At a first reading, this setting can be
taken as the standard Euclidean setting: X = E = Rn,
‖·‖ = ‖·‖2, 〈·, ·〉 is the inner product, d(x) = 1

2 ‖x‖
2
2 and

Vd(x, y) = 1
2 ‖x− y‖

2
2.

We assume that Vd is chosen such that the prox-mapping,
Proxh(x,G) , arg minu∈X

{
Vd(u, x)+〈G, u〉+h(u)

}
,

can be easily computed for any x ∈ X,G ∈ E∗. Exam-
ples where this assumption is satisfied can be found in
Parikh et al. (2014); Ghadimi and Lan (2012).

3 AMORTIZED NESTEROV’S
MOMENTUM

In this section, we introduce SGD with Amortized Nes-
terov’s Momentum (AM1-SGD) in Algorithm 1, and in
Algorithm 2, we reformulate Algorithm 1 into a “mo-
mentum scheme” under the Euclidean setting with h ≡ 0

Alg. 1 AM1-SGD

Input: Initial guess x0, parameter {αs}, momentum
{βs}, amortization length m, iteration number K.

Initialize: x̃0 = z0 = x0, S = K/m.3

1: for s = 0, . . . , S − 1 do
2: for j = 0, . . . ,m− 1 do
3: k = sm+ j.
4: xk = (1− βs) · zk + βs · x̃s.
5: zk+1 = Proxαsh

(
zk, αs · ∇fik(xk)

)
.

6: end for
7: x̃s+1 = 1−βs

m ·
∑m
j=1 zsm+j + βs · x̃s.

8: end for
Output: x̃S .

+β · (-) yk+1 yk

+β · (-) x~+ x~

............... xk+1

x~

xkxk-m+2xk-m+1xk-2m+2

x~+

Amortized Nesterov's Momentum:

Nesterov's Momentum:

The sequence of (stochastic) gradient descent yk yk+1

Figure 1: Graphical illustration of Amortized Nesterov’s
Momentum. This figure describes how the momentum is
injected into the sequence of gradient descent {xk}.

and constant momentum βs = β. We provide the step-
by-step conversion in Appendix B.1, which shows that
Algorithms 1 and 2 are equivalent through η = αs(1 −
βs). This momentum scheme is related to how we im-
plement AM1-SGD for deep learning applications and is
also clearer for providing intuition. In Section 3.1, we
propose another method (AM2-SGD) to implement the
idea of utilizing several past iterates. To elaborate the
features of AM1-SGD, we make the following remarks:

A periodical and large momentum A graphical illus-
tration of Algorithm 2 is included in Figure 1, which de-
picts how AM1-SGD leverages several past iterates to
provide momentum. Nesterov’s momentum is injected
in every iteration. In comparison, the amortized momen-
tum is injected every m iterations, while this momen-
tum β · (x̃+ − x̃) is expected to be much larger than
β · (yk+1 − yk) if the same η and β are used. Intu-
itively, we can understand the amortized momentum as
an m times larger Nesterov’s momentum, which is ap-
plied every m iterations.

The bridge between accelerated schemes and mirror
descent It can be verified that if m = 1, Algorithm 2
is equivalent to (stochastic) Nesterov’s scheme (1) and

3For simplicity, we assume K is divisible by m.

Alg. 2 AM1-SGD (Euclidean, h ≡ 0, constant scheme)

Input: Initial guess x0, learning rate η, momentum β,
amortization length m, iteration number K.

Initialize: x← x0, x̃← x0, x̃+ ← 0.
1: for k = 0, . . . ,K − 1 do
2: x← x− η · ∇fik(x).
3: x̃+ ← x̃+ + 1

m · x.
4: if (k + 1) mod m = 0 then

// adding amortized momentum.
5: x← x+ β · (x̃+ − x̃).

6: x̃← x̃+, x̃+ ← 0.
7: end if
8: end for

Output: Option I: x, Option II: x̃.

Algorithm 1 becomes AC-SA (Lan, 2012); if m = K,
Algorithm 2 is the SGD that outputs the average of the
whole history and Algorithm 1 is equivalent to mirror
descent SA (Nemirovski et al., 2009; Lan, 2012).

Acceleration and tail averaging The main ingredients
of AM1-SGD are Nesterov-style acceleration and tail av-
eraging, namely, the output point x̃ is an m-iterations
tail average and the amortized momentum is provided by
two consecutive tail averages. It seems that the effects of
outputting a tail average and applying the amortized mo-
mentum are independent. Option I in Algorithm 2, which
we provide as a heuristic option, omits the tail averaging
at the output point.

Options Option II in Algorithm 2, which corresponds
to the output of Algorithm 1, is the theoretical option that
we analyze in Section 4. Option I, in addition to omitting
the tail averaging effect, follows the implementations of
Nesterov’s momentum in PyTorch (Paszke et al., 2017)
and Tensorflow (Abadi et al., 2016). We will see in Sec-
tion 5 that the standard Nesterov’s momentum also has
this type of heuristic and theoretical options.

Connections with Katyusha Our original inspiration
of AM1-SGD comes from Katyusha (Allen-Zhu, 2018),
the recent breakthrough in finite-sum convex optimiza-
tion, which uses a previously calculated “snapshot” point
to provide momentum, i.e., Katyusha momentum. AM1-
SGD also uses an aggregated point to provide mo-
mentum and it shares many structural similarities with
Katyusha. We refer interested readers to Appendix B.3.

3.1 AM2-SGD

We propose another realization of the amortization tech-
nique (AM2-SGD) in Algorithm 3, and similar to AM1-
SGD, its “momentum scheme” reformulation in Algo-

Alg. 3 AM2-SGD

Input: Initial guess x0, amortization length m, a point
table φ =

[
φ1 · · · φm

]
∈ Em, parameter {αk},

momentum {βk}, iteration number K.
Initialize: z0 = φ0j = x0,∀j ∈ [m].

1: for k = 0, . . . ,K − 1 do
2: Sample jk uniformly in [m].
3: xjkk = (1− βk) · zk + βk · φkjk .
4: zk+1 = Proxαkh

(
zk, αk · ∇fik(xjkk)

)
.

5: φk+1
jk

= (1−βk) ·zk+1 +βk ·φkjk and keep other
entries unchanged (i.e., φk+1

j = φkj for j 6= jk).
6: end for

Output: φ̄K = 1
m

∑m
j=1 φ

K
j .

rithm 4. We were inspired by the constructions of SVRG
(Johnson and Zhang, 2013) and SAGA (Defazio et al.,
2014), the most popular methods in finite-sum convex
optimization—to reuse the information from several past
iterates, we can either maintain a “snapshot” that aggre-
gates the information or keep the iterates in a table.

We discuss some interesting characteristics of AM2-
SGD by making the following remarks:

Identical iterations The workload of AM1-SGD
varies for different iterations due to the if-clause (or the
two-loop structure). This to some extent limits its ex-
tensibility to other settings (e.g., asynchronous setting).
AM2-SGD does not have this issue and is structurally
simpler. Although AM2-SGD requires storing a table of
vectors, which could be expensive in practice, the table
size m is tunable, and we will see that in theory, it is
more beneficial to choose relatively small m.

“Random tail averaging” Based on the expectation
of geometric distribution, we know that the point table
φ is expected to store m iterates from the most recent
Θ(m logm) iterates. Thus, we can regard the output φ̄,
the average of the point table, as a “random tail average”.
The momentum of AM2-SGD is randomly provided by
two past iterates in the table. Interestingly, as shown in
Section 6.2, when using the same (η, β,m), the conver-
gence of AM2-SGD is similar to AM1-SGD while being
slightly faster. This suggests that randomly incorporating
past iterates beyond m iterations helps.

Options As is the case for AM1-SGD, we provide
Option I in Algorithm 4 following the same heuristics.
However, in our preliminary experiments, we found that
the performance of Option I is not stable, and thus we do
not recommend this option for AM2-SGD. We believe
that it is caused by the additional randomness {jk}.

Alg. 4 AM2-SGD (Euclidean, h ≡ 0, constant scheme)

Input: Initial guess x0, amortization length m, a point
table φ ∈ Rn×m, learning rate η, momentum β, iter-
ation number K.

Initialize: φ0j = x0,∀j ∈ [m]. j0 is uniformly sampled
in [m]. If Option II, store a running average φ̄0 = x0.

1: for k = 0, . . . ,K − 1 do
2: φk+1

jk
= xk−η ·∇fik(xk) and keep other entries

unchanged (i.e., φk+1
j = φkj for j 6= jk).

3: Sample jk+1 uniformly in [m].
4: xk+1 = φk+1

jk
+ β · (φk+1

jk+1
− φkjk).

5: if Option II then φ̄k+1 = φ̄k+ 1
m ·
(
φk+1
jk
− φkjk

)
.

6: end for
Output: Option I (unstable): xK , Option II: φ̄K .

4 CONVERGENCE RESULTS

In this section, we analyze AM1-SGD (Algorithm 1) and
AM2-SGD (Algorithm 3) in the convex setting. Compar-
ing Algorithms 1 and 3, we see that their iterations can
be generalized as follows (y+ = xk+1 for AM1-SGD):

x = (1− β) · z + β · y,
z+ = Proxαh

(
z, α · ∇fi(x)

)
,

y+ = (1− β) · z+ + β · y.
(2)

This scheme is first proposed in Auslender and Teboulle
(2006), which represents one of the simplest variants of
Nesterov’s methods (see Tseng (2008) for the others).
This scheme is modified into various settings (Hu et al.,
2009; Lan, 2012; Ghadimi and Lan, 2012; Zhou et al.,
2018, 2019; Lan et al., 2019) to achieve acceleration.

We impose the following assumptions on the regular-
ity of f and ∇fi, which are classical in the analysis
of stochastic approximation algorithms (identical to the
ones in Ghadimi and Lan (2012) with µ = 0):

Assumptions. For some L ≥ 0,M ≥ 0, σ ≥ 0,

(a) 0 ≤ f(y)−f(x)−〈∇f(x), y − x〉 ≤ L
2 ‖y − x‖

2
+

M ‖y − x‖ ,∀x, y ∈ X.4

(b) Ei [∇fi(x)] = ∇f(x),∀x ∈ X.

(c) Ei
[
‖∇fi(x)−∇f(x)‖2∗

]
≤ σ2,∀x ∈ X.

These assumptions cover several important classes of
convex problems. For example, (a) covers the cases of
f being L-smooth (M = 0) or L0-Lipschitz continuous
(M = 2L0, L = 0) convex functions and if σ = 0 in

4When M > 0, f is not necessarily differentiable and
∇f(x) denotes an arbitrary subgradient of f at x.

(c), the assumptions cover several classes of determinis-
tic convex programming problems.

The following lemma serves as a cornerstone for the con-
vergence analysis of AM1-SGD and AM2-SGD. All the
proofs in this paper are given in Appendix B.2.

Lemma 1. Let δx , ∇f(x)−∇fi(x). If α(1−β) < 1
L ,

the update scheme (2) satisfies the recursion:

1

1− β
(
F (y+)− F (x?)

)
+

1

α
Vd(x

?, z+)

≤ β

1− β
(
F (y)− F (x?)

)
+

1

α
Vd(x

?, z)

+
(‖δx‖∗ +M)2

2(α−1 − L(1− β))
+ 〈δx, z − x?〉 .

Based on this key recursion, we establish the conver-
gence rates for AM1-SGD and AM2-SGD as follows.

Theorem 1. In AM1-SGD, if βs = s
s+2 , αs = λ1

L(1−βs)

where λ1 = min

{
2
3 ,

L
√
Vd(x?,x0)

√
2m
√
σ2+M2(S+1)

3
2

}
. Then,

(a) The output x̃S satisfies

E [F (x̃S)]− F (x?) ≤ 6LmVd(x
?, x0)

(K +m)2

+
8
√

2Vd(x?, x0)
√
σ2 +M2

√
K +m

, K0(m).

(b) If X is compact and the variance has a “light tail”,
i.e., Ei

[
exp
{
‖∇fi(x)−∇f(x)‖2∗/σ2

}]
≤ exp{1},

∀x ∈ X , denoting DX , maxx∈X ‖x− x?‖, for
any Λ ≥ 0, we have

Prob {F (x̃S)− F (x?) ≤ K0(m) +K1(m,Λ)}
≥ 1−

(
exp{−Λ2/3}+ exp{−Λ}

)
,

where the deviation term K1(m,Λ) is

K1(m,Λ) ,
4
√

6Λσ
(√

3Vd(x?, x0) +DX

)
3
√
K +m

.

Remark (a): Theorem 1a gives the expected objective er-
ror, from which the trade-off of m is clear: Increasing
m improves the dependence on variance σ but deterio-
rates theO(L/K2) term (i.e., the acceleration). Note that
for AM1-SGD, m is strictly constrained in {1, . . . ,K}.
When m = K, AM1-SGD is equivalent to mirror de-
scent SA, and the convergence rate in Theorem 1a be-
comes the corresponding O(L/K + (σ +M)/

√
K) (cf.

Theorem 1 in Lan (2012)). By taking derivative, we see
that the minimum of the expected error K0(m) is ob-
tained at either m = 1 or m = K. This to some ex-
tent undermines the choices of setting 1 < m < K.

However, it is worth noting that in practice, the values
Vd(x

?, x0), σ, L and M could be unknown, especially
Vd(x

?, x0). In this case, these values are chosen as some
upper estimations and can be very inaccurate. The pa-
rameter m allows users to determine the amount of ac-
celeration and variance control for concrete tasks, which
is much more flexible than sticking to m = 1 or m = K.

Remark (b): Theorem 1b provides the probability of
the objective value deviating from its expected perfor-
mance (i.e.,K0(m)). It is clear that increasingm leads to
smaller deviations with the same probability and thus im-
proves the robustness of the iterates. The additional com-
pactness and “light tail” assumptions are similarly re-
quired in Nemirovski et al. (2009); Lan (2012); Ghadimi
and Lan (2012). Note that the “light tail” assumption
is stronger than Assumption (c). Recently, Nazin et al.
(2019) established similar bounds without the “light tail”
assumption by truncating the gradient. However, as indi-
cated by the authors, their technique cannot be used for
accelerated algorithms due to the accumulation of bias.

For AM2-SGD, we only give the expected convergence
results as follows.

Theorem 2. In AM2-SGD, if βk = k/m
k/m+2 and αk =

λ2

L(1−βk)
where λ2 = min

{
2
3 ,

L
√
Vd(x?,x0)

√
m(σ+M)(K−1

m +2)
3
2

}
,

the output φ̄K satisfies

E
[
F (φ̄K)

]
− F (x?)

≤
4(m2 −m)

(
F (x0)− F (x?)

)
+ 6LmVd(x

?, x0)

(K + 2m− 1)
2

+
8
√
Vd(x?, x0)(σ +M)√
K + 2m− 1

. (3)

Remark: In comparison with Theorem 1a, Theorem 2
has an additional term F (x0) − F (x?) in the upper
bound, which is inevitable. This difference comes from
different restrictions on the choice ofm. For AM2-SGD,
m ≥ 1 is the only requirement. Since it is impossible to
let m � K to obtain an improved rate, this additional
term is inevitable. As a sanity check, we can let m→∞
to obtain a point table with almost all x0, and then the
upper bound becomes exactly F (x0)−F (x?). Since the
first term in (3) increases rapidly with m, a smaller m
is favored for AM2-SGD. In some cases, there exists an
optimal choice ofm > 1 in Theorem 2. However, the op-
timal choice could be messy and thus we omit the discus-
sion here. Comparing the rates, we see that when using
the same m, AM2-SGD has slightly better dependence
on σ, which is related to the observation in Section 6.2
that AM2-SGD is always slightly faster than AM1-SGD.

If m = O(1), Theorems 1 and 2 establish the optimal

0 20 40 60 80
Epoch

75

80

85

90

95
Te

st
 A

cc
ur

ac
y%

Test Accuracy

SGD
M-SGD
OM-SGD

(a)

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
Lo

ss

Train Loss
SGD (batch)
M-SGD (batch)
SGD (full)
M-SGD (full)

(b)

0 20 40 60 80
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 A
cc

ur
ac

y
ST

D%

Test Accuracy STD
SGD
M-SGD

METHOD Avg. STD

SGD 0.99%

M-SGD 1.04%

(c)

Figure 2: ResNet34 on CIFAR-10. For all methods, initial learning rate η0 = 0.1, momentum β = 0.9, run 5 seeds
(start at same x0). In (a) (b), we plot mean curves with shaded bands indicate ±1 standard deviation. (c) shows the
standard deviation of test accuracy and its average over 90 epochs.

O(L/K2+(σ+M)/
√
K) rate in the convex setting (see

Lan (2012) for optimality), which verifies AM1-SGD
and AM2-SGD as variants of Nesterov’s method (Nes-
terov, 1983, 2013b). Note that the improvements on step-
size policy proposed in Hu et al. (2009) and Ghadimi and
Lan (2012) are orthogonal to the amortization technique
and thus can be directly used in Theorems 1 and 2. From
the above analysis, the effect of m can be understood as
trading Nesterov’s acceleration (the O(1/K2) term) for
variance control (the O(1/K) term). Since the conver-
gence speed is determined by the sum of these two terms,
the practical effect of amortization on convergence is un-
determined. We expect amortization boosts the rate if σ
or M is large, which is justified in Appendix A.8.

5 USING AMORTIZED NESTEROV’S
MOMENTUM IN DEEP LEARNING

We start with reviewing the usage of Nesterov’s momen-
tum in deep learning. We discuss some subtleties in the
implementation and evaluation, which contributes to the
interpretation of our methods.

By replacing ∇f(xk) with ∇fik(xk) in scheme (1), we
obtain the SGD with Nesterov’s momentum,

yk+1 = xk − η · ∇fik(xk),

xk+1 = yk+1 + β · (yk+1 − yk), for k ≥ 0,
(4)

which is widely used in deep learning. To make this
point clear, recall that the reformulation in Sutskever
et al. (2013) (scheme (5), also the Tensorflow version)
and the PyTorch version (scheme (6)) have the following
schemes (v, vpt ∈ Rn and v0 = vpt0 = 0): for k ≥ 0,

TF: vk+1 = β · vk − η · ∇fik(yk + β · vk),

yk+1 = yk + vk+1.
(5)

PT: vptk+1 = β · vptk +∇fik(xk),

xk+1 = xk − η · (β · vptk+1 +∇fik(xk)).
(6)

Here the notations are modified based on their equiva-
lence to scheme (4). It can be verified that schemes (5)
and (6) are equivalent to (4) through vk = β−1 ·(xk−yk)
and vptk = η−1β−1 · (yk−xk), respectively (see Defazio
(2019) for other equivalent forms of scheme (4)).

Interestingly, both PyTorch and Tensorflow5 track {xk},
which we refer to as M-SGD. This choice allows a con-
sistent implementation when wrapped in a generic opti-
mization layer (Defazio, 2019). The accelerated rate is
built upon {yk} in Nesterov (2013b). We use OM-SGD
to refer to the Original M-SGD that outputs {yk}.

It can be verified that ifm = 1, AM1-SGD (Algorithm 2)
and AM2-SGD (Algorithm 4) with Option I are equiva-
lent to M-SGD, and with Option II, they are equivalent
to OM-SGD. By slightly modifying Algorithm 2, we can
reduce its amortized iteration cost. We discuss this and
other implementation details in Appendix A.1.

To introduce some evaluation metrics, we report the re-
sults of training ResNet346 (He et al., 2016a) on CIFAR-
10 (Krizhevsky et al., 2009) using SGD and M-SGD in
Figure 2 and make the following remarks:

• The role of SGD. The performance of SGD is used
as a reference in this paper. Relating to Figure 1, we
regard momentum as an add-on to plain SGD, and
thus we choose the same learning rates for SGD and
the momentum schemes. Such a perspective helps
us understand what has been changed when apply-
ing momentum. Figure 2a shows that Nesterov’s
momentum hurts the convergence in the first 60
epochs but accelerates the final convergence, which
verifies the importance of momentum for achiev-
ing high accuracy. Figure 2c suggests that adding
Nesterov’s momentum slightly increases the uncer-

5Tensorflow tracks the values {yk + β · vk} = {xk}.
6The settings follow Ma and Yarats (2019). Since 90-epoch

training is not standard for CIFAR-10, we choose the models
that can achieve decent performance in 90 epochs.

0 5 10 15 20 25 30
m

94.2

94.4

94.6

94.8

Fi
na

l A
cc

ur
ac

y%
Final Test Accuracy

Option I
Option II

0 5 10 15 20 25 30
m

0.4

0.6

0.8

1.0

Av
er

ag
e

ST
D%

Average of Test Accuracy STD
Option I
Option II

(a) Sweeping m in {3, 5, 7, 10, 20, 30}. Run 5 seeds.

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%

Test Accuracy

SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

0 20 40 60 80
Epoch

0

1

2

3

4

Te
st

 A
cc

ur
ac

y
ST

D%

Test Accuracy STD
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

(b) Fixing m = 5. Run 20 seeds.

Figure 3: ResNet34 on CIFAR-10. For all methods, η0 = 0.1, β = 0.9, using same x0. Labels of AM1-SGD are
‘AM1-SGD-{Option}’. Shaded bands (or bars) indicate ±1 standard deviation.

tainty in the training process of SGD.

• Train-batch loss vs. Full-batch loss. In Figure 2b,
train-batch loss stands for the average of batch
losses forwarded in an epoch, which is commonly
used to indicate the training process in deep learn-
ing. Full-batch loss is the average loss over the
entire training dataset evaluated at the end of each
epoch. In terms of optimizer evaluation, full-batch
loss is much more informative than train-batch loss
as it reveals the robustness of an optimizer. How-
ever, full-batch loss is expensive to evaluate. On the
other hand, test accuracy couples optimization and
generalization, but since it is also evaluated at the
end of the epoch, its convergence is similar to full-
batch loss (see Figure 2a, 2b). Considering the ba-
sic usage of momentum in deep learning, we mainly
use test accuracy to evaluate optimizers. We provide
more discussion on this issue in Appendix C.

• Robustness. Inspired by Theorem 1b, we run a
method multiple times with different seeds (same
x0) and measure the standard deviation of accuracy
or loss at each iterate. Assuming a Gaussian under-
lying distribution, we can characterize this deviation
by K1(m,Λ) in Theorem 1b with some fixed Λ.

We also plot the convergence of OM-SGD in Figure 2a.
Interestingly, OM-SGD performs slightly better in this
task: the final accuracies of M-SGD and OM-SGD are
94.61%± 0.15% and 94.73%± 0.11% with average de-
viations at 1.04% and 0.63%, respectively.

We do not compare with adaptive methods (Duchi et al.,
2011; Kingma and Ba, 2015), which scale the gradient
using a diagonal matrix to speed up training. Wilson
et al. (2017) showed that these methods always gener-
alize poorly compared with SGD with momentum. We
chose the tasks where Nesterov’s momentum is very ef-
fective and popular to conduct our experiments.

Table 1: Detailed data of the curves in Figure 3b.

METHOD FINAL ACCURACY Avg. STD
SGD 93.30%± 0.20% 0.93%

M-SGD 94.71%± 0.17% 1.00%
AM1-SGD-I 94.68%± 0.18% 0.59%
AM1-SGD-II 94.62%± 0.15% 0.31%

6 EXPERIMENTS

From Theorems 1 and 2, we see that if m is small, the
parameters α and β do not change a lot from the case
wherem = 1. This inspired us to align (η, β) of AM1/2-
SGD with that of M-SGD and we tune only m. Such
a choice facilitates the usage of AM1/2-SGD. In other
words, we used the following parameter settings: η for
SGD, (η, β) for M-SGD and (η, β,m) for AM1/2-SGD.

6.1 PARAMETER SWEEP ON CIFAR-10

As mentioned in Section 4, the practical effect of amorti-
zation is undetermined. Thus, we start with a parameter
sweep experiment for m.

In Figure 3a, we trained ResNet34 on CIFAR-10 using
AM1-SGD with various m. The experiments were re-
peated 5 times with different random seeds to measure
the robustness. The convergence behaviors can be found
in Appendix A.2. Note that the leftmost points (m = 1)
in Figure 3a correspond to the results of M-SGD and
OM-SGD, which are already given in Figure 2. From
this empirical result, we see that m introduces a trade-
off between the final accuracy and robustness while the
improvement on the robustness is much more significant
than the negative effect on the final accuracy. Figure 3a
suggests that m = 5 is a good choice for this task. For
simplicity, and also as a recommended setting, we fix
m = 5 for the rest of experiments in this paper.

To provide a stronger justification, we ran 20 seeds with
m = 5 in Figure 3b and the detailed data are given in Ta-

0 20 40 60 80
Epoch

45

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y%
ResNet50 on ImageNet

SGD
M-SGD
AM1-SGD
AM2-SGD

0 20 40 60 80
Epoch

45
50
55
60
65
70
75
80

Te
st

 A
cc

ur
ac

y%

ResNet152 on ImageNet

SGD
M-SGD
AM1-SGD
AM2-SGD

METHOD
ImageNet (Final Accuracy)

ResNet50 ResNet152
SGD 72.78%± 0.08% 74.36%± 0.29%

M-SGD 75.71%± 0.06% 78.07%± 0.10%
AM1-SGD 75.78%± 0.11% 77.82%± 0.29%
AM2-SGD 75.85%± 0.07% 78.19%± 0.15%

Figure 4 & Table 2: ResNet on ImageNet. Run 3 seeds.
Shaded bands indicate ±1 standard deviation.

ble 1. Recall that Option I omits the tail averaging at the
output point. We can thus understand the gap between
two options as the effect of tail averaging. Since Option I
is basically SGD with the amortized momentum, the re-
sults justify that the amortized momentum significantly
increases the robustness. It is interesting that the amor-
tized momentum, while being a very large momentum,
not only provides acceleration, but also helps the algo-
rithm become more robust than SGD. This observation
basically differentiates AM1-SGD from a simple inter-
polation in-between M-SGD and SGD.

We measured all the wall-clock times in the experiments.
However, we observed that even on the same type of
GPUs, the running times fluctuate a lot and do not ex-
hibit a clear trend. Roughly speaking, the running time of
AM1-SGD (m = 5) is improved by 2%− 3% compared
with M-SGD (measured on the same GPU and using the
same random batches).

We also did a full-batch loss experiment using a smaller
ResNet18 with pre-activation (He et al., 2016b). Since
the results resemble Figure 3b, we report them in Ap-
pendix A.3.

Learning rate scheduler issue We observed that when
we use schedulers with a large decay factor and β is too
large for the task (e.g., 0.995 for the task of this sec-
tion), there would be a performance drop after the learn-
ing rate reduction. We believe that it is caused by the
different cardinalities of iterates being averaged in x̃+,
which leads to a false momentum. This issue is resolved
by restarting the algorithm after each learning rate re-
duction inspired by (Odonoghue and Candes, 2015). We
include more discussion and evidence in Appendix A.6.

0 100 200 300 400 500 600 700
Epoch

60

65

70

75

80

Va
lid

at
io

n
Pe

rp
le

xi
ty

LSTM on Penn Treebank
SGD+ASGD
M-SGD
AM1-SGD
AM2-SGD

METHOD
Penn Treebank (Perplexity)

Validation Test
SGD+ASGD 61.28 59.07

M-SGD 60.75 58.36
AM1-SGD 60.73 57.98
AM2-SGD 60.43 58.23

Figure 5 & Table 3: LSTM on Penn Treebank.

6.2 IMAGENET

We trained ResNet50 and ResNet152 (He et al., 2016a)
on the ILSVRC2012 dataset (“ImageNet”) (Russakovsky
et al., 2015) shown in Figure 4. Here we choose to evalu-
ate Option II for AM1/2-SGD, which corresponds to the
analysis. From the experiments on CIFAR-10, we see
that Option I is basically a “perturbed” version of Op-
tion II, while this “perturbation” could lead to a slightly
higher final accuracy (see Table 1).

For this task, we used 0.1 initial learning rate and 0.9 mo-
mentum for all methods, which is a typical choice. We
performed a restart after each learning rate reduction as
discussed in Appendix A.6. We believe that this helps the
training process and also does not incur any additional
overhead. We report the final accuracy in Table 2.

6.3 LANGUAGE MODEL

We did a language model experiment on Penn Tree-
bank dataset (Marcus et al., 1993). We used the LSTM
(Hochreiter and Schmidhuber, 1997) model defined in
Merity et al. (2018) and followed the experimental setup
in its released code. We only changed the learning
rate and momentum in the setup. The baseline is
SGD+ASGD7 (Polyak and Juditsky, 1992) with con-
stant learning rate 30 as used in Merity et al. (2018).
For the choice of (η, β), following Lucas et al. (2019),
we chose β = 0.99 and used the scheduler that re-
duces the learning rate by half when the validation loss
has not decreased for 15 epochs. We swept η from
{5, 2.5, 1, 0.1, 0.01} and found that η = 2.5 resulted in

7SGD+ASGD is to run SGD and switch to averaged SGD
(ASGD) when a threshold is met.

the lowest validation perplexity for M-SGD. We thus ran
AM1-SGD and AM2-SGD (Option II) with this (η, β)
and m = 5. Due to the small decay factor, we did not
restart AM1-SGD and AM2-SGD after learning rate re-
ductions. The convergence of validation perplexity is
plotted in Figure 5. We report the lowest validation per-
plexity and test perplexity in Table 3. This experiment is
directly comparable with the one in Lucas et al. (2019).

6.4 A NICE ALTERNATIVE FOR M-SGD

In summary, we list the advantages of AM1-SGD over
M-SGD (or from users’ angle, the benefits of setting
m > 1) that are discovered in this section:

(1) Increasing m improves robustness.

(2) Increasing m reduces the (amortized) iteration cost,
which is discussed in Appendix A.1.

(3) A suitably chosen m boosts the convergence rate in
the early stage of training and produces comparable
final generalization performance.

(4) It is easy and safe to tune m. The performance of
AM1-SGD are stable for a wide range of m.

Some minor drawbacks of AM1-SGD: it requires one
more memory buffer, which is acceptable in most cases,
and it shows some undesired behaviors when working
with some learning rate schedulers, which can be ad-
dressed by performing restarts.

Extra results are provided in the appendices for interested
readers: the robustness when using large β in Appendix
A.4, a CIFAR-100 experiment in Appendix A.7 and com-
parison with classical momentum (Polyak, 1964), Ag-
gMo (Lucas et al., 2019) and QHM (Ma and Yarats,
2019) in Appendix A.5.

7 CONCLUSIONS

We presented Amortized Nesterov’s Momentum, which
is a special variant of Nesterov’s momentum that utilizes
several past iterates. Based on this idea, we designed
two different realizations, namely, AM1-SGD and AM2-
SGD. We derived optimal convergence rates for them
in general convex setting and showed that the effect of
amortization is trading off Nesterov’s acceleration versus
variance control. For deep learning tasks, both of them
are simple to implement with little-to-no additional tun-
ing overhead over M-SGD. Our empirical results demon-
strate that AM1-SGD can serve as a favorable alternative
to M-SGD in large-scale deep learning tasks.

Acknowledgments

We would like to thank the reviewers for their valu-
able comments and Xiao Yan for his help in revising
the paper. This work was partially supported by GRF
14208318 from the RGC and ITF 6904945 from the ITC
of HKSAR, and the National Natural Science Foundation
of China (NSFC) (Grant No. 61672552).

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016).
Tensorflow: A system for large-scale machine learning. In
OSDI, pages 265–283.

Allen-Zhu, Z. (2018). Katyusha: The First Direct Accelera-
tion of Stochastic Gradient Methods. J. Mach. Learn. Res.,
18(221):1–51.

Auslender, A. and Teboulle, M. (2006). Interior gradient and
proximal methods for convex and conic optimization. SIAM
J. Optim., 16(3):697–725.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imag. Sci., 2(1):183–202.

Belkin, M., Ma, S., and Mandal, S. (2018). To Understand
Deep Learning We Need to Understand Kernel Learning. In
ICML, pages 541–549.

Ben-Tal, A. and Nemirovski, A. (2013). Lectures on Modern
Convex Optimization. Society for Industrial and Applied
Mathematics.

Cyrus, S., Hu, B., Van Scoy, B., and Lessard, L. (2018). A ro-
bust accelerated optimization algorithm for strongly convex
functions. In ACC, pages 1376–1381. IEEE.

Defazio, A. (2019). On the Curved Geometry of Accelerated
Optimization. In NIPS, pages 1764–1773.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA:
A fast incremental gradient method with support for non-
strongly convex composite objectives. In NIPS, pages 1646–
1654.

Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order
methods of smooth convex optimization with inexact oracle.
Math. Program., 146(1-2):37–75.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradi-
ent methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159.

Ghadimi, S. and Lan, G. (2012). Optimal stochastic approxi-
mation algorithms for strongly convex stochastic composite
optimization i: A generic algorithmic framework. SIAM J.
Optim., 22(4):1469–1492.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual
learning for image recognition. In CVPR, pages 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity map-
pings in deep residual networks. In ECCV, pages 630–645.
Springer.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Comput., 9(8):1735–1780.

Hu, C., Pan, W., and Kwok, J. T. (2009). Accelerated gradient
methods for stochastic optimization and online learning. In
NIPS, pages 781–789.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional networks.
In CVPR, pages 4700–4708.

Jain, P., Kakade, S. M., Kidambi, R., Netrapalli, P., and Sid-
ford, A. (2018). Accelerating Stochastic Gradient Descent
for Least Squares Regression. In COLT, pages 545–604.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gra-
dient descent using predictive variance reduction. In NIPS,
pages 315–323.

Kidambi, R., Netrapalli, P., Jain, P., and Kakade, S. M. (2018).
On the insufficiency of existing momentum schemes for
Stochastic Optimization. In ICLR.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochas-
tic optimization. In ICLR.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images. Technical report, Cite-
seer.

Lan, G. (2012). An optimal method for stochastic composite
optimization. Math. Program., 133(1-2):365–397.

Lan, G., Li, Z., and Zhou, Y. (2019). A unified variance-
reduced accelerated gradient method for convex optimiza-
tion. In NIPS, pages 10462–10472.

Lessard, L., Recht, B., and Packard, A. (2016). Analysis and
design of optimization algorithms via integral quadratic con-
straints. SIAM J. Optim., 26(1):57–95.

Liu, C. and Belkin, M. (2020). Accelerating SGD with mo-
mentum for over-parameterized learning. In ICLR.

Lucas, J., Sun, S., Zemel, R., and Grosse, R. (2019). Aggre-
gated Momentum: Stability Through Passive Damping. In
ICLR.

Ma, J. and Yarats, D. (2019). Quasi-hyperbolic momentum and
Adam for deep learning. In ICLR.

Ma, S., Bassily, R., and Belkin, M. (2018). The Power of
Interpolation: Understanding the Effectiveness of SGD in
Modern Over-parametrized Learning. In ICML, pages 3325–
3334.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993).
Building a large annotated corpus of English: The Penn
Treebank.

Merity, S., Keskar, N. S., and Socher, R. (2018). Regularizing
and Optimizing LSTM Language Models. In ICLR.

Nazin, A., Nemirovsky, A., Tsybakov, A., and Juditsky,
A. (2019). Algorithms of robust stochastic optimization
based on mirror descent method. Autom. Remote. Control.,
80(9):1607–1627.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009).
Robust stochastic approximation approach to stochastic pro-
gramming. SIAM J. Optim., 19(4):1574–1609.

Nemirovski, A. and Yudin, D. (1983). Problem complexity and
method efficiency in optimization. John Wiley, New York.

Nesterov, Y. (1983). A method for solving the convex pro-
gramming problem with convergence rate o(1/k2). In Dokl.
Akad. Nauk SSSR, volume 269, pages 543–547.

Nesterov, Y. (2013a). Gradient methods for minimizing com-
posite functions. Math. Program., 140(1):125–161.

Nesterov, Y. (2013b). Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science & Busi-
ness Media.

Odonoghue, B. and Candes, E. (2015). Adaptive restart
for accelerated gradient schemes. Found. Comput. Math.,
15(3):715–732.

Parikh, N., Boyd, S., et al. (2014). Proximal algorithms. Foun-
dations and Trends R© in Optimization, 1(3):127–239.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-
Vito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A.
(2017). Automatic differentiation in pytorch.

Polyak, B. T. (1964). Some methods of speeding up the conver-
gence of iteration methods. USSR Comput. Math. & Math.
Phys., 4(5):1–17.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of
stochastic approximation by averaging. SIAM J. Control Op-
tim., 30(4):838–855.

Robbins, H. and Monro, S. (1951). A stochastic approximation
method. Ann. Math. Stat., pages 400–407.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.
(2015). Imagenet large scale visual recognition challenge.
Int. J. Comput. Vis., 115(3):211–252.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep
learning. In ICML, pages 1139–1147.

Tseng, P. (2008). On accelerated proximal gradient methods
for convex-concave optimization.

Vaswani, S., Bach, F., and Schmidt, M. (2019). Fast and Faster
Convergence of SGD for Over-Parameterized Models and an
Accelerated Perceptron. In AISTATS, pages 1195–1204.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B.
(2017). The marginal value of adaptive gradient methods in
machine learning. In NIPS, pages 4148–4158.

Yuan, K., Ying, B., and Sayed, A. H. (2016). On the Influence
of Momentum Acceleration on Online Learning. J. Mach.
Learn. Res., 17(192):1–66.

Zagoruyko, S. and Komodakis, N. (2016). Wide Residual Net-
works. In BMVC, pages 87.1–87.12.

Zhou, K., Ding, Q., Shang, F., Cheng, J., Li, D., and Luo, Z.-Q.
(2019). Direct Acceleration of SAGA using Sampled Nega-
tive Momentum. In AISTATS, pages 1602–1610.

Zhou, K., Shang, F., and Cheng, J. (2018). A Simple Stochastic
Variance Reduced Algorithm with Fast Convergence Rates.
In ICML, pages 5980–5989.

Supplementary Material for “Amortized Nesterov’s Momentum: A Robust
Momentum and Its Application to Deep Learning”

A Extra Experimental Results 12

A.1 Implementing AM1-SGD and AM2-SGD . 12

A.2 The effect of m on convergence . 13

A.3 Full-batch loss experiment . 13

A.4 Robustness on large momentum parameters . 14

A.5 Comparison with other momentum . 14

A.6 Issues with learning rate schedulers . 16

A.7 CIFAR-100 experiment . 16

A.8 Convex experiments . 17

A.9 Sanity check . 18

B Missing parts in Section 3 and Section 4 19

B.1 The reformulations . 19

B.2 Proofs of Theorem 1 and Theorem 2 . 20

B.2.1 Proof of Lemma 1 . 20

B.2.2 Proof of Theorem 1a . 21

B.2.3 Proof of Theorem 1b . 23

B.2.4 Proof of Theorem 2 . 25

B.3 Connections between AM1-SGD and Katyusha . 27

C Training evaluation 29

D Experimental Setup 30

D.1 Classification Setup . 30

D.2 Language Model Setup . 30

References 30

A Extra Experimental Results

In this appendix, we provide more experimental results to further evaluate the Amortized Nesterov’s Momentum.
Table 4 shows the detailed data of the parameter sweep experiments, where the convergence curves of these results
are given in Appendix A.2. We discuss our implementations of AM1-SGD and AM2-SGD in Appendix A.1. We
report the results of a full-batch loss experiment using ResNet18 in Appendix A.3. In Appendix A.4, we compare
the robustness of AM1-SGD and M-SGD on large momentum parameters. In Appendix A.5, we empirically com-
pare the Amortized Nesterov’s Momentum with classical momentum (Polyak, 1964), aggregated momentum (Lucas
et al., 2019) and quasi-hyperbolic momentum (Ma and Yarats, 2019). We discuss the issues with learning rate sched-
ulers in Appendix A.6. A CIFAR-100 experiment is provided in Appendix A.7. Convex experiments are given in
Appendix A.8. We also provide a sanity check for our implementation in Appendix A.9.

Table 4: Final test accuracy and average accuracy STD of training ResNet34 on CIFAR-10 over 5 runs (including the
detailed data of the curves in Figure 2 and Figure 3a). For all the methods, η0 = 0.1, β = 0.9. Multiple runs start with
the same x0.

METHOD DESCRIPTION FINAL ACCURACY Avg. STD
SGD Standard Pytorch 93.41%± 0.15% 0.99%

M-SGD Standard Pytorch 94.61%± 0.15% 1.04%

AM1-SGD Option I, m = 1, sanity check 94.67%± 0.14% 0.91%
AM1-SGD Option I, m = 3 94.63%± 0.03% 0.64%
AM1-SGD Option I, m = 5 94.60%± 0.10% 0.50%
AM1-SGD Option I, m = 7 94.64%± 0.13% 0.44%
AM1-SGD Option I, m = 10 94.54%± 0.13% 0.44%
AM1-SGD Option I, m = 20 94.38%± 0.22% 0.40%
AM1-SGD Option I, m = 30 94.30%± 0.15% 0.43%

OM-SGD AM1-SGD (Opt. II, m = 1) 94.73%± 0.11% 0.63%
AM1-SGD Option II, m = 3 94.66%± 0.14% 0.41%
AM1-SGD Option II, m = 5 94.60%± 0.08% 0.27%
AM1-SGD Option II, m = 7 94.51%± 0.10% 0.28%
AM1-SGD Option II, m = 10 94.42%± 0.12% 0.29%
AM1-SGD Option II, m = 20 94.36%± 0.18% 0.31%
AM1-SGD Option II, m = 30 94.27%± 0.13% 0.34%

AM2-SGD Option I, m = 1, sanity check 94.68%± 0.21% 0.82%
AM2-SGD Option I, m = 5 94.57%± 0.19% 0.59%
AM2-SGD Option I, m = 10 94.44%± 0.14% 0.74%
AM2-SGD Option I, m = 20 94.31%± 0.15% 0.74%

AM2-SGD Option II, m = 5 94.66%± 0.11% 0.26%
AM2-SGD Option II, m = 10 94.50%± 0.21% 0.28%
AM2-SGD Option II, m = 20 94.41%± 0.14% 0.25%

A.1 Implementing AM1-SGD and AM2-SGD

Similar to M-SGD, it is easier to implement Option I in existing deep learning frameworks. To implement Option
II, we can either maintain another identical network for the shifted point (x̃ or φ̄) or temporarily change the network
parameters in the evaluation phase. In our implementations of AM1-SGD and AM2-SGD, we simply adopt the latter
solution.

Alg. 5 AM1-SGD (Alg. 2 with improved efficiency)

Input: Initial guess x0, learning rate η, momentum β, amortization length m, iteration number K.
Initialize: x← x0, x̃← x0, ṽ

+ ← −m · x0.
1: for k = 0, . . . ,K − 1 do
2: x← x− η · ∇fik(x).
3: ṽ+ ← ṽ+ + x.
4: if (k + 1) mod m = 0 then
5: x← x+ (β/m) · ṽ+.
6: x̃← x̃+ (1/m) · ṽ+, ṽ+ ← −m · x̃.
7: end if
8: end for

Output: Option I: x, Option II: x̃.

For AM1-SGD, we can improve the efficiency of Algorithm 2 by maintaining a running scaled momentum ṽ+ ,
m · (x̃+ − x̃) instead of the running average x̃+ as shown in Algorithm 5. Then, in one m-iterations loop, for each
of the first m− 1 iterations, AM1-SGD requires 1 vector addition and 1 scaled vector addition. At the m-th iteration,
it requires 1 vector addition, 1 scalar-vector multiplication and 3 scaled vector additions. In comparison, M-SGD
(standard PyTorch) requires 1 vector addition, 1 (in-place) scalar-vector multiplication and 2 scaled vector additions
per iteration. Thus, as long as m > 2, AM1-SGD has lower amortized cost than M-SGD. In terms of memory
complexity, AM1-SGD requires one more auxiliary buffer than M-SGD. For AM2-SGD, we implement Algorithm 4.
Note that at each iteration, we sample an index in [m] as jk+1 and obtain the stored index jk.

A.2 The effect of m on convergence

We show in Figure 6 how m affects the convergence of test accuracy. The results show that increasing m speeds
up the convergence in the early stage. While for AM1-SGD the convergences of Option I and Option II are similar,
AM2-SGD with Option II is consistently better than with Option I in this experiment. It seems that AM2-SGD with
Option I does not benefit from increasingm and the algorithm is not robust. Thus, we do not recommend using Option
I for AM2-SGD.

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM1-SGD-I-3
AM1-SGD-I-5
AM1-SGD-I-7
AM1-SGD-I-10
AM1-SGD-I-20
AM1-SGD-I-30

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM1-SGD-II-3
AM1-SGD-II-5
AM1-SGD-II-7
AM1-SGD-II-10
AM1-SGD-II-20
AM1-SGD-II-30

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM2-SGD-I-5
AM2-SGD-I-10
AM2-SGD-I-20
AM2-SGD-II-5
AM2-SGD-II-10
AM2-SGD-II-20

Figure 6: Convergence of test accuracy from the parameter sweep experiments in Table 4. Labels are formatted as
‘AM1/2-SGD-{Option}-{m}’.

A.3 Full-batch loss experiment

We did a full-batch loss experiment of training ResNet18 with pre-activation (He et al., 2016b) on CIFAR-10 in
Figure 7 & Table 5. The accuracy results are given in Figure 8 & Table 6. These results are reminiscent of the
ResNet34 experiments (Figure 3b and Table 1).

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fu

ll-
Ba

tc
h

Tr
ai

n
Lo

ss
Full-Batch Train Loss

SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

0 20 40 60 80
Epoch

0.00

0.05

0.10

0.15

0.20

Fu
ll-

Ba
tc

h
Tr

ai
n

Lo
ss

 S
TD

Full-Batch Train Loss STD
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

METHOD Avg. STD
SGD 0.033

M-SGD 0.034
AM1-SGD-I 0.014
AM1-SGD-II 0.006

Figure 7 & Table 5: ResNet18 with pre-activation on CIFAR-10. For all methods, η0 = 0.1, β = 0.9, run 20 seeds.
For AM1-SGD, m = 5 and its labels are formatted as ‘AM1-SGD-{Option}’. Shaded bands indicate ±1 standard
deviation.

0 20 40 60 80
Epoch

75

80

85

90

Te
st

 A
cc

ur
ac

y%

Test Accuracy

SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

METHOD FINAL ACCURACY Avg. STD
SGD 92.81%± 0.15% 1.01%

M-SGD 94.06%± 0.17% 1.10%
AM1-SGD-I 93.97%± 0.15% 0.54%
AM1-SGD-II 93.95%± 0.19% 0.32%

Figure 8 & Table 6: ResNet18 with pre-activation on CIFAR-10. For all methods, η0 = 0.1, β = 0.9, run 20 seeds.
For AM1-SGD, m = 5. Shaded bands indicate ±1 standard deviation.

A.4 Robustness on large momentum parameters

We compare the robustness of M-SGD and AM1-SGD when β is large in Figure 9 & Table 7. AM1-SGD uses
Option I, which omits the tail averaging effect at the output point. As we can see, the STD error of M-SGD scales up
significantly when β is larger and the performance is more affected by a large β compared with AM1-SGD.

0 20 40 60 80
Epoch

50

60

70

80

90

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD-0.9
M-SGD-0.95
M-SGD-0.99
AM1-SGD-0.9
AM1-SGD-0.95
AM1-SGD-0.99

METHOD FINAL ACCURACY Avg. STD
M-SGD-0.9 94.61%± 0.15% 1.04%
M-SGD-0.95 94.20%± 0.12% 1.20%
M-SGD-0.99 88.37%± 0.36% 2.56%

AM1-SGD-0.9 94.60%± 0.10% 0.50%
AM1-SGD-0.95 93.94%± 0.07% 0.58%
AM1-SGD-0.99 90.64%± 0.38% 0.90%

Figure 9 & Table 7: ResNet34 on CIFAR-10. η0 = 0.1, β ∈ {0.9, 0.95, 0.99}, run 5 seeds (the β = 0.9 results are
copied from Table 4). Labels are formatted as “{Algorithm}-{β}”.

A.5 Comparison with other momentum

In this section, we compare AM1-SGD (Option I) with classical momentum (Polyak, 1964), AggMo (Lucas et al.,
2019) and QHM (Ma and Yarats, 2019) in our basic case study (training ResNet34 on CIFAR-10). Since we are not

aware of what makes a fair comparison with these methods (e.g., it is not clear what is the effective learning rate for
AM1-SGD), we compare them based on the default hyper-parameter settings suggested by their papers.

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%

Test Accuracy

CM-SGD
AM1-SGD
AggMo
QHM

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
CM-SGD
AM1-SGD
AggMo
QHM

METHOD FINAL ACCURACY Avg. STD
CM-SGD 94.69%± 0.21% 1.11%

AM1-SGD 94.60%± 0.10% 0.50%
AggMo 94.56%± 0.14% 0.78%
QHM 94.43%± 0.23% 1.07%

M-SGD 94.61%± 0.15% 1.04%

Figure 10 & Table 8: ResNet34 on CIFAR-10. Run 5 seeds. The results of AM1-SGD and M-SGD are copied from
Table 4.

Classical Momentum The SGD with classical momentum (CM-SGD) that is widely used in deep learning has the
following scheme (standard PyTorch) (vcm ∈ Rd, vcm0 = 0):

vcmk+1 = β · vcmk +∇fik(xk),

xk+1 = xk − η · vcmk+1, for k ≥ 0.

CM-SGD with its typical hyper-parameter settings (η0 = 0.1, β = 0.9) is observed to achieve similar generalization
performance as M-SGD. However, CM-SGD is more unstable and prone to oscillations (Lucas et al., 2019), which
makes it less robust than M-SGD as shown in Table 8.

Aggregated Momentum (AggMo) AggMo combines multiple momentum buffers, which is inspired by the passive
damping from physics literature (Lucas et al., 2019). AggMo uses the following update rules (for t = 1, . . . , T ,
v(t) ∈ Rd, v(t)0 = 0):

v
(t)
k+1 = β(t) · v(t)k −∇fik(xk), for t = 1, . . . , T,

xk+1 = xk +
η

T
·
T∑
t=1

v
(t)
k+1, for k ≥ 0.

We used the exponential hyper-parameter setting recommended in the original work with the scale-factor a = 0.1
fixed, β(t) = 1− at−1, for t = 1, . . . , T and choosing T in {2, 3, 4}. We found that T = 2 gave the best performance
in this experiment. As shown in Figure 10 & Table 8, with the help of passive damping, AggMo is more stable and
robust compared with CM-SGD.

Quasi-hyperbolic Momentum (QHM) Ma and Yarats (2019) introduce the immediate discount factor ν ∈ R for
the momentum scheme, which results in the QHM update rules (α ∈ R, vqh ∈ Rd, vqh0 = 0):

vqhk+1 = β · vqhk + (1− β) · ∇fik(xk),

xk+1 = xk − α · (ν · vqhk+1 + (1− ν) · ∇fik(xk)), for k ≥ 0.

Here we used the recommended hyper-parameter setting for QHM (α0 = 1.0, β = 0.999, ν = 0.7).

Figure 10 shows that AM1-SGD, AggMo and QHM achieve faster convergence in the early stage while CM-SGD
has the highest final accuracy. In terms of robustness, huge gaps are observed when comparing AM1-SGD with the
remaining methods in Table 8. Note that AM1-SGD is more efficient than both QHM and AggMo, and is as efficient
as CM-SGD.

We also plot the convergence of train-batch loss for all the methods in Figure 10. Despite of showing worse general-
ization performance, both QHM and AggMo perform better on reducing the train-batch loss in this experiment, which
is consistent with the results reported in Ma and Yarats (2019); Lucas et al. (2019).

A.6 Issues with learning rate schedulers

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD
AM1-SGD+

(a) β = 0.95

0 20 40 60 80
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD
AM1-SGD+

(b) β = 0.995

0 20 40 60 80
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM2-SGD
AM2-SGD+

(c) β = 0.995

Figure 11: ResNet18 on CIFAR-10. η0 = 0.1, β ∈ {0.95, 0.995}. ‘+’ represents performing a restart after each
learning rate reduction.

0 20 40 60 80
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD

Figure 12: ResNet18 on CIFAR-10.
Cosine annealing scheduler (without
restarts), η0 = 0.1, β = 0.995.

We show in Figure 11 that when β is large for the task, using step learning
rate scheduler with decay factor 10, a performance drop is observed after
each reduction. We fix this issue by performing a restart after each learning
rate reduction (labeled with ‘+’). We plot the train-batch loss here because
we find that the phenomenon is clearer in this way. Note that output options
do not affect the convergence of train-batch loss, and thus this phenomenon
exists for both options. If β = 0.9, there is no observable performance drop
in this experiment.

For smooth-changing schedulers such as the cosine annealing scheduler
(Loshchilov and Hutter, 2017), the amortized momentum works well as
shown in Figure 12.

A.7 CIFAR-100 experiment

We report the results of training DenseNet121 (Huang et al., 2017) on CIFAR-100 in Figure 13, which shows that both
AM1-SGD and AM2-SGD perform well before the final learning rate reduction. However, the final accuracies are
lowered around 0.6% compared with M-SGD. We also notice that SGD reduces the train-batch loss at an incredibly
fast rate and the losses it reaches are consistently lower than other methods in the entire 300 epochs. However, this
performance is not reflected in the convergence of test accuracy. We believe that this phenomenon suggests that the
DenseNet model is actually “overfitting” M-SGD (since in the ResNet experiments, M-SGD always achieves a lower
train loss than SGD after the final learning rate reduction).

0 50 100 150 200 250 300
Epoch

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y%

Test Accuracy

SGD
M-SGD
AM1-SGD
AM2-SGD

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
SGD
M-SGD
AM1-SGD
AM2-SGD

Figure 13: DenseNet121 on CIFAR-100. For all methods, η0 = 0.1, β = 0.9, run 3 seeds. AM1-SGD and AM2-SGD
use Option II and m = 5. Shaded bands indicate ±1 standard deviation.

A.8 Convex experiments

We provide empirical results for AM1-SGD (Algorithm 1) to justify its convergence guarantee (Theorem 1). We
consider the following simple convex empirical risk minimization task:

Logistic Regression: f(x) =
1

|D|

|D|∑
i=1

log
(
1 + exp (−bi 〈ai, x〉)

)
, x ∈ Rn, ai ∈ Rn, bi ∈ {−1,+1},∀i ∈ [|D|].

We used the a5a dataset (|D| = 6414, n = 123) from LIBSVM (Chang and Lin, 2011). By normalizing the dataset,
we have L = 0.25,M = 0 in Assumption (a). The stochastic gradient oracle is defined as ∇fi(x) = ∇f(x) + δ,
where δ is sampled uniformly from the sphere B(0, σ) (which is centered at 0 and its radius is σ). This oracle
satisfies Assumptions (b) and (c) (and also the “light tail” assumption). This type of noise is frequently used to
escape saddle points in non-convex optimization or to ensure differential privacy. We fixed x0 = 0 and estimated
Vd(x

?, x0) = 1
2 ‖x0 − x

?‖22 as 350 by running a small amount of iterates. Then we can run AM1-SGD with the
parameter choices specified in Theorem 1.

We compared AM1-SGD with M-SGD (or AC-SA, which corresponds to choosing m = 1). In Theorem 1, when
σ is large, AM1-SGD is expected to converge faster than M-SGD and it also has a smaller deviation predicted by
Theorem 1b. We justify these predictions in Figure 14.

0 200 400 600 800 1000
Oracle Calls

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

Logistic Regression, σ=1
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Lo
ss

Logistic Regression, σ=5
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.60

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=20
M-SGD
AM1-SGD

Figure 14: Comparisons between AM1-SGD and M-SGD (AC-SA) in different noise levels. m = 10, run 10 seeds.
Shaded bands indicate ±1 standard deviation.

We also studied the effect of choosing differentm in Figure 15. The results are similar to the deep learning experiment
in Figure 3a (right): m needs to be sufficiently large to show the effect, and after some point, not much benefit can be
obtained by further increasing m.

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=25, m=5
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=25, m=10
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=25, m=20
M-SGD
AM1-SGD

Figure 15: Effect of choosing different m. Run 10 seeds. Shaded bands indicate ±1 standard deviation.

A.9 Sanity check

When m = 1, both AM1-SGD and AM2-SGD (Option I) are equivalent to M-SGD, we plot their convergence in
Figure 16 as a sanity check (the detailed data is given in Table 4).

0 20 40 60 80
Epoch

75

80

85

90

95
Te

st
 A

cc
ur

ac
y%

Test Accuracy

M-SGD
AM1-SGD-I-1
AM2-SGD-I-1

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD-I-1
AM2-SGD-I-1

Figure 16: A sanity check. Labels are formatted as ‘AM{1/2}-SGD-{Option}-{m}’.

We observed that when m = 1, both AM1-SGD and AM2-SGD have a lower STD error than M-SGD. We believe that
it is because they both maintain the iterates without scaling, which is numerically more stable than M-SGD (M-SGD
in standard PyTorch maintains a scaled buffer, i.e., vptk = η−1β−1 · (yk − xk)).

B Missing parts in Section 3 and Section 4

B.1 The reformulations

When in the Euclidean setting, h ≡ 0 and β is a constant, we do the reformulations by eliminating the sequence {zk}.

In this case, the general scheme (2) can be written as

x = (1− β) · z + β · y,
z+ = z − α · ∇fi(x),

y+ = (1− β) · z+ + β · y.

Note that
y+ = (1− β) · (z − α · ∇fi(x)) + β · y

= x− α(1− β) · ∇fi(x).
(7)

For AM1-SGD (Algorithm 1), based on (7), we see that the inner loops are basically SGD,

xk = (1− β) · zk + β · x̃s,
zk+1 = zk − α · ∇fik(xk),

(xk+1 = (1− β) · zk+1 + β · x̃s.)

α(1− β) = η

Eliminate {zk}
=========⇒

xk+1 = xk − η · ∇fik(xk).

At the end of each inner loop (i.e., when (k + 1) mod m = 0), we have

x(s+1)m = (1− β) · z(s+1)m + β · x̃s,

while at the beginning of the next inner loop,

x(s+1)m = (1− β) · z(s+1)m + β · x̃s+1,

which means that we need to set xk+1 ← xk+1 + β · (x̃s+1 − x̃s) (reassign the value of xk+1).

For AM2-SGD (Algorithm 3), based on (7),

xjkk = (1− β) · zk + β · φkjk ,

zk+1 = zk − α · ∇fik(xjkk),

φk+1
jk

= (1− β) · zk+1 + β · φkjk ,(
x
jk+1

k+1 = (1− β) · zk+1 + β · φk+1
jk+1

)
.

AM2-SGD

α(1− β) = η

Eliminate {zk}
=========⇒

φk+1
jk

= xjkk − η · ∇fik(xjkk),

x
jk+1

k+1 = φk+1
jk

+ β ·
(
φk+1
jk+1
− φkjk

)
.

Algorithm 4

We also give the reformulation between M-SGD (scheme (4)) and AC-SA (Lan, 2012) for reference:

xk = (1− β) · zk + β · yk,
zk+1 = zk − α · ∇fik(xk),

yk+1 = (1− β) · zk+1 + β · yk,(
xk+1 = (1− β) · zk+1 + β · yk+1

)
.

AC-SA (Lan, 2012)
(Auslender and Teboulle (2006))

α(1− β) = η

Eliminate {zk}
=========⇒

yk+1 = xk − η · ∇fik(xk),

xk+1 = yk+1 + β · (yk+1 − yk).

M-SGD (Nesterov, 1983, 2013)

Intuition for the Auslender and Teboulle (2006) scheme can be found in Remark 2 in Lan (2012).

B.2 Proofs of Theorem 1 and Theorem 2

B.2.1 Proof of Lemma 1

This Lemma is provided in a similar way as in Lan (2012); Ghadimi and Lan (2012), we give a proof here for
completeness.

Based on the convexity (Assumption (a)), we have

f(x)− f(x?) ≤ 〈∇f(x), x− z〉︸ ︷︷ ︸
R0

+ 〈∇f(x)−∇fi(x), z − x?〉︸ ︷︷ ︸
R1

+
〈
∇fi(x), z − z+

〉︸ ︷︷ ︸
R2

+
〈
∇fi(x), z+ − x?

〉︸ ︷︷ ︸
R3

.
(8)

We upper bound the terms on the right side one-by-one.

For R0,

R0
(?)
=

β

1− β
〈∇f(x), y − x〉 ≤ β

1− β
(
f(y)− f(x)

)
, (9)

where (?) uses the relation between x and z, i.e., (1− β) · (x− z) = β · (y − x).

For R2, based on Assumption (a), we have

f(y+)− f(x) +
〈
∇f(x), x− y+

〉
≤ L

2

∥∥x− y+∥∥2 +M
∥∥x− y+∥∥ .

Then, noting that x− y+ = (1− β) · (z − z+), we can arrange the above inequality as

R2 ≤
L(1− β)

2

∥∥z − z+∥∥2 +
1

1− β
(
f(x)− f(y+)

)
+
〈
∇f(x)−∇fi(x), z+ − z

〉
+M

∥∥z − z+∥∥
≤ L(1− β)

2

∥∥z − z+∥∥2 +
1

1− β
(
f(x)− f(y+)

)
+
(
‖∇f(x)−∇fi(x)‖∗ +M

) ∥∥z − z+∥∥ .
Using Young’s inequality with ζ > 0, we obtain

R2 ≤
L(1− β) + ζ

2

∥∥z − z+∥∥2 +
1

1− β
(
f(x)− f(y+)

)
+

(‖∇f(x)−∇fi(x)‖∗ +M)2

2ζ
. (10)

For R3, based on the optimality condition of

Proxαh
(
z, α · ∇fi(x)

)
, arg min

u∈X

{
Vd(u, z) + α 〈∇fi(x), u〉+ αh(u)

}
,

and denoting ∂h(z+) ∈ E∗ as a subgradient of h at z+, we have for any w ∈ X ,〈
∇d(z+)−∇d(z) + α · ∇fi(x) + α · ∂h(z+), w − z+

〉
≥ 0,〈

∇fi(x), z+ − w
〉
≤
〈
∂h(z+), w − z+

〉
+

1

α

〈
∇d(z+)−∇d(z), w − z+

〉
≤ h(w)− h(z+) +

1

α

〈
∇d(z+)−∇d(z), w − z+

〉
.

Choosing w = x? and applying the triangle equality of Bregman divergence, we obtain

R3 ≤ h(x?)− h(z+) +
1

α

〈
∇d(z+)−∇d(z), x? − z+

〉
= h(x?)− h(z+) +

1

α

(
Vd(x

?, z)− Vd(x?, z+)− Vd(z+, z)
)

(?)

≤ h(x?)− h(z+) +
1

α

(
Vd(x

?, z)− Vd(x?, z+)
)
− 1

2α

∥∥z+ − z∥∥2 , (11)

where (?) follows from the 1-strong convexity of d, which implies that Vd(x, y) ≥ 1
2 ‖x− y‖

2
,∀x, y ∈ X .

Finally, by upper bounding (8) using (9), (10), (11), we conclude that

f(x)− f(x?) ≤ R1 +
β

1− β
(
f(y)− f(x)

)
+
L(1− β) + ζ − α−1

2

∥∥z − z+∥∥2
+

1

1− β
(
f(x)− f(y+)

)
+ h(x?)− h(z+) +

(‖∇f(x)−∇fi(x)‖∗ +M)2

2ζ

+
1

α

(
Vd(x

?, z)− Vd(x?, z+)
)
,

After simplification,

1

1− β
(
f(y+)− f(x?)

)
≤ β

1− β
(
f(y)− f(x?)

)
+
L(1− β) + ζ − α−1

2

∥∥z − z+∥∥2
+ h(x?)− h(z+) +

(‖∇f(x)−∇fi(x)‖∗ +M)2

2ζ
+R1

+
1

α

(
Vd(x

?, z)− Vd(x?, z+)
)
.

(12)

Note that with the convexity of h and y+ = (1− β) · z+ + β · y, we have

h(y+) ≤ (1− β)h(z+) + βh(y),

h(z+) ≥ 1

1− β
h(y+)− β

1− β
h(y).

Using the above inequality and choosing ζ = α−1 − L(1− β) > 0⇒ α(1− β) < 1/L, we can arrange (12) as

1

1− β
(
F (y+)− F (x?)

)
≤ β

1− β
(
F (y)− F (x?)

)
+

1

α

(
Vd(x

?, z)− Vd(x?, z+)
)

+
(‖∇f(x)−∇fi(x)‖∗ +M)2

2(α−1 − L(1− β))
+R1.

B.2.2 Proof of Theorem 1a

Using Assumption (c), Lemma 1 with

x = xk

z = zk

z+ = zk+1

y = x̃s

y+ = xk+1

α = αs

β = βs

, (13)

and taking expectation, if αs(1− βs) < 1/L, we have

1

1− βs
(
Eik [F (xk+1)]− F (x?)

)
+

1

αs
Eik [Vd(x

?, zk+1)]

≤ βs
1− βs

(
F (x̃s)− F (x?)

)
+

1

αs
Vd(x

?, zk) +
(σ +M)2

2(α−1s − L(1− βs))
.

Summing the above inequality from k = sm, . . . , sm+m− 1, we obtain

1

(1− βs)m

m∑
j=1

(
E [F (xsm+j)]− F (x?)

)
+

1

αsm
E
[
Vd(x

?, z(s+1)m)
]

≤ βs
1− βs

(
F (x̃s)− F (x?)

)
+

1

αsm
Vd(x

?, zsm) +
(σ +M)2

2(α−1s − L(1− βs))
,

Using the definition of x̃s+1 and convexity,

αs
1− βs

(
E [F (x̃s+1)]− F (x?)

)
+

1

m
E
[
Vd(x

?, z(s+1)m)
]

≤ αsβs
1− βs

(
F (x̃s)− F (x?)

)
+

1

m
Vd(x

?, zsm) +
αs(σ

2 +M2)

α−1s − L(1− βs)
.

(14)

It can be verified that with the choices βs = s
s+2 and αs = λ1

L(1−βs)
, the following holds for s ≥ 0,

αs+1βs+1

1− βs+1
≤ αs

1− βs
and β0 = 0. (15)

Thus, by telescoping (14) from s = S − 1, . . . , 0, we obtain

αS−1
1− βS−1

(
E [F (x̃S)]− F (x?)

)
+

1

m
E [Vd(x

?, zSm)]

≤ 1

m
Vd(x

?, x0) +

S−1∑
s=0

αs(σ
2 +M2)

α−1s − L(1− βs)
,

and thus,

E [F (x̃S)]− F (x?) ≤ 4L

λ1m(S + 1)2
Vd(x

?, x0) +
4L(σ2 +M2)

λ1(S + 1)2

S−1∑
s=0

α2
s

1− αs(1− βs)L

(a)

≤ 4L

λ1m(S + 1)2
Vd(x

?, x0) +
3λ1(σ2 +M2)

L(S + 1)2

S−1∑
s=0

(s+ 2)2

(b)

≤ 4L

λ1m(S + 1)2
Vd(x

?, x0) +
8λ1(σ2 +M2)(S + 1)

L
,

where (a) follows from λ1 ≤ 2
3 and (b) holds because 0 ≤ x 7→ (x+ 2)2 is non-decreasing and thus

S−1∑
s=0

(s+ 2)2 ≤
∫ S

0

(x+ 2)2dx ≤ (S + 2)3

3
≤ 8(S + 1)3

3
.

Denoting

λ?1 ,
L
√
Vd(x?, x0)

√
2m
√
σ2 +M2(S + 1)

3
2

,

and based on the choice of λ1 = min
{

2
3 , λ
∗
1

}
, if λ∗1 ≤ 2

3 , we have

E [F (x̃S)]− F (x?) ≤
8
√

2Vd(x?, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

If λ∗1 >
2
3 ,

E [F (x̃S)]− F (x?) ≤ 6LVd(x
?, x0)

m(S + 1)2
+

4
√

2Vd(x?, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

Thus, we conclude that

E [F (x̃S)]− F (x?) ≤ 6LVd(x
?, x0)

m(S + 1)2
+

8
√

2Vd(x?, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

Substituting S = K/m completes the proof.

B.2.3 Proof of Theorem 1b

In order to prove Theorem 1b, we need the following known result for the martingale difference (cf. Lemma 2 in Lan
et al. (2012)):

Lemma 2. With N > 0, let ξ0, ξ1, . . . , ξN−1 be a sequence of i.i.d. random variables, for t = 0, . . . , N − 1, σt > 0
be a deterministic number and ψt = ψt(ξ0, . . . , ξt) be a deterministic measurable function such that Eξt [ψt] = 0 a.s.
and Eξt

[
exp{ψ2

t /σ
2
t }
]
≤ exp{1} a.s.. Then for any Λ ≥ 0,

Prob

N−1∑
t=0

ψt ≥ Λ

√√√√N−1∑
t=0

σ2
t

 ≤ exp{−Λ2/3}.

To start with, using Lemma 1 with the parameter mapping (13), we have

1

1− βs
(
F (xk+1)− F (x?)

)
+

1

αs
Vd(x

?, zk+1)

≤ βs
1− βs

(
F (x̃s)− F (x?)

)
+

1

αs
Vd(x

?, zk)

+
(‖∇f(xk)−∇fik(xk)‖∗ +M)2

2(α−1s − L(1− βs))
+ 〈∇f(xk)−∇fik(xk), zk − x?〉

≤ βs
1− βs

(
F (x̃s)− F (x?)

)
+

1

αs
Vd(x

?, zk) +
M2

α−1s − L(1− βs)

+
‖∇f(xk)−∇fik(xk)‖2∗

α−1s − L(1− βs)
+ 〈∇f(xk)−∇fik(xk), zk − x?〉 .

Summing the above inequality from k = sm, . . . , sm +m− 1 and using the choice αs = λ1

L(1−βs)
with λ1 ≤ 2

3 , we
obtain

αs
1− βs

(
F (x̃s+1)− F (x?)

)
+

1

m
Vd(x

?, z(s+1)m)

≤ αsβs
1− βs

(
F (x̃s)− F (x?)

)
+

1

m
Vd(x

?, zsm) + 3α2
sM

2

+
3α2

s

m

sm+m−1∑
k=sm

‖∇f(xk)−∇fik(xk)‖2∗ +
αs
m

sm+m−1∑
k=sm

〈∇f(xk)−∇fik(xk), zk − x?〉.

With our parameter choices, the relations in (15) hold and thus we can telescope the above inequality from s =
S − 1, . . . , 0,

αS−1
1− βS−1

(
F (x̃S)− F (x?)

)
≤ 1

m
Vd(x

?, x0) + 3M2
S−1∑
s=0

α2
s

+
3

m

K−1∑
k=0

α2
bk/mc ‖∇f(xk)−∇fik(xk)‖2∗︸ ︷︷ ︸

R4

+
1

m

K−1∑
k=0

αbk/mc 〈∇f(xk)−∇fik(xk), zk − x?〉︸ ︷︷ ︸
R5

.
(16)

Denoting V2
k , ‖∇f(xk)−∇fik(xk)‖2∗, ᾱ =

∑K−1
k=0 α2

bk/mc = m
∑S−1
s=0 α

2
s, forR4, by Jensen’s inequality, we have

E

[
exp

{
1

ᾱ

K−1∑
k=0

α2
bk/mcV

2
k/σ

2

}]
≤ 1

ᾱ

K−1∑
k=0

α2
bk/mcE

[
exp

{
V2
k/σ

2
}] (?)
≤ exp{1},

where (?) uses the additional assumption Eik
[
exp

{
V2
k/σ

2
}]
≤ exp{1}.

Then, based on Markov’s inequality, we have for any Λ ≥ 0,

Prob

{
exp

{
1

ᾱ

K−1∑
k=0

α2
bk/mcV

2
k/σ

2

}
≥ exp{Λ + 1}

}
≤ exp{−Λ},

Prob

{
R4 ≥ (Λ + 1)σ2m

S−1∑
s=0

α2
s

}
≤ exp{−Λ}. (17)

For R5, since we have Eik
[
αbk/mc 〈∇f(xk)−∇fik(xk), zk − x?〉

]
= 0 and

Eik

[
exp

{
α2
bk/mc 〈∇f(xk)−∇fik(xk), zk − x?〉2

α2
bk/mcσ

2D2
X

}]
≤ Eik

[
exp

{
V2
k/σ

2
}]
≤ exp{1},

which is based on the “light tail” assumption, using Lemma 2, we obtain

Prob

R5 ≥ ΛσDX

√√√√m

S−1∑
s=0

α2
s

 ≤ exp{−Λ2/3}. (18)

Combining (16), (17) and (18), based on the parameter setting and using the notation

K0(m) ,
6LmVd(x

?, x0)

(K +m)2
+

8
√

2Vd(x?, x0)
√
σ2 +M2

√
K +m

,

R6 ,
12Lσ2

λ1(S + 1)2

S−1∑
s=0

α2
s +

4LσDX

λ1(S + 1)2
√
m

√√√√S−1∑
s=0

α2
s,

we conclude that

Prob {F (x̃S)− F (x?) ≤ K0(m) + ΛR6} ≥ 1− (exp{−Λ2/3}+ exp{−Λ}).

For R6, using the choice of αs and λ1, we obtain

R6 ≤
4
√

6σDX

3
√
K +m

+
8λ1σ

2(S + 1)

L
≤ 4
√

6σDX

3
√
K +m

+
4
√

2Vd(x?, x0)σ2

√
K +m

√
σ2 +M2

≤
4
√

6σ
(√

3Vd(x?, x0) +DX

)
3
√
K +m

,

which completes the proof.

B.2.4 Proof of Theorem 2

Using Assumption (c), Lemma 1 with

x = xjkk
z = zk

z+ = zk+1

y = φkjk
y+ = φk+1

jk

α = αk

β = βk

,

and taking expectation, if αk(1− βk) < 1/L, we have

1

1− βk
Eik,jk

[
F (φk+1

jk
)− F (x?)

]
+

1

αk
Eik,jk [Vd(x

?, zk+1)]

≤ βk
1− βk

Ejk
[
F (φkjk)− F (x?)

]
+

1

αk
Vd(x

?, zk) +
(σ +M)2

2(α−1k − L(1− βk))
.

(19)

Note that

Eik,jk
[
F (φk+1

jk
)− F (x?)

]
= Eik,jk

 m∑
j=1

(
F (φk+1

j)− F (x?)
)
−

m∑
j 6=jk

(
F (φkj)− F (x?)

)
= Eik,jk

 m∑
j=1

(
F (φk+1

j)− F (x?)
)− Ejk

 m∑
j 6=jk

(
F (φkj)− F (x?)

) .
Dividing both sides of (19) by m and then adding 1

(1−βk)m
Ejk

[∑m
j 6=jk

(
F (φkj)− F (x?)

)]
to both sides, we obtain

1

1− βk
Eik,jk

 1

m

m∑
j=1

F (φk+1
j)− F (x?)

+
1

αkm
Eik,jk [Vd(x

?, zk+1)]

≤ − 1

m
Ejk

[
F (φkjk)− F (x?)

]
+

1

1− βk

 1

m

m∑
j=1

F (φkj)− F (x?)

+
1

αkm
Vd(x

?, zk)

+
(σ +M)2

2m(α−1k − L(1− βk))

=
1− 1−βk

m

1− βk

 1

m

m∑
j=1

F (φkj)− F (x?)

+
1

αkm
Vd(x

?, zk) +
(σ +M)2

2m(α−1k − L(1− βk))
. (20)

It can be verified that with our parameters choice: βk = k/m
k/m+2 and αk = λ2

L(1−βk)
, the following holds for k ≥ 0,

αk+1

1− 1−βk+1

m

1− βk+1
≤ αk

1− βk
and β0 = 0.

Then, we can telescope (20) from k = K − 1, . . . , 0, which results in

αK−1
1− βK−1

E

 1

m

m∑
j=1

F (φKj)− F (x?)

+
1

m
E [Vd(x

?, zK)]

≤ λ2(m− 1)

Lm

(
F (x0)− F (x?)

)
+

1

m
Vd(x

?, x0) +

K−1∑
k=0

αk(σ +M)2

2m(α−1k − L(1− βk))
.

Using the definition of φ̄K and convexity, we obtain

E
[
F (φ̄K)− F (x?)

]
≤ 1− βK−1

αK−1

(
λ2(m− 1)

Lm

(
F (x0)− F (x?)

)
+

1

m
Vd(x

?, x0)

)
+

1− βK−1
αK−1

K−1∑
k=0

αk(σ +M)2

2m(α−1k − L(1− βk))

(a)
=

4(m− 1)
(
F (x0)− F (x?)

)
m
(
K−1
m + 2

)2 +
4LVd(x

?, x0)

λ2m
(
K−1
m + 2

)2
+

3λ2(σ +M)2

2Lm
(
K−1
m + 2

)2 K−1∑
k=0

(
k

m
+ 2

)2

(b)

≤
4(m− 1)

(
F (x0)− F (x?)

)
m
(
K−1
m + 2

)2 +
4LVd(x

?, x0)

λ2m
(
K−1
m + 2

)2 +
4λ2(σ +M)2

(
K−1
m + 2

)
L

, (21)

where (a) uses λ2 ≤ 2
3 , (b) follows from simple integration arguments and that Km + 2 ≤ 2

(
K−1
m + 2

)
since K ≥

1,m ≥ 1.

Based on the choice of

λ2 = min

2

3
,

L
√
Vd(x?, x0)

√
m(σ +M)

(
K−1
m + 2

) 3
2

,
(21) can be further upper bounded as

E
[
F (φ̄K)− F (x?)

]
≤

4(m− 1)
(
F (x0)− F (x?)

)
m
(
K−1
m + 2

)2 +
6LVd(x

?, x0)

m
(
K−1
m + 2

)2 +
8
√
Vd(x?, x0)(σ +M)

m
1
2

(
K−1
m + 2

) 1
2

.

B.3 Connections between AM1-SGD and Katyusha

The high level idea of Katyusha momentum is that it works as a “magnet” inside an epoch of SVRG updates, which
“stabilizes” the iterates so as to make Nesterov’s momentum effective (Allen-Zhu, 2018). In theory, the key effect
of Katyusha momentum is that it allows the tightest possible variance bound for the stochastic gradient estimator of
SVRG (cf. Lemma 2.4 and its comments in Allen-Zhu (2018)). In this sense, we can interpret Katyusha momentum as
a variance reducer that further reduces the variance of SVRG. Below we show the similarity between the construction
of Katyusha and AM1-SGD, based on which we conjecture that the amortized momentum can also reduce the variance
of SGD (and thus increase the robustness). However, in theory, following a similar analysis of Katyusha, we cannot
guarantee a reduction of the variance in the worst case.

Deriving AM1-SGD from Katyusha For simplicity, we consider the Euclidean setting (Algorithm 2). Katyusha has
the following scheme (non-proximal, in the original notations, σ is the strong convexity parameter, cf. Algorithm 1
with Option I in Allen-Zhu (2018))8:

Initialize: x̃0 = y0 = z0 = x0, η = 1
3L , ω = 1 + ασ.

1: for s = 0, . . . , S − 1 do
2: Compute and store ∇f(x̃s).
3: for j = 0, . . . ,m− 1 do
4: k = sm+ j.
5: xk = τ1 · zk + τ2 · x̃s + (1− τ1 − τ2) · yk.
6: ∇̃k = ∇fik(xk)−∇fik(x̃s) +∇f(x̃s).

7: zk+1 = zk − α · ∇̃k.
8: yk+1 = xk − η · ∇̃k.
9: end for

10: x̃s+1 =
(∑m−1

j=0 ωj
)−1
·
∑m−1
j=0 ωj · ysm+j+1.

11: end for
Output: x̃S .

We can eliminate the sequence {zk} in this scheme. Note that in the parameter setting of Katyusha, we have η = ατ1,
and thus

xk+1 = τ1 · zk+1 + τ2 · x̃s + (1− τ1 − τ2) · yk+1

= τ1 · zk − η · ∇̃k + τ2 · x̃s + (1− τ1 − τ2) · yk + (1− τ1 − τ2) · (yk+1 − yk)

= xk − η · ∇̃k + (1− τ1 − τ2) · (yk+1 − yk)

= yk+1 + (1− τ1 − τ2) · (yk+1 − yk).

Hence, the inner loops can be written as

yk+1 = xk − η · ∇̃k,
xk+1 = yk+1 + (1− τ1 − τ2) · (yk+1 − yk),

which is the Nesterov’s scheme (scheme (4)). At the end of each inner loop (when k = sm+m− 1),

x(s+1)m = τ1 · z(s+1)m + τ2 · x̃s + (1− τ1 − τ2) · y(s+1)m,

while at the beginning of the next inner loop,

x(s+1)m = τ1 · z(s+1)m + τ2 · x̃s+1 + (1− τ1 − τ2) · y(s+1)m,

which means that we need to set x(s+1)m ← x(s+1)m + τ2 · (x̃s+1 − x̃s) (reassign the value of x(s+1)m).

Then, the following is an equivalent scheme of Katyusha:

8We change the notation xk+1 to xk.

Initialize: x̃0 = y0 = x0, η = 1
3L , ω = 1 + ασ.

1: for s = 0, . . . , S − 1 do
2: for j = 0, . . . ,m− 1 do
3: k = sm+ j.
4: yk+1 = xk − η · ∇̃k.
5: xk+1 = yk+1 + (1− τ1 − τ2) · (yk+1 − yk).
6: end for
7: x̃s+1 =

(∑m−1
j=0 ωj

)−1
·
∑m−1
j=0 ωj · ysm+j+1.

8: x(s+1)m ← x(s+1)m + τ2 · (x̃s+1 − x̃s).
9: end for

Output: x̃S .

Now it is clear that the inner loops use Nesterov’s momentum and the Katyusha momentum is injected for every m
iterations. If we replace the SVRG estimator ∇̃k with∇fik(xk), set 1− τ1− τ2 = 0, which is to eliminate Nesterov’s
momentum, and use a uniform average for x̃s+1, the above scheme becomes exactly AM1-SGD (Algorithm 2).

If we only replace the SVRG estimator ∇̃k, the scheme can be regarded as adding amortized momentum to M-
SGD. This scheme requires tuning the ratio of Nesterov’s momentum and amortized momentum. In our preliminary
experiments, after suitable tuning, we observed some performance improvement. However, this scheme increases the
complexity, which we do not consider it worthwhile.

A recent work (Zhou et al., 2018) shows that when 1 − τ1 − τ2 = 0, which is to solely use Katyusha momentum,
one can still derive optimal rates and the algorithm is greatly simplified. Their proposed algorithm (i.e., MiG) is
structurally more similar to AM1-SGD.

C Training evaluation

Due to the mechanism of back-propagation, evaluating train-batch loss basically incurs no overhead. It can be ef-
ficiently used to indicate the training progress. However, it can only be treated as a coarse approximation to the
full-batch loss as shown in Figure 2b. If batch normalization (Ioffe and Szegedy, 2015) or dropout (Srivastava et al.,
2014) is used in training, the model changes during the training phase, which makes train-batch loss less accurate.
More importantly, train-batch loss is always observed to be statistically stable, which omits many important character-
istics of an optimizer such as robustness, oscillations, etc. We include a comparison of train-batch loss and full-batch
loss on training ResNet18 with pre-activation on CIFAR-10 (the experiment in Appendix A.3) in Figure 17.

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

⇐==⇒

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fu
ll-

Ba
tc

h
Tr

ai
n

Lo
ss

Full-Batch Train Loss
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

Figure 17: Train-batch loss vs. full-batch loss.

Moreover, train-batch loss does not capture the effect of different output options. We observed that sometimes for
different optimizers, even if their convergences on train-batch loss are indistinguishable, their convergences on test
accuracy can vary greatly. We show two examples in Figure 18, where the ImageNet experiment is from Section 6 and
the CIFAR-10 experiment is from Table 4 with m = 10.

0 20 40 60 80
Epoch

1.0

1.5

2.0

2.5

3.0

Tr
ai

n-
Ba

tc
h

Lo
ss

ResNet152 on ImageNet
SGD
M-SGD
AM1-SGD
AM2-SGD

⇐==⇒

0 20 40 60 80
Epoch

45

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y%

ResNet152 on ImageNet
SGD
M-SGD
AM1-SGD
AM2-SGD

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n-
Ba

tc
h

Lo
ss

ResNet34 on CIFAR-10
AM2-SGD-I
AM2-SGD-II

⇐==⇒

0 20 40 60 80
Epoch

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

ResNet34 on CIFAR-10

AM2-SGD-I
AM2-SGD-II

Figure 18: Train-batch loss vs. test accuracy.

D Experimental Setup

All of our experiments were conducted using PyTorch (Paszke et al., 2017) library.

D.1 Classification Setup

CIFAR-10 & CIFAR-100 Our implementation (e.g., ResNet and DenseNet implementations, data pre-processing)
generally follows the repository https://github.com/kuangliu/pytorch-cifar. All the CIFAR experi-
ments in this paper used a single GPU in a mix of RTX2080Ti, TITAN Xp and TITAN V. The batch size is fixed to 128.
We used cross-entropy loss with 0.0005 weight decay and used batch normalization (Ioffe and Szegedy, 2015). Data
augmentation includes random 32-pixel crops with a padding of 4-pixel and random horizontal flips with 0.5 proba-
bility. We used step (or multi-step) learning rate scheduler with a decay factor 10. For the CIFAR-10 experiments,
we trained 90 epochs and decayed the learning rate every 30 epochs. For the CIFAR-100 experiments, we trained 300
epochs and decayed the learning rate at 150 epoch and 225 epoch following the settings in DenseNet (Huang et al.,
2017).

ImageNet In the ImageNet experiments, we tried both ResNet50 and ResNet152 (He et al., 2016a). The training
strategy is the same as the PyTorch’s official repository https://github.com/pytorch/examples/tree/
master/imagenet, which uses a batch size of 256. The learning rate starts at 0.1 and decays by a factor of 10
every 30 epochs. Also, we applied weight decay with 0.0001 decay rate to the model during the training. For the data
augmentation, we applied random 224-pixel crops and random horizontal flips with 0.5 probability. Here, we ran all
experiments across 8 NVIDIA P100 GPUs for 90 epochs.

D.2 Language Model Setup

We followed the implementation in the repository https://github.com/salesforce/awd-lstm-lm and
trained word level Penn Treebank with LSTM without fine-tuning or continuous cache pointer augmentation for 750
epochs. The experiments were conducted on a single RTX2080Ti. We used the default hyper-parameter tuning except
for learning rate and momentum: The LSTM has 3 layers containing 1150 hidden units each, embedding size is
400, gradient clipping has a maximum norm 0.25, batch size is 80, using variable sequence length, dropout for the
layers has probability 0.4, dropout for the RNN layers has probability 0.3, dropout for the input embedding layer
has probability 0.65, dropout to remove words from embedding layer has probability 0.1, weight drop (Merity et al.,
2018) has probability 0.5, the amount of `2-regularization on the RNN activation is 2.0, the amount of slowness
regularization applied on the RNN activation is 1.0 and all weights receive a weight decay of 0.0000012.

References

Allen-Zhu, Z. (2018). Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. J. Mach. Learn. Res.,
18(221):1–51.

Auslender, A. and Teboulle, M. (2006). Interior gradient and proximal methods for convex and conic optimization.
SIAM J. Optim., 16(3):697–725.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.,
2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Ghadimi, S. and Lan, G. (2012). Optimal stochastic approximation algorithms for strongly convex stochastic compos-
ite optimization i: A generic algorithmic framework. SIAM J. Optim., 22(4):1469–1492.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. In CVPR, pages
770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks. In ECCV, pages
630–645. Springer.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks.
In CVPR, pages 4700–4708.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

https://github.com/kuangliu/pytorch-cifar
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/salesforce/awd-lstm-lm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Lan, G. (2012). An optimal method for stochastic composite optimization. Math. Program., 133(1-2):365–397.

Lan, G., Nemirovski, A., and Shapiro, A. (2012). Validation analysis of mirror descent stochastic approximation
method. Math. Program., 134(2):425–458.

Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. In ICLR.

Lucas, J., Sun, S., Zemel, R., and Grosse, R. (2019). Aggregated Momentum: Stability Through Passive Damping. In
ICLR.

Ma, J. and Yarats, D. (2019). Quasi-hyperbolic momentum and Adam for deep learning. In ICLR.

Merity, S., Keskar, N. S., and Socher, R. (2018). Regularizing and Optimizing LSTM Language Models. In ICLR.

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate o(1/k2). In Dokl.
Akad. Nauk SSSR, volume 269, pages 543–547.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, volume 87. Springer Science &
Business Media.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. (2017). Automatic differentiation in pytorch.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. &
Math. Phys., 4(5):1–17.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958.

Zhou, K., Shang, F., and Cheng, J. (2018). A Simple Stochastic Variance Reduced Algorithm with Fast Convergence
Rates. In ICML, pages 5980–5989.

	INTRODUCTION
	PRELIMINARIES
	AMORTIZED NESTEROV'S MOMENTUM
	AM2-SGD

	CONVERGENCE RESULTS
	USING AMORTIZED NESTEROV'S MOMENTUM IN DEEP LEARNING
	EXPERIMENTS
	PARAMETER SWEEP ON CIFAR-10
	IMAGENET
	LANGUAGE MODEL
	A NICE ALTERNATIVE FOR M-SGD

	CONCLUSIONS
	Extra Experimental Results
	Implementing AM1-SGD and AM2-SGD
	The effect of m on convergence
	Full-batch loss experiment
	Robustness on large momentum parameters
	Comparison with other momentum
	Issues with learning rate schedulers
	CIFAR-100 experiment
	Convex experiments
	Sanity check

	Missing parts in Section 3 and Section 4
	The reformulations
	Proofs of Theorem 1 and Theorem 2
	Proof of Lemma 1
	Proof of Theorem 1a
	Proof of Theorem 1b
	Proof of Theorem 2

	Connections between AM1-SGD and Katyusha

	Training evaluation
	Experimental Setup
	Classification Setup
	Language Model Setup

	References

