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Abstract

We propose a new network architecture, Gated
Attention Networks (GaAN), for learning on
graphs. Unlike the traditional multi-head at-
tention mechanism, which equally consumes
all attention heads, GaAN uses a convolutional
sub-network to control each attention head’s
importance. We demonstrate the effective-
ness of GaAN on the inductive node classi-
fication problem on large graphs. Moreover,
with GaAN as a building block, we construct
the Graph Gated Recurrent Unit (GGRU)
to address the traffic speed forecasting prob-
lem. Extensive experiments on three real-
world datasets show that our GaAN framework
achieves state-of-the-art results on both tasks.

1 INTRODUCTION

Many crucial machine learning tasks involve graph-
structured datasets, such as classifying posts in a social
network (Hamilton et al., 2017a), predicting interfaces
between proteins (Fout et al., 2017) and forecasting the
future traffic speed in a road network (Li et al., 2018).
The main difficulty in solving these tasks is how to find
the right way to express and exploit the graph’s underly-
ing structural information. Traditionally, this is achieved
by calculating various graph statistics like degree and
centrality, using graph kernels, or extracting human en-
gineered features (Hamilton et al., 2017b).

Recent research, however, has pivoted to solving these
problems by graph convolution (Duvenaud et al., 2015;
Atwood and Towsley, 2016; Kipf and Welling, 2017;
Fout et al., 2017; Hamilton et al., 2017a; Veličković
et al., 2018; Li et al., 2018), which generalizes the stan-

∗ These two authors contributed equally.

dard definition of convolution over a regular grid topol-
ogy (Gehring et al., 2017; Krizhevsky et al., 2012) to
‘convolution’ over graph structures. The basic idea
behind ‘graph convolution’ is to develop a localized
parameter-sharing operator on a set of neighboring nodes
to aggregate a local set of lower-level features. We re-
fer to such an operator as a graph aggregator (Hamilton
et al., 2017a) and the set of local nodes as the recep-
tive field of the aggregator. Then, by stacking multiple
graph aggregators, we build a deep neural network model
which can be trained end-to-end to extract the local and
global features across the graph. Note that we use the
spatial definition instead of the spectral definition (Ham-
mond et al., 2011; Bruna et al., 2014) of graph convo-
lution because the full spectral treatment requires eigen-
decomposition of the Laplacian matrix, which is com-
putationally intractable on large graphs, while the local-
ized versions (Defferrard et al., 2016; Kipf and Welling,
2017) can be interpreted as graph aggregators (Hamilton
et al., 2017a).

Graph aggregators are the basic building blocks of graph
convolutional neural networks. A model’s ability to cap-
ture the structural information of graphs is largely de-
termined by the design of its aggregators. Most exist-
ing graph aggregators are based on either pooling over
neighborhoods (Kipf and Welling, 2017; Hamilton et al.,
2017a) or computing a weighted sum of the neighbor-
ing features (Monti et al., 2017). In essence, functions
that are permutation invariant and can be dynamically
resizing are eligible graph aggregators. One class of
such functions is the neural attention network (Bahdanau
et al., 2015), which uses a subnetwork to compute the
correlation weight of the elements in a set. Among
the family of attention models, the multi-head attention
model has been shown to be effective for machine trans-
lation task (Lin et al., 2017; Vaswani et al., 2017). It has
later been adopted as a graph aggregator to solve the node
classification problem (Veličković et al., 2018). A sin-
gle attention head sums up the elements that are similar



to the query vector in one representation subspace. Us-
ing multiple attention heads allows exploring features in
different representation subspaces, which provides more
modeling power in nature. However, treating each atten-
tion head equally loses the opportunity to benefit from
some attention heads which are inherently more impor-
tant than others. For instance, assume there are ten dif-
ferent relationships in the graph and only two of them
are valid for each node. If we use ten attention heads
to model these relationships and treat them equally, each
node will still aggregate features from eight non-existent
subspaces. This will mislead the final prediction.

To this end, we propose the Gated Attention Networks
(GaAN) for learning on graphs. GaAN uses a small con-
volutional subnetwork to compute a soft gate at each at-
tention head to control its importance. Unlike the tradi-
tional multi-head attention that admits all attended con-
tents, the gated attention can modulate the amount of
attended content via the introduced gates. From this
perspective, the gate-generation network acts as a high-
level controller that determines how to aggregate the fea-
tures extracted by the attention heads. Moreover, since
only a simple and light-weighted subnetwork is intro-
duced in constructing the gates, the computational over-
head is negligible and the model is easy to train. We
demonstrate the effectiveness of our new aggregator by
applying it to the inductive node classification problem.
To train our model and other graph aggregators on rela-
tively large graphs, we also improve the sampling strat-
egy introduced in (Hamilton et al., 2017a) to reduce the
memory cost and increase the run-time efficiency. Fur-
thermore, since our proposed aggregator is very general,
we extend it to construct a Graph Gated Recurrent Unit
(GGRU), which is directly applicable for spatiotempo-
ral forecasting problem. Extensive experiments on two
node classification datasets, PPI and the large Reddit
dataset (Hamilton et al., 2017a), and one traffic speed
forecasting dataset, METR-LA (Li et al., 2018), show
that GaAN consistently outperforms the baseline models
and achieves the state-of-the-art performance.

In summary, our main contributions include: (a) a new
multi-head attention-based aggregator with additional
gates on the attention heads; (b) a unified framework for
transforming graph aggregators to graph recurrent neural
networks; and (c) the state-of-the-art prediction perfor-
mance on three real-world datasets. To the best of our
knowledge, this is the first work to study the attention-
based aggregators on large and spatiotemporal graphs.

2 NOTATIONS

We denote vectors with bold lowercase letters, matrices
with bold uppercase letters, and sets with calligraphy let-

ters. We denote a single fully-connected layer with a
non-linear activation α(·) as FCαθ (x) = α(Wx + b),
where θ = {W,b} are the parameters. Also, θ with dif-
ferent subscripts mean different transformation parame-
ters. For activation functions, we denote h(·) to be the
LeakyReLU activation (Xu et al., 2015a) with negative
slope equals to 0.1 and σ(·) to be the sigmoid activa-
tion. FCθ(x) means applying no activation function after
the linear transform. We denote ⊕ as the concatenation
operation and

fK
k=1 xk as sequentially concatenating x1

through xK . We denote the Hadamard product as ‘◦’ and
the dot product between two vectors as 〈·, ·〉.

3 RELATED WORK

In this section, we will review relevant research on learn-
ing on graphs. Our model is also related to many graph
aggregators proposed by previous work. We will discuss
these aggregators in Section 4.3.

Neural attention mechanism Neural attention mech-
anism is widely adopted in deep learning literature and
many variants have been proposed (Xu et al., 2015b;
Seo et al., 2017; Zhang et al., 2017; Vaswani et al.,
2017; Cheng et al., 2017; Zhang et al., 2018). Among
them, our model takes inspiration from the multi-head
attention architecture proposed in (Vaswani et al., 2017).
Given a query vector q and a set of key-value pairs
{(k1,v1), ..., (kn,vn)}, a single attention head com-
putes a weighted combination of the value vectors∑n
i=1 wivi. The weights are generated by applying soft-

max to the inner product between the query and keys,
i.e., w = softmax({qTk1, ...,q

Tkn}). In the multi-head
case, the outputs of K different heads are concatenated
to form an output vector with fixed dimensionality. The
difference between the proposed GaAN and the multi-
head attention mechanism is that we compute additional
gates to control the importance of each head’s output.

Graph convolutional networks on large graph Ap-
plying graph convolution on large graphs is challeng-
ing because the memory complexity is proportional to
the total number of nodes, which could be hundreds
of thousands of nodes in large graphs (Hamilton et al.,
2017a). To reduce memory usage and computational
cost, (Hamilton et al., 2017a) proposed the GraphSAGE
framework that uses a sampling algorithm to select a
small subset of the nodes and edges. On each itera-
tion, GraphSAGE first uniformly samples a mini-batch
of nodes. Then, for each node, only a fixed number
of neighborhoods are selected for aggregation. More
recently, Chen et al. (Chen et al., 2018) proposed a
new sampling method that randomly samples two sets
of nodes according to a proposed distribution. How-
ever, this method is only applicable to one aggregator,



i.e., the Graph Convolutional Network (GCN) (Kipf and
Welling, 2017). For the usage of the gate mechanism, the
gate in Li et al. (2016) refers to the gate in Gated Recur-
rent Units, which are imposed on the activations of the
neural network, while our gates are added to the atten-
tion heads to control each head’s relative importance.

Graph convolution networks for spatiotemporal fore-
casting Recently, researchers have applied graph con-
volution, which is commonly used for learning on
static graphs, to spatiotemporal forecasting (Yuan et al.,
2017). (Seo et al., 2016) proposed Graph Convolutional
Recurrent Neural Network (GCRNN), which replaced
the fully-connected layers in LSTM (Hochreiter and
Schmidhuber, 1997) with the ChebNet operator (Deffer-
rard et al., 2016), and applied it to a synthetic video pre-
diction task. Li et al. (Li et al., 2018) proposed Diffusion
Convolutional Recurrent Neural Network (DCRNN) to
address the traffic forecasting problem, where the goal
is to predict future traffic speeds in a sensor network
given historical traffic speeds and the underlying road
graph. DCRNN replaces the fully-connected layers in
GRU (Chung et al., 2014) with the diffusion convolu-
tion operator (Atwood and Towsley, 2016). Furthermore,
DCRNN takes the direction of graph edges into account.
The difference between our GGRU with GCRNN and
DCRNN is that we proposed a unified method for con-
structing a recurrent neural network based on an arbitrary
graph aggregator rather than proposing a single model.

4 GATED ATTENTION NETWORKS

In this section, we first give a generic formulation of
graph aggregators followed by the multi-head attention
mechanism. Then, we introduce the proposed gated at-
tention aggregator. Finally, we review the other kinds
of graph aggregators proposed by previous work and ex-
plain their relationships with ours.

Generic formulation of graph aggregators Given a
node i and its neighboring nodes Ni, a graph aggregator
is a function γ in the form of yi = γΘ(xi, {zNi}), where
xi and yi are the input and output vectors of the center
node i. zNi

= {zj |j ∈ Ni} is a set of the reference
vectors in the neighboring nodes and Θ is the learnable
parameters of the aggregator. In this paper, we do not
consider aggregators that use edge features. However, it
is straightforward to incorporate edges in our definition
by defining zj to contain the edge feature vectors ei,j .

4.1 MULTI-HEAD ATTENTION AGGREGATOR

We linearly project the center node feature xi to get the
query vector and project the neighboring node features
to get the key and value vectors. We then apply the
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Figure 1: Illustration of a three-head gated attention ag-
gregator with two center nodes in a mini-batch. |N1| = 3
and |N2| = 2 respectively. Different colors indicate dif-
ferent attention heads. Gates in darker color stands for
larger values. (Best viewed in color)

multi-head attention mechanism (Vaswani et al., 2017)
to obtain the final aggregation function. For the multi-
head attention mechanism, different heads capture fea-
tures from different representation subspaces. The de-
tailed formulation of the multi-head attention aggregator
is as follows:

yi = FCθo(xi ⊕
Kn

k=1

∑
j∈Ni

w
(k)
i,j FCh

θ
(k)
v

(zj)),

w
(k)
i,j =

exp(φ
(k)
w (xi, zj))∑|Ni|

l=1 exp(φ
(k)
w (xi, zl))

,

φ(k)
w (x, z) = 〈FC

θ
(k)
xa

(x),FC
θ
(k)
za

(z)〉.

(1)

Here, K is the number of attention heads. w
(k)
i,j is the

kth attentional weights between the center node i and
the neighboring node j, which is generated by apply-
ing a softmax to the dot product values. θ(k)

xa , θ(k)
za and

θ
(k)
v are the parameters of the kth head for computing

the query, key, and value vectors, which have dimensions
of da, da and dv respectively. The K attention outputs
are concatenated with the input vector and passed to a
fully-connected layer parameterized by θo to get the final
output yi, which has dimension do. The difference be-
tween our aggregator and that in GAT (Veličković et al.,
2018) is that we have adopted the key-value attention
mechanism and the dot product attention while GAT does
not compute additional value vectors and uses a fully-
connected layer to compute φ(k)

w .

4.2 GATED ATTENTION AGGREGATOR

While the multi-head attention aggregator can explore
multiple representation subspaces between the center
node and its neighborhoods, not all of these subspaces
are equally important; some subspaces may not even ex-
ist for specific nodes. Feeding the output of an attention



............
1 2 3 4 1 2 3 4

Pooling Aggregator Pairwise Sum Aggregator

1 2 3 4

Attention-based Aggregator

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1 2 3 4

Gated Graph Attention Aggregator(a) Attention Aggregator

............
1 2 3 4 1 2 3 4

Pooling Aggregator Pairwise Sum Aggregator

1 2 3 4

Attention-based Aggregator

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1 2 3 4

Gated Graph Attention Aggregator(b) Gated Attention Aggregator

............
1 2 3 4 1 2 3 4

Pooling Aggregator Pairwise Sum Aggregator

1 2 3 4

Attention-based Aggregator

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1 2 3 4

Gated Graph Attention Aggregator
(c) Pooling Aggregator

............
1 2 3 4 1 2 3 4

Pooling Aggregator Pairwise Sum Aggregator

1 2 3 4

Attention-based Aggregator

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1 2 3 4

Gated Graph Attention Aggregator(d) Pairwise Sum Aggregator

Figure 2: Comparison of different graph aggregators. The aggregators are drawn for only one aggregation step. The
nodes in red are center nodes and the nodes in blue are neighboring nodes. The bold black lines between the center
node and neighbor nodes indicate that a learned pairwise relationship is used for calculating the relative importance.
The oval in dash line around the neighbors means the interaction among neighbors is utilized when determining the
weights. (Best viewed in color)

head that captures a useless representation can mislead
the mode’s final prediction.

Therefore, we compute an additional soft gate between 0
(low importance) and 1 (high importance) to assign dif-
ferent importance to each head. In combination with the
multi-head attention aggregator, we get the formulation
of the gated attention aggregator:

yi = FCθo(xi ⊕
Kn

k=1

(g
(k)
i

∑
j∈Ni

w
(k)
i,j FCh

θ
(k)
v

(zj))),

gi = [g
(1)
i , ..., g

(K)
i ] = ψg(xi, zNi

),

(2)

where g(k)
i is a scalar, the gate value of the kth head at

node i. To make sure adding gates will not introduce
too many additional parameters, we use a convolutional
network ψg that takes the center node and neighboring
node features as the input to generate the gate values.
All the other parameters have the same meanings as in
Eqn. (1).

There are multiple possible designs of the ψg network. In
this paper, we combine average pooling and max pooling
to construct the network. The detailed formula is:

gi = FCσθg (xi ⊕max
j∈Ni

({FCθm(zj)})⊕
∑
j∈Ni

zj

|Ni|
).

(3)
Here, θm maps the neighbor features to a dm dimen-
sional vector before taking the element-wise max and θg
maps the concatenated features to the final K gates. By
setting a small dm, the subnetwork for computing the
gates will have negligible computational overhead. A vi-
sual illustration of GaAN aggregator’s structure can be
found in Figure 1. Also, we compare the general struc-
tures of the multi-head attention aggregator and the gated
attention aggregator in Figure 2a and Figure 2b.

4.3 OTHER GRAPH AGGREGATORS

Most previous graph aggregators except attention-based
aggregators can be summarized into two general cate-
gories: graph pooling aggregators and graph pairwise
sum aggregators. In this section, we first describe these
two types of aggregators and then explain their relation-
ship with the attention-based aggregator. Finally, we give
a list of the baseline aggregators used in the experiments.

Graph pooling aggregators The main characteristic
of graph pooling aggregators is that they do not con-
sider the correlation between neighboring nodes and the
center node. Instead, neighboring nodes’ features are di-
rectly aggregated and the center node’s feature is simply
concatenated or added to the aggregated vector and then
passed through an output function φo:

yi = φo(xi ⊕ poolj∈Ni
(φv(zj))). (4)

Here, the projection function φv and the output function
φo can be a single fully-connected layer and the pool(·)
operator can be average pooling, max pooling, or sum
pooling. The majority of existing graph aggregators are
special cases of the graph pooling aggregators. Some
models only integrate the node features of neighbor-
hoods (Duvenaud et al., 2015; Kipf and Welling, 2017;
Hamilton et al., 2017a), while others integrated edge fea-
tures as well (Atwood and Towsley, 2016; Fout et al.,
2017; Schütt et al., 2017). In Figure 2c, we illustrate the
architecture of the graph pooling aggregators.

Graph pairwise sum aggregators Like attention-
based aggregators, graph pairwise sum aggregators
also aggregate the neighborhood features by taking K
weighted sums. The difference is that the weight be-
tween node i and its neighbor j is not related to the other
neighbors in Ni. The formula of graph pairwise sum ag-
gregator is given as follows:



yi = φo(xi ⊕
Kn

k=1

∑
j∈Ni

w
(k)
i,j φ

(k)
v (zj)),

w
(k)
i,j = φ(k)

w (xi, zj).

(5)

Here, w(k)
i,j is only related to the pair xi and zj , while

in attention-based models w
(k)
i,j is related to features

of all neighbors zNi . Models like the adaptive forget
gate strategy in Graph LSTM (Liang et al., 2016) and
MoNet (Monti et al., 2017) employed pairwise sum ag-
gregators with a single head or multiple heads. In Fig-
ure 2d, we illustrate the architecture of the graph pair-
wise sum aggregators.

Baseline aggregators To fairly evaluate the effective-
ness of GaAN against previous work, we choose two rep-
resentative aggregators in each category as baselines:

• Avg. pooling: yi = FCθo(xi⊕poolavg
j∈Ni

(FChθv (zj))).

• Max pooling: yi = FCθo(xi⊕poolmax
j∈Ni

(FChθv (zj))).

• Pairwise + sigmoid:

yi = FCθo(xi ⊕
Kn

k=1

∑
j∈Ni

w
(k)
i,j FCh

θ
(k)
v

(zj)),

w
(k)
i,j =

1

|Ni|
σ(〈FC

θ
(k)
xa

(xi),FC
θ
(k)
za

(zj)〉).

• Pairwise + tanh: Replace the sigmoid activation in
Pairwise + sigmoid to tanh.

5 INDUCTIVE NODE CLASSIFICA-
TION

5.1 MODEL

In the inductive node classification task, every node is as-
signed one or multiple labels. During training, the vali-
dation and testing nodes are not observable. And the goal
is to predict the labels of the unseen testing nodes. Our
approach follows that of (Hamilton et al., 2017a), where
a mini-batch of nodes are sampled on each iteration dur-
ing training and multiple layers of graph aggregators are
stacked to compute the predictions.

With a stack of M layers of graph aggregators, we will
first sample a mini-batch of nodes B0 and then recur-
sively expand B` to be B`+1 by sampling the neighboring
nodes of B`. After M sampling steps, we can get a hier-
archy of node batches: B1, ...,BM . The node represen-
tations, which are initialized to be the node features, will
be aggregated in reverse order from BM to B0. The rep-
resentations of the last layer, i.e., the final representations
of the nodes in B0, are projected to get the output. We
use the sigmoid activation for multi-label classification

Table 1: Effect of the merge operation. Both meth-
ods sample a maximum of 15 neighborhoods without re-
placement for three recursive steps on the Reddit dataset.
We start from 512 seed nodes. The total number of nodes
after the lth sampling step is denoted as |B`|. The sam-
pling process is repeated for ten times and the mean is
reported.

Strategy/Sample Step |B0| |B1| |B2| |B3|
Sample without merge 512 7.8K 124.4K 1.9M

Sample and merge 512 7.5K 70.7K 0.2M

and the softmax activation for multi-class classification.
Also, we use the cross-entropy loss to train the model.

A naive sampling algorithm is always to sample all
neighbors. However, it is not practical on large graphs
because the memory complexity is O(|V|) and the time
complexity is O(|E|), where |V| and |E| are the total
number of nodes and edges. Instead, similar to Graph-
SAGE (Hamilton et al., 2017a), we only sample a subset
of the neighborhoods for each node. In our implementa-
tion, at the `th sampling step, we sample min(|Ni|, S`)
neighbors without replacement for the node i, where S`
is a hyperparameter that controls the maximum number
of sampled neighbors at the `th step. Moreover, to im-
prove over GraphSAGE and further reduce memory cost,
we merge repeated nodes that are sampled from differ-
ent seeds’ neighborhoods within each mini-batch. This
greatly reduces the size of B`s as shown in Table 1.

Note that min(|Ni|, S`) is not the same for all the nodes
i. Thus, instead of padding the sampled neighborhood
set to the same size for utilizing fast tensor operation, we
implemented new GPU kernels that directly operate on
inputs with variable lengths to accelerate computations.

5.2 EXPERIMENTAL SETUP

We performed a thorough comparison of GaAN with the
state-of-the-art models, five aggregator-based models in
our framework and a two-layer fully connected neural
network on the PPI and Reddit datasets (Hamilton et al.,
2017a). The five baseline aggregators include the multi-
head attention aggregator, two pooling based aggrega-
tors, and two pairwise sum based aggregators mentioned
in Section 4.3. We also conducted comprehensive abla-
tion analysis.

The PPI dataset was collected from the molecular sig-
natures database (Subramanian et al., 2005). Each node
represents a protein and edges represent the interaction
between proteins. Labels represent the cellular functions
of each protein from gene ontology. Reddit is an online
discussion forum where users can post and discuss con-
tents on different topics. Each node represents a post and



Table 2: Datasets for inductive node classification.
‘multi’ stands for multilabel classification and ‘single’
otherwise.

Data #Nodes #Edges #Fea #Classes
PPI 56.9K 806.2K 50 121(multi)

Reddit 233.0K 114.6M 602 41(single)

two nodes are connected if they are commented by the
same user. The labels indicate the community a post be-
longs to. Detailed statistics are listed in Table 2.

5.3 MODEL ARCHITECTURES AND
IMPLEMENTATION DETAIL

The GaAN and other five aggregator-based networks are
stacked with two graph aggregators. Each aggregator
is followed by the LeakyReLU activation with negative
slope equals to 0.1 and a dropout layer with dropout rate
set to be 0.1. The output dimension do of all layers are
fixed to be 128 except when we compare the relative
performance with different output dimensions. To keep
the number of parameters comparable for the multi-head
models with a different number of heads, we fix the prod-
uct of the dimension of the value vector and the number
of heads, i.e., dv×K to be the same when evaluating the
effect of varying the number of heads. Also, the hyper-
parameters of the first and the second layer are assumed
to be the same if no special explanation is given.

In the PPI experiments, both pooling aggregators have
dv = 512, where dv means the dimensionality of the
value vector projected by θv . For the pairwise sum ag-
gregators, the dimension of the keys da is set to be 24,
dv = 64, and K = 8. For both GaAN and the multi-
head attention based aggregator, da is set to be 24 and
the product dv × K is fixed to be 256. For GaAN, we
set dm to be 64 in the gate-generation network. Also, we
use the entire neighborhoods in the mini-batch training
algorithm. In the Reddit experiments, both pooling ag-
gregators have dv = 1024. For the pairwise sum aggre-
gators, da = 32, dv = 256 and K = 4. For the attention
based aggregators, da is set to be 32 and dv ×K is fixed
to be 512. We set the gate-generation network in GaAN
to have dm = 64. Also, the number of heads is fixed to
1 in the first layer for both attention-based models. The
maximum number of sampled neighbors in the first and
second sampling steps are denoted as S1 and S2 and are
respectively set to be 25 and 10 in Table 3. In the abla-
tion analysis, we also show the performance when setting
them to be (50, 20), (100, 40), and (200, 80).

To illustrate the effectiveness of incorporating graph
structures, we also evaluate a two-layer fully-connected
neural network with the hidden dimension of 1024 and

Table 3: Summary of different models’ test micro F1
scores in the inductive node classification task. In the
first block, we include the best-reported results in the pre-
vious papers. In the second block, we report the results
obtained by our models. For the PPI dataset, we do not
use any sampling strategies. For the Reddit dataset, we
use the maximum number sampling strategy with S1=25
and S2=10.

Models / Datasets PPI Reddit

GraphSAGE (Hamilton et al., 2017a) (61.2)1 95.4
GAT (Veličković et al., 2018) 97.3 ± 0.2 -
Fast GCN (Chen et al., 2018) - 93.7
2-Layer FNN 54.07±0.06 73.58±0.09
Avg. pooling 96.85±0.19 95.78±0.07
Max pooling 98.39±0.05 95.62±0.03
Pairwise+sigmoid 98.39±0.05 95.86±0.08
Pairwise+tanh 98.32±0.18 95.80±0.03
Attention-only 98.46±0.09 96.19±0.07
GaAN 98.71±0.02 96.36±0.03

ReLU activation. It only takes node features as input and
ignores graph structures.

We train all the aggregator-based models with
Adam (Kingma and Ba, 2015) and early stopping
on the validation set. Besides, we use the validation set
to perform learning rate decay scheduler. For Reddit,
before training we normalize all the features and project
all the features to a hidden dimension of 256. The
initial learning rate is 0.001 and gradually decreases
to 0.0001 with the decay rate of 0.5 each time the
validation F1 score does not decrease in a window of
4 epochs and early stopping occurs for 10 epochs. The
gradient normalization value clips no larger than 1.0.
For the PPI dataset, all the input features are projected
to a 64-dimension hidden state before passing to the
aggregators. The learning rate begins at 0.01 and decays
to 0.001 with the decay rate of 0.5 if the validation F1
score does not increase for 15 epochs and stops training
for 30 epochs.

The training batch size is fixed to be 512. Also, in all ex-
periments, we use the validation set to select the optimal
hyperparameters for training. The training, validation,
and testing splits are the same as that in (Hamilton et al.,
2017a). The micro-averaged F1 score is used to evalu-
ate the prediction accuracy for both datasets. We repeat
the training five times for Reddit and three times for PPI
with different random seeds and report the average test
F1 score along with the standard deviation.

1The performance reported in the paper is relatively low be-
cause the author has not trained their model into convergence.
Also, it is not fair to compare it with the other scores because it
uses the sampling strategy while the others have not.



Table 4: Comparison of the test F1 score on the Reddit and PPI datasets with different sampling neighborhood sizes
and attention head number K. S1 and S2 are the maximum number of sampled neighborhoods in the 1st and 2nd
sampling steps. ‘all’ means to sample all the neighborhoods.

Models
Reddit PPI

#Param S1, S2 S1, S2 S1, S2 S1, S2 #Param S1, S2

25,10 50,20 100,40 200,80 all, all
2-Layer FNN 1.71M 73.58±0.09 73.58±0.09 73.58±0.09 73.58±0.09 1.23M 54.07±0.06
Avg. pooling 866K 95.78±0.07 96.11±0.07 96.28±0.05 96.35±0.02 274K 96.85±0.19
Max pooling 866K 95.62±0.03 96.06±0.09 96.18±0.11 96.33±0.04 274K 98.39±0.05
Pairwise+sigmoid 965K 95.86±0.08 96.19±0.04 96.33±0.05 96.38±0.08 349K 98.39±0.05
Pairwise+tanh 965K 95.80±0.03 96.11±0.05 96.26±0.03 96.36±0.04 349K 98.32±0.18
Attention-only-K1 562K 96.15±0.06 96.40±0.05 96.48±0.02 96.54±0.07 168K 96.31±0.08
Attention-only-K2 571K 96.19±0.07 96.40±0.04 96.52±0.02 96.57±0.02 178K 97.36±0.08
Attention-only-K4 587K 96.11±0.06 96.40±0.02 96.49±0.03 96.56±0.02 196K 98.09±0.07
Attention-only-K8 620K 96.10±0.03 96.38±0.01 96.50±0.04 96.53±0.02 233K 98.46±0.09
GaAN-K1 620K 96.29±0.05 96.50±0.08 96.67±0.04 96.73±0.05 201K 96.95±0.09
GaAN-K2 629K 96.33±0.02 96.59±0.02 96.71±0.05 96.82±0.05 211K 97.92±0.05
GaAN-K4 645K 96.36±0.03 96.60±0.03 96.73±0.04 96.83±0.03 230K 98.42±0.02
GaAN-K8 678K 96.31±0.13 96.60±0.02 96.75±0.03 96.79±0.08 267K 98.71±0.02

5.4 MAIN RESULTS

We compare our model with the previous state-of-the-art
methods on inductive node classification. This includes
GraphSAGE (Hamilton et al., 2017a), GAT (Veličković
et al., 2018), and FastGCN (Chen et al., 2018). The
GraphSAGE model used a 2-layer sample and aggre-
gate model with a neighborhood size of S(1) = 25 and
S(2) = 10 without dropout. The 3-layer GAT model
consisted of 4, 4, and 6 heads in the first, second, and
third layer respectively. Each attention head had 256 di-
mensions. GAT did not use neighborhood sampling, L2
regularization, or dropout. The FastGCN model is a fast
version of the 3-layer, 128-dimension GCN with sam-
pled neighborhood size being 400, 100, and 400 for each
layer and no sampling is done during testing.

Table 3 summarizes all results of the state-of-the-art
models and the models proposed in this paper. We denote
the multi-head attention aggregator as ‘Attention-only’ in
the tables and figures. We find that the proposed model,
GaAN, achieves the best F1 score on both datasets and
the other baseline aggregators can also show competitive
results to the state-of-the-art. We note that aggregator-
based models produce much higher F1 score than the
fully-connected model, which shows the effectiveness of
the graph aggregators. Our max pooling and avg. pool-
ing baselines have higher scores on Reddit than that in
the original GraphSAGE record. This mainly contributes
to our usage of dropout and the LeakyReLU activation.

Regarding the training time, the average training time of
the attention-only model for the first 100 epochs on PPI
is 36.5s and that of GaAN is 37.0s when we run on the

machine with a single TitanX GPU and Intel Xeon CPU
3.70 GHz. This shows that the computational overhead
of adding the gates is negligible.

5.5 ABLATION ANALYSIS

We ran some ablation experiments to analyze the per-
formance of different graph aggregators when different
hyperparameters were used. We also visualized the gates
of the GaAN model.

Effect of the number of attention heads and the sam-
ple size We compare the performance of the aggre-
gators when a different number of attention heads and
sampling strategies are used. Results are shown in Ta-
ble 4. We find that attention-based models consistently
outperform pooling and pairwise sum based models with
the fewer number of parameters, which demonstrates the
effectiveness of the attention mechanism in this task.
Moreover, GaAN consistently beats the multi-head at-
tention model with the same number of attention heads
K. This proves that adding additional gates to control
the importance of the attention heads is beneficial to the
final classification performance. From the last two row
blocks of Table 4, we note that increasing the number of
attention heads will not always produce better results on
Reddit. In contrast, on PPI, the larger the K, the better
the prediction results. Also, we can see steady improve-
ment with larger sampling sizes, which is consistent with
the observation in (Hamilton et al., 2017a).

Effect of output dimensions in the PPI dataset We
changed the output dimension to be 64, 96, and 128 in the
models for training in the PPI dataset. The test F1 score
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(a) Performance of different models with a varying number of
output dimensions on PPI.

(b) Visualization of 8 gate values of 5 example nodes on Reddit.
Each row represents a learned gate vector for one node.

Figure 3: Ablation analysis on PPI and Reddit

is shown in Figure 3a. All multi-head models have K=8.
We find that the performance becomes better for larger
output dimensions and the proposed GaAN consistently
outperforms the other models.

Visualization of gate values In Figure 3b, we visual-
ized the gate values of five different nodes output by the
GaAN-K8 model trained on the Reddit dataset. It illus-
trates the diversity of the learned gate combinations for
different nodes. In most cases, the gates vary across at-
tention heads, which shows that the gate-generation net-
work can be learned to assign different importance to dif-
ferent heads.

6 TRAFFIC SPEED FORECASTING

6.1 GRAPH GRU

Following (Lin et al., 2017), we formulate traffic speed
forecasting as a spatiotemporal sequence forecasting
problem where the input and the target are sequences
defined on a fixed spatiotemporal graph, e.g., the road
network. To simplify notations, we denote Y =
ΓΘ(X,Z;G) as applying the γ aggregator for all nodes
in G, i.e., yi = γΘ(x, zNi

). Based on a given graph ag-
gregator Γ, we can construct a GRU-like RNN structure

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

SS

Encoder Decoder

SS

Figure 4: Illustration of the encoder-decoder structure
used in the paper. We use two layers of Graph GRUs
to predict a length-3 output sequence based on a length-
2 input sequence. ‘SS’ denotes the scheduled sampling
step.

Table 5: The Dataset used for traffic speed forecasting.

Data #Nodes #Edges #Timestamps
METR-LA 207 1,515 34,272

using the following equations:

Ut =σ(ΓΘxu (Xt,Xt;G) + ΓΘhu
(Xt ⊕Ht−1,Ht−1;G)),

Rt =σ(ΓΘxr (Xt,Xt;G) + ΓΘhr
(Xt ⊕Ht−1,Ht−1;G)),

H
′
t =h(ΓΘxh

(Xt,Xt;G) + Rt ◦ ΓΘhh
(Xt ⊕Ht−1,Ht−1;G)),

Ht =(1−Ut) ◦H′t + Ut ◦Ht−1.

(6)
Here, Xt ∈ R|V|×di are the input features and Ht ∈
R|V|×do are the hidden states of the nodes at the tth
timestamp. |V| is the total number of nodes, di is the
dimension of the input, and do is the dimension of the
state. Ut and Rt are the update gate and reset gate that
controls how Ht is calculated. G is the graph that defines
the connection structure between all the nodes.

We refer to this RNN structure as Graph GRU (GGRU).
GGRU can be used as the basic building block for
RNN encoder-decoder structure (Lin et al., 2017) to
predict the future K steps of traffic speeds, i.e.,
X̂J+1, X̂J+2, ..., X̂J+K , based on the previous J steps
of observed traffic speeds, i.e., X1,X2, ...,XJ . In the
decoder, we use the scheduled sampling (Bengio et al.,
2015) technique described in (Lin et al., 2017). Fig-
ure 4 illustrates our encoder-decoder structure. When
attention-based aggregators are used, i.e., the multi-head
attention aggregator or our GaAN aggregator, the con-
nection structure in the recurrent step will also be learned
based on the attention process. This can be viewed as
an extension of Trajectory GRU (TrajGRU) (Shi et al.,
2017) on irregular or graph-structured data.

6.2 EXPERIMENTAL SETUP

To evaluate the proposed GGRU model on traffic speed
forecasting, we use the METR-LA dataset from (Li et al.,



Table 6: Performance comparison of different models for traffic speed forecasting on the METR-LA dataset. Models
marked with ‘†’ treat sensor map as a directed graph while other models convert it into an undirected graph. Scores
under “τmin” are the scores at the τ

5 th predicted frame. The last three columns contain the average scores of the 15
min, 30 min, and 60 min forecasting horizons.

Models / T 15 min 30 min 60 min Average
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

FC-LSTM (Li et al., 2018) 3.44 6.30 9.6% 3.77 7.23 10.9% 4.37 8.69 13.2% 3.86 7.41 11.2%
GCRNN (Li et al., 2018) 2.80 5.51 7.5% 3.24 6.74 9.0% 3.81 8.16 10.9% 3.28 6.80 9.13%
DCRNN† (Li et al., 2018) 2.77 5.38 7.3% 3.15 6.45 8.8% 3.60 7.60 10.5% 3.17 6.48 8.87%
Avg Pool 2.79 5.42 7.26% 3.20 6.52 8.84% 3.69 7.69 10.73% 3.22 6.54 8.94%
Max Pool 2.77 5.36 7.21% 3.18 6.45 8.78% 3.69 7.73 10.80% 3.21 6.51 8.93%
Pairwise + Sigmoid 2.76 5.36 7.14% 3.18 6.46 8.72% 3.70 7.73 10.77% 3.22 6.52 8.88%
Pairwise + Tanh 2.76 5.34 7.14% 3.18 6.46 8.73% 3.70 7.73 10.73% 3.21 6.51 8.87%
Attention-only 2.74 5.33 7.09% 3.16 6.45 8.69% 3.67 7.61 10.77% 3.19 6.49 8.85%
GaAN 2.71 5.24 6.99% 3.12 6.36 8.56% 3.64 7.65 10.62% 3.16 6.41 8.72%

2018). The nodes in the dataset represent sensors mea-
suring traffic speed and edges denote proximity between
sensor pairs measured by road network distance. The
sensor speeds are recorded every five minutes. Com-
plete dataset statistics are given in Table 5. We follow (Li
et al., 2018)’s way to split the dataset. The first 70% of
the sequences are used for training, the middle 10% are
used for validation, and the final 20% are used for test-
ing. We also use the same evaluation metrics as in (Li
et al., 2018) for evaluation, including Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and
Mean Absolute Percentage Error (MAPE). A sequence
of length 12 is used as the input to predict the future traf-
fic speed in one hour (12 steps).

6.3 MAIN RESULTS

We compare six variations of the proposed GGRU ar-
chitecture with three baseline models, including fully-
connected LSTM, GCRNN, and DCRNN (Li et al.,
2018). We use the same set of six aggregators as in the
inductive node classification experiment to construct the
GGRU and we use two layers of GGRUs with the state
dimension of 64 both in the encoder and the decoder. For
attention based models, we set K = 4, da = 16, and
dv = 16. For GaAN, we set dm = 64 and only use
max pooling in the gate-generation network. For pooling
based aggregators, we set dv = 128. For pairwise sum
aggregators, we set K = 4, da = 32, and dv = 16.

Since the road map is directed and our model does not
deal with edge information, we first convert the road map
into an undirected graph and use it as the G in Eqn. (6).
All models are trained by minimizing MAE loss with
Adam optimizer. The initial learning rate is set to 0.001
and the batch-size is 64. We use the same scheduled sam-

pling strategy as in (Li et al., 2018). Table 1 shows the
comparison of different approaches for 15 minutes, 30
minutes and 1 hour ahead forecasting on both datasets.

The scores for 15 minutes, 30 minutes, and 1 hour ahead
forecasting as well as the average scores over three fore-
casting horizons are shown in Table 6. For the average
score, we can see that the proposed GGRU models con-
sistently give better results than GCRNN, which models
the traffic network as an undirected graph. Moreover,
the GaAN based GGRU model, which does not use edge
information, achieves higher accuracy than DCRNN,
which uses edge information in the road network.

7 CONCLUSION AND FUTURE WORK

We introduced the GaAN model and applied it to two
challenging tasks: inductive node classification and traf-
fic speed forecasting. GaAN beats previous state-of-the-
art algorithms in both cases. In the future, we plan to ex-
tend GaAN by integrating edge features and processing
massive graphs with millions or even billions of nodes.
Moreover, our model is not restricted to graph learning.
A particularly exciting direction for future work is to ap-
ply GaAN to natural language processing tasks like ma-
chine translation.
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