
Stochastic L-BFGS Revisited: Improved Convergence Rates
and Practical Acceleration Strategies

Renbo Zhao
Dept. ECE, ISEM & Math

National University of Singapore
elezren@nus.edu.sg

William B. Haskell
Dept. ISEM

National University of Singapore
isehwb@nus.edu.sg

Vincent Y. F. Tan
Dept. ECE & Math

National University of Singapore
vtan@nus.edu.sg

Abstract

We revisit the stochastic limited-memory BFGS
(L-BFGS) algorithm. By proposing a new frame-
work for analyzing convergence, we theoreti-
cally improve the (linear) convergence rates and
computational complexities of the stochastic L-
BFGS algorithms in previous works. In addi-
tion, we propose several practical acceleration
strategies to speed up the empirical performance
of such algorithms. We also provide theoretical
analyses for most of the strategies. Experiments
on large-scale logistic and ridge regression prob-
lems demonstrate that our proposed strategies
yield significant improvements via-à-vis compet-
ing state-of-the-art algorithms.

1 INTRODUCTION

In this work, we are interested in the following (uncon-
strained) convex finite-sum minimization problem

min
x∈Rd

[
f(x) ,

1

n

n∑
i=1

fi(x)

]
, (1)

where d and n denote the dimension of decision vector and
the number of component functions respectively. Problems
in the form of (1) play important roles in machine learning
and signal processing. One important class of such prob-
lems is the empirical risk minimization (ERM) problem,
where each fi assumes the form

fi(x) , `(aTi x, bi) + λR(x). (2)

In (2), ` : R×R→ R+ denotes a smooth loss function,R :
Rd → R+ a smooth convex regularizer (e.g., Tikhonov),
λ ≥ 0 the regularization weight and {(ai, bi)}ni=1 ⊆ Rd+1

the set of feature-response pairs. Depending on the form
of ` and R, many important machine learning problems are
special cases of ERM, such as logistic regression, ridge re-
gression and soft-margin support vector machine.

We focus on the case where both n and d are large, and f
is ill-conditioned (i.e., the condition number of f is large).1

In the context of ERM, this means the dataset {(ai, bi)}ni=1

that defines (1) has large size and the feature vectors ai
have high ambient dimension. However, the points typi-
cally belong to a low-dimensional manifold. Such a setting
is particularly relevant in the big-data era, due to unprece-
dented data acquisition abilities.

When n is large, the computational cost incurred by the
batch optimization methods (both first- and second-order)
are prohibitive. Therefore, stochastic (randomized) opti-
mization methods have become very popular in this setting.
At each iteration, only a subset of component functions,
rather than all of them, are processed. In this way, much
more progress can be made towards global optima in the
time that only allows batch methods to take a single step.
When d is large, Newton- or quasi-Newton-based meth-
ods (both batch and stochastic) incur both high computa-
tional and storage complexities. Consequently only first-
order and limited-memory quasi-newton methods (e.g., L-
BFGS (Liu and Nocedal, 1989)) are feasible in this setting.

When both n and d are large, as in our setting, most
of research efforts have been devoted to stochastic first-
order methods, which include stochastic gradient de-
scent (SGD) (Bottou, 1998; Bottou and LeCun, 2004)
and its variance-reduced modifications (Defazio et al.,
2014; Harikandeh et al., 2015; Johnson and Zhang, 2013;
Schmidt et al., 2017). However, these methods do not make
use of the curvature information. This limits their abil-
ities to find highly accurate solutions for ill-conditioned
problems. In order to incorporate the curvature informa-
tion in the limited-memory setting, recently much progress
have been made toward developing stochastic L-BFGS al-
gorithm. A partial list of such works includes Bordes et al.
(2009); Byrd et al. (2016); Gower et al. (2016); Mokhtari
and Ribeiro (2015); Moritz et al. (2016); Schraudolph et al.
(2007); Sohl-Dickstein et al. (2014). Among them, the
SQN method (Byrd et al., 2016) innovatively makes use of

1In this work, the condition number of a (strongly) convex
function refers to that of its Hessian.

the subsampled Hessian-vector products to form the correc-
tion pairs (as opposed to using difference of stochastic gra-
dients) and achieves better results than previous methods.
However, the convergence rate is sublinear (in the strongly-
convex case), similar to that of SGD. Later, Moritz et al.
(2016) combines this method with stochastic variance-
reduced gradient (SVRG) and proves linear convergence of
the resulting algorithm. Gower et al. (2016) maintains the
structure of this algorithm but incorporates the block BFGS
update to collect more curvature information in the opti-
mization process. Although the convergence rate of this
new method remains similar to that in Moritz et al. (2016),
experimental results have demonstrated practical speedup
introduced by the block BFGS update.

1.1 MOTIVATIONS AND CONTRIBUTIONS

Our work can be motivated from both theory and prac-
tice. In terms of theory, although linear convergence has
been shown for both algorithms in Moritz et al. (2016)
and Gower et al. (2016), the convergence rates (and hence
computational complexities) therein can be potentially fur-
ther improved.2 In terms of practice, in addition to block
BFGS update, there may exist several other practical strate-
gies that can potentially further accelerate3 the algorithm in
Moritz et al. (2016). Based on these two aspects, our work
makes the following contributions.

1) We propose a coordinate transformation framework to
analyze the stochastic L-BFGS-type algorithms in Moritz
et al. (2016) and Gower et al. (2016). Our framework
yields a much improved convergence rate and computa-
tional complexity. Indeed, our approach can be applied
to many other stochastic second-order algorithms as well
(e.g., SQN algorithm in Byrd et al. (2016)); thus it has great
generalizability and wide potential impacts. The essential
idea of our method is to unify the analysis of stochastic
first-order and second-order method, as a result, it opens
new avenues of designing and analyzing other variants
of stochastic second-order algorithms based on their first-
order counterparts. Among these variants, two important
examples include proximal (quasi-)Newton methods and
momentum-based accelerated (quasi-)Newton methods.

2) We derive two novel technical lemmas on variance bound
of stochastic gradient with nonuniform mini-batch sam-
pling and spectral bound of the sequence of metric ma-
trices {Hr}r≥0 in stochastic L-BFGS algorithms. These
two lemmas are of independent interest. For example, the
lemma on the spectral bound is equally applicable to batch
L-BFGS algorithms.

2The analysis method in Gower et al. (2016) mainly follows
that in Moritz et al. (2016), so we treat the analyses in both works
in a unified manner.

3In this work, we refer “acceleration” to general strategies that
speed up the algorithm, not necessarily the ones based on momen-
tum methods.

3) We conduct a systematic computational complexity anal-
ysis for the stochastic L-BFGS algorithms. To the best
of our knowledge, such an analysis is among the first for
stochastic L-BFGS methods. Similar to our convergence
analysis framework, our complexity analysis method can
be easily generalized to other stochastic (quasi-)Newton
methods as well.

4) We propose several practical acceleration strategies to
speed up the convergence of the stochastic L-BFGS algo-
rithm in Moritz et al. (2016). We demonstrate the efficacy
of our strategies through numerical experiments on logis-
tic and ridge regression problems. Theoretically, we also
prove linear convergence for most strategies.

2 PRELIMINARIES

Notations. We use lowercase, bold lowercase and bold up-
percase letters to denote scalars, vectors and matrices re-
spectively. For a matrix U ∈ Rm1×m0 , we denotes its
(p, q)-th entry as upq . For a function f : Rm1 → Rm2 ,
define a function f ◦ U such that (f ◦ U)(z) , f(Uz),
for any z ∈ Rm0 . We use N to denote the set of natu-
ral numbers excluding zero. For any n ∈ N, we define
[n] , {1, . . . , n} and (n] , {0, 1, . . . , n}. Accordingly,
define A(n] , {A0, . . . ,An}. We use ‖·‖ to denote both
the `2 norm of a vector and the spectral norm of a ma-
trix. We use B and H (with subscripts and superscripts) to
denote the approximate Hessian and approximate inverse
Hessian in L-BFGS algorithms respectively, following the
convention in Nocedal and Wright (2006). H is also known
as the metric matrix (Goldfarb, 1970). Sections and lem-
mas with indices beginning with ‘S’ will appear in the sup-
plemental material.

Assumptions. We make two blanket assumptions on the
component functions {fi}i∈[n].

Assumption 1. For each i ∈ [n], fi is convex and twice
differentiable on Rd. For ERM problems (2), we assume
these two properties are satisfied by the loss function ` in
its first argument on R and by the regularizer R on Rd.

Assumption 2. For each i ∈ [n], fi is µi-strongly convex
and Li-smooth on Rd, where 0 < µi ≤ Li.

Remark 1. Assumptions 1 and 2 are standard in the anal-
ysis of second-order optimization methods, for both deter-
ministic and stochastic cases. The strong convexity of fi
in Assumption 2 ensures positive curvature at any point in
Rd, which in turn guarantees the well-definedness of the
BFGS update. As a common practice in the literature (Byrd
et al., 2016; Moritz et al., 2016), this condition can typi-
cally be enforced by adding a strongly convex regularizer
(e.g., Tikhonov) to fi. Due to the strong convexity, (1) has
a unique solution, denoted as x∗.

3 ALGORITHM

We present the pseudo-code of the algorithm in Moritz
et al. (2016) in Algorithm 1. (Our acceleration strategies
for this algorithm will be shown and discussed in Sec-
tion 6.) In this algorithm, s denotes the outer iteration
index, t the inner iteration index and r the index of met-
ric matrices {Hr}r≥0. We use xs,t and xs to denote an
inner iterate and outer iterate respectively. Each outer it-
eration consists of m inner iterations. The only modifi-
cation that we make on the original algorithm in Moritz
et al. (2016) is sampling the index set Bs,t ⊆ [n] of size
b with replacement nonuniformly. Specifically, the ele-
ments in Bs,t are sampled i.i.d. from a discrete distribu-
tion P , (p1, . . . , pn), such that for any i ∈ [n], pi =
Li/
∑n
i=1 Li. As will be seen in Lemma 3, compared to

uniform sampling, nonuniform sampling leads to a better
variance bound on the stochastic gradient vs,t. Using Bs,t
and ∇f(xs), we then compute vs,t according to (5) in Al-
gorithm 1, where for any x ∈ Rd,

∇fBs,t(x) ,
1

b

∑
i∈Bs,t

1

npi
∇fi(x). (3)

Next we compute the search direction formed by the prod-
uct of the metric matrix Hr and vs,t. In the limited-
memory setting, we do not store Hr, but only a set Hr,
which consists of M ′ , min{r,M} recent correction
pairs {(sj ,yj)}rj=r−M ′+1. The correction pairs are con-
structed from the averaged past iterates {xr}r≥0 (defined
in line 13), and thus contains the “smoothed” curvature in-
formation in recent iterates. Following Byrd et al. (2016),
in computing yr, we first sample an index set Tr ⊆ [n]
of size bH uniformly without replacement, and then let
yr = ∇2fTr (xr)sr, where

∇2fTr (xr) ,
1

bH

∑
i∈Tr

∇2fi(xr), (4)

denotes the sub-sampled Hessian at xr.

In computing Hrvs,t, a direct approach would be to
compute Hr first and form the product. Computing
Hr involves applying M ′ BFGS updates to the matrix
H

(r−M ′)
r , (sTr yr)/ ‖yr‖

2
I using {(sj ,yj)}rj=r−M ′+1.

For each k ∈ {r −M ′ + 1, . . . , r}, the update is

H(k)
r =

(
I− yksk

T

ykT sk

)
H(k−1)
r

(
I− skyk

T

ykT sk

)
+

sksk
T

ykT sk
.

Finally we set Hr = H
(r)
r . Instead of using this direct

approach, we adopt the two-loop recursion algorithm (No-
cedal and Wright, 2006, Algorithm 7.4) to compute Hrvs,t
as a whole. This approach has the same effect as the direct
one, but with much reduced computation.

At the end of each outer iteration, the starting point of next
outer iteration, xs+1 is either uniformly sampled (option

Algorithm 1 Stochastic L-BFGS Algorithm with Nonuni-
form Mini-batch Sampling

1: Input: Initial decision vector x0, mini-batch sizes b
and bH, parameters m, M and Υ, step-size η, termina-
tion threshold ε

2: Initialize s := 0, r := 0, x0 = 0, H0 := I,H0 := ∅
3: Repeat
4: Compute a full gradient gs , ∇f(xs)
5: xs,0 := xs

6: for t = 0, 1, . . . ,m− 1
7: Sample a set Bs,t with size b
8: Compute a variance-reduced gradient

vs,t := ∇fBs,t
(xs,t)−∇fBs,t

(xs) + gs (5)

9: Compute Hrvs,t fromHr and vs,t
10: xs,t+1 := xs,t − ηHrvs,t
11: if sm+ t > 0 and (sm+ t) ≡ 0 mod Υ
12: r := r + 1
13: xr := 1

Υ

∑t
l=t−Υ+1 xs,l

14: Sample a set Tr with size bH
15: sr := xr − xr−1, yr := ∇2fTr (xr)sr
16: UpdateHr := {(sj ,yj)}j=r−M ′+1

17: end if
18: end for
19: Option I: Sample τs uniformly randomly from [m]

and set xs+1 := xs,τs
20: Option II: xs+1 := 1

m

∑m
t=1 xs,t

21: s := s+ 1
22: Until

∣∣f(xs)− f(xs−1)
∣∣ < ε

23: Output: xs

I) or averaged (option II) from all the past inner iterates
{xs,t}t∈[m]. As shown in Theorem 1, these two options
can be analyzed in a unified manner.

4 CONVERGENCE ANALYSIS

4.1 DEFINITIONS

Let {ij}j∈[n] and {ij}j∈[n] be permutations of [n] such that
µmin , µi1 ≤ · · · ≤ µin and Li1 ≤ · · · ≤ Lin , Lmax.
Given any ñ ∈ [n], define

µñ ,
1

ñ

ñ∑
j=1

µij and Lñ ,
1

ñ

n∑
j=n−ñ+1

Lij . (6)

Accordingly, define κmax , Lmax/µmin and κñ ,
Lñ/µñ. In particular, define µ , µn, L , Ln and κ ,
L/µ. We also define a filtration {Fs,t}s≥0,t∈(m−1] such
that Fs,t contains all the information up to the time (s, t).
Formally, Fs,t , σ({τj}s−1

j=0 ∪ {Bi,j}i∈(s−1],j∈(m−1] ∪
{Bs,j}t−1

j=0 ∪ {Tj}
b(sm+t)/Lc
j=0), where σ

(
{xj}nj=1

)
denotes

the σ-algebra generated by random variables {xj}nj=1. We
also define Fs , Fs,0.

To introduce our coordinate transformation framework, we
define some transforms of variables appearing in Algo-
rithm 1. Specifically, for any s, t, r ≥ 0, define x̃s,t,r ,

H
−1/2
r xs,t, x̃s,r , H

−1/2
r xs, x̃∗r , H

−1/2
r x∗ and ṽs,t,r ,

H
1/2
r vs,t.4 We also define transformed functions f̃i,r ,

fi ◦H1/2
r and f̃r , 1

n

∑n
i=1 f̃i,r, for any i ∈ [n] and r ≥ 0.

4.2 PRELIMINARY LEMMAS

From the definitions of transformed variables and functions
in Section 4.1, we immediately have the following lemmas.

Lemma 1. For any s, t, r ≥ 0 and i ∈ [n], we have

f̃i,r(x̃s,t,r) = fi(xs,t), (7)

∇f̃i,r(x̃s,t,r) = H1/2
r ∇fi(xs,t), (8)

∇2f̃i,r(x̃s,t,r) = H1/2
r ∇fi(xs,t)H1/2

r . (9)

Lemma 2. If there exist 0 < γ′ ≤ Γ′ such that γ′I �
Hr � Γ′I for all r ≥ 0, then for any i ∈ [n] and r ≥ 0, f̃i,r
is twice differentiable, (µiγ

′)-strongly convex and (LiΓ
′)-

smooth on Rd. Consequently, f̃r is twice differentiable,
(γ′µ)-strongly convex and (Γ′L)-smooth on Rd.

Next we derive two other lemmas that will not only be used
in the analysis later, but have potential to be applied to more
general problem settings. Specifically, Lemma 3 can be
applied to any stochastic optimization algorithms based on
SVRG and Lemma 4 can be applied to any finite-sum min-
imization algorithms based on L-BFGS methods (not nec-
essarily stochastic in nature). The proofs for Lemmas 3 and
4 are deferred to Sections S-3 and S-4 respectively.

Lemma 3 (Variance bound of vs,t). In Algorithm 1, we
have EBs,t [vs,t|Fs,t] = ∇f(xs,t) and

EBs,t

[
‖vs,t −∇f(xs,t)‖2 |Fs,t

]
≤ 4L

b
(f(xs,t)− f(x∗) + f(xs)− f(x∗)) . (10)

Remark 2. In previous works (Gower et al., 2016; Moritz
et al., 2016), a uniform mini-batch sampling of Bs,t was
employed, and different variance bounds of vs,t were de-
rived. In Moritz et al. (2016, Lemma 6), the bound was

4Lmax (f(xs,t)− f(x∗) + f(xs)− f(x∗)) . (11)

In Gower et al. (2016, Lemma 2), this bound was slightly
improved to be

4Lmax((f(xs,t)− f(x∗))

+ (1− 1/κmax) (f(xs)− f(x∗))). (12)

4As will be shown in Lemma 4, for any r ≥ 0, Hr � γI for
some γ > 0. Therefore, H1/2

r (and H
−1/2
r) are well-defined.

However, both of these bounds fail to capture the depen-
dence on the mini-batch size b. In contrast, in this work
we consider a nonuniform mini-batch sampling (with re-
placement). Due to division by b and L ≤ Lmax (indeed
in many cases, L � Lmax), our bound in (10) is much su-
perior to (11) and (12). As will be seen in Theorem 1, our
better bound (10) leads to a faster (linear) convergence rate
of Algorithm 1.
Lemma 4 (Uniform Spectral Bound of {Hr}r≥0). The
spectra of {Hr}r≥0 are uniformly bounded, i.e., for each
r ≥ 0, γI � Hr � ΓI, where5

γ ,
1

(M + 1)LbH
and Γ ,

κM+1
bH

µbH(κbH − 1)
. (13)

Remark 3. In Byrd et al. (2016) and Moritz et al. (2016),
the authors make use of a classical technique in Liu and
Nocedal (1989) to derive a different uniform spectral bound
of {Hr}r≥0. Their technique involves applying tr(·) and
det(·) recursively to the BFGS update rule

B(k)
r = B(k−1)

r − B
(k−1)
r sksk

TB
(k−1)
r

skTB
(k−1)
r sk

+
yky

T
k

sTk yk
, (14)

where B
(k)
r , (H

(k)
r)−1 denotes the approximate Hessian

matrix at step k in the reconstruction of Br , (Hr)
−1.

The lower and upper bounds derived by this technique are

γ̃ =
1

(d+M)Lmax
and Γ̃ = (d+M)d+M−1κ

d+M−1
max

µmin

respectively. As will be seen in Proposition 1, the overall
computational complexity of Algorithm 1 heavily depends
on the estimated (uniform) condition number of {Hr}r≥0.
Therefore, it is instructive to compute this quantity for both
(γ,Γ) and (γ̃, Γ̃) as

κH ,
Γ

γ
= (M + 1)

κM+2
bH

κbH − 1
≈ (M + 1)κM+1

bH
, (15)

κ̃H ,
Γ̃

γ̃
= (M + d)M+dκM+d

max , (16)

where the approximation in (15) follows from κbH � 1
(see Footnote 5). By comparing (15) and (16), we notice
our estimate for the condition number of {Hr}r≥0, namely
κH, is smaller than those in Byrd et al. (2016) and Moritz
et al. (2016), namely κ̃H, in several aspects. First, κH does
not grow (exponentially) with the data dimension d. Sec-
ond, κH depends on κbH , which is usually much smaller
than κmax. Third, even if we set d = 1 in (16), the factor
M +1 in (15) is much smaller than the factor (M +1)M+1

in (16). As a result, our improved estimate of the condition
number of {Hr}r≥0 will lead to a much better computa-
tional complexity estimate (see Proposition 1).

5We assume κbH > 1 for any bH ∈ [n] since we focus on the
setting where f is ill-conditioned, i.e., κbH ≥ κ� 1. If κbH = 1

for some bH ∈ [n], then Γ = (κM
bH

+M)/µbH
and γ remains the

same. The proof for this case can be straightforwardly adapted
from that in Section S-4.

4.3 MAIN RESULT

Theorem 1 presents our main convergence result. For the
complete proof, we refer readers to Section S-2.

Theorem 1. In Algorithm 1, if we choose η <
min{b/12, 1}/(ΓL) and m sufficiently large, then with ei-
ther option I or II, we have

E [f(xs)− f(x∗)] ≤ ρs
(
f(x0)− f(x∗)

)
, where (17)

ρ =
b

γµmη(b− 4ηΓL)
+

4ηΓL

b− 4ηΓL

(
1 +

1

m

)
< 1.

(18)

Remark 4. We compare our linear convergence rate ρ
in (18) with those in Moritz et al. (2016) and Gower et al.
(2016). Since the convergence rates in these two works are
almost the same, we use the rate in Moritz et al. (2016) for
comparison. The linear rate ρ̃ in Moritz et al. (2016) equals

1

2γ̃µminmη(1− ηΓ̃Lmaxκmaxκ̃H)
+

ηΓ̃Lmaxκmaxκ̃H

1− ηΓ̃Lmaxκmaxκ̃H

.

For simplicity, if we let b = 1, µmin = µ, Lmax = L,
γ̃ = γ, Γ̃ = Γ and ignore other constant factors,6 we no-
tice that there is an additional multiplicative factor κκH

associated with ηΓL in ρ̃. As a result ρ̃ > ρ. A more
direct way to observe the detrimental effects of this addi-
tional κκH is to compare the computational complexities
resulting from ρ and ρ̃. See Remark 6 for details. The
reason that we manage to avoid this factor in our rate ρ
is precisely because we adopt the coordinate transforma-
tion framework in our analysis (see proof sketch below).
Specifically, by absorbing the sequence of metric matri-
ces {Hr}r≥0 into decision vectors and functions, we are
able to proceed through bounding the (expected squared
Euclidean) distance between x̃s,t+1,r and x̃∗r , instead of di-
rectly bounding f(xs,t+1) via the smoothness property of
f (cf. proof of Theorem 7 in Moritz et al. (2016)). Thus in
our analysis, we avoid the additional appearance of L and
Γ (which leads to the additional factor κκH).

Proof Sketch. Fix an outer iteration s and consider an
inner iteration t. Define r , b(sm+ t)/Lc,7 then the iter-
ation in (10) becomes

x̃s,t+1,r = x̃s,t,r − ηṽs,t,r. (19)

From Lemmas 1, 3 and 4, we have EBs,t
[ṽs,t,r| Fs,t] =

∇f̃r(x̃s,t,r) and

EBs,t

[
‖ṽs,t,r −∇f̃r(x̃s,t,r)‖2

∣∣∣Fs,t] ≤ 4ΓL

b
(f̃r(x̃s,t,r)

− f̃r(x̃∗r) + f̃r′(x̃
s,r′)− f̃r′(x̃∗r′)), (20)

6However, bear in mind that by doing all these substitutions,
ρ̃ has already been much improved.

7To avoid cluttered notations, we omit showing the depen-
dence of r on s and t.

where r′ , bsm/Lc. Define δ̃s,t,r , ṽs,t,r −∇f̃r(x̃s,t,r).
Using η ≤ 1/(ΓL) and Lemma 2, we are able to show that

‖x̃s,t+1,r − x̃∗r‖
2 ≤ ‖x̃s,t,r − x̃∗r‖

2 − 2η(f̃r(x̃s,t+1,r)

− f̃r(x̃∗r)) + 2η2‖δ̃s,t,r‖2 − 2η
〈
δ̃s,t,r, x̃s,t,r − x̃∗r

〉
.

Taking expectation w.r.t. Bs,t and using (S-8), we have

EBs,t

[
‖x̃s,t+1,r − x̃∗r‖

2
+2η(f̃r(x̃s,t+1,r)− f̃r(x̃∗r))

∣∣∣Fs,t]
≤ ‖x̃s,t,r − x̃∗r‖

2
+

8

b
ΓLη2(f̃r(x̃s,t,r)− f̃r(x̃∗r)

+ f̃r′(x̃
s,r′)− f̃r′(x̃∗r′)). (21)

Telescoping (S-20) over t ∈ (0,m−1] and noting that both
options I and II in Algorithm 1 yield

1

m

m∑
t=1

EBs,(t−1]

[
f̃r(x̃s,t,r)− f̃r(x̃∗r)

∣∣∣Fs,t−1

]
≥ EBs,(m−1]

[
f̃r′′(x̃

s+1,r′′)− f̃r′′(x̃∗r′′)
∣∣∣Fs] , (22)

where r′′ , b(s+ 1)m/Lc, we have

2mη(1− 4

b
ΓLη)EBs,(m−1]

[
f̃r′′(x̃

s+1,r′′)−f̃r′′(x̃∗r′′)
∣∣∣Fs]

≤ ‖x̃s,r
′
− x̃∗r′‖2+

8

b
ΓLη2(1 +m)(f̃r′(x̃

s,r′)−f̃r′(x̃∗r′)).

Using (γµ)-strong convexity of f̃r′ , we can derive the
bound ‖x̃s,r′ − x̃∗r′‖2 ≤ 2

γµ (f̃r′(x̃
s,r′)−f̃r′(x̃∗r′)). Finally,

using Lemma 1 and rearranging, we have

E
[
f(xs+1)− f(x∗)

∣∣Fs] ≤ ρ(f(xs)− f(x∗)). (23)

Taking expectation on both sides, we reach (17). �

5 COMPLEXITY ANALYSIS

In this section we provide a systematic framework for an-
alyzing the computational complexity of the stochastic L-
BFGS algorithm in Algorithm 1. Note that our framework
can be easily generalized to other stochastic second-order
algorithms, e.g., SQN algorithm in Byrd et al. (2016). To
begin with, we make two additional assumptions.
Assumption 3. For any x ∈ Rd and i ∈ [n], the gradient
∇fi(x) can be computed in O(d) operations.8

Assumption 4. For any x,y ∈ Rd and i ∈ [n], the
Hessian-vector product ∇2fi(x)y can be computed in
O(d) operations.
Remark 5. These two assumptions are naturally satisfied
for ERM problems (2) with Tikhonov regularization. For
these problems, R(x) = 1

2 ‖x‖
2 and

∇`(aTi x, bi) = `′(aTi x, bi)ai + λx, (24)

∇2`(aTi x, bi)y = `′′(aTi x, bi)(a
T
i y)ai + λy, (25)

8An operation refers to evaluation of an elementary function,
such as addition, multiplication and logarithm.

where `′(·, ·) and `′′(·, ·) are first and second derivatives of
`(·, ·) w.r.t. the first argument. We easily see that the right-
hand sides of both (24) and (25) can be computed in O(d)
operations.

From Algorithm 1, we observe that its total computational
cost C can be split into three parts. The first part C1 in-
volves computing the variance-reduced gradient vs,t in (5),
the second part C2 involves computing Hrvs,t (via two-
loop recursion) in line 9, and the third part C3 involves
computing the correction pair (sr,yr) in line 15.

Proposition 1. Assume Assumptions 1 to 4. In Algorithm 1,

C1 = O ((n+ κκH)d log (1/ε)) , (26)
C2 = O (κκHd log (1/ε)) , (27)
C3 = O (d log (1/ε)) . (28)

Thus the total computational cost C ,
∑3
i=1 Ci equals

O ((n+ κκH) d log (1/ε)) . (29)

Proof. We leverage techniques that have become standard
in the SVRG literature (e.g., Xiao and Zhang (2014)).
In (18), if we choose η = θb/(ΓL) for some 0 < θ < 1/12,
m = θ′κκH/b for some sufficiently large positive constant
θ′, and use 1 + 1/m ≤ 2, then ρ = 1

θ′θ(1−4θ) + 8θ
1−4θ < 1.

As a result, the required number of outer iterations to
achieve ε-suboptimality is O(log(1/ε)). Thus (26) follows
from Assumption 3 and that 2mb gradients (of component
functions) are computed in each inner iteration. If we fur-
ther choose M = Θ(b), then (27) follows from the fact
that two-loop recursion can be done in O(Md) time (No-
cedal and Wright, 2006, Chapter 7). Lastly, if we choose
bH = Θ(Υ), then we obtain (28) using Assumption 4. �

Remark 6. Following a similar argument, we can deduce
the total complexity estimate C̃ based on the linear rate ρ̃
(see Remark 4) derived in Moritz et al. (2016) as

C̃ = O
((
n+ b(κmaxκ̃H)2

)
d log (1/ε)

)
. (30)

Compared with C̃, we observe that our complexity esti-
mate C in (29) is much better, in several aspects. First,
the dependence of C on the condition number κκH is lin-
ear, rather than quadratic. The quadratic dependence of
κmaxκ̃H in C̃ is precisely caused by the additional κmaxκ̃H

in ρ̃ (see Remark 4). Second, C is independent of the min-
batch size b. The appearance of b in C̃ is a result of the
loose bound on variance of vs,t (cf. (11) and (12)). Third,
the condition number κκH in C is much more smaller than
κmaxκ̃H in C̃ for ill-conditioned problems. This is a result
of non-uniform sampling of Bs,t and our improved bound
on the spectra of {Hr}r≥0 (see Lemma 4).
Remark 7. As our coordinate transformation framework
unifies the design and analysis of stochastic first- and
second-order algorithms, we believe that momentum-based

acceleration techniques for stochastic first-order meth-
ods (Allen-Zhu, 2016; Lin et al., 2015) can be applied to
Algorithm 1 as well. (Details are left to future work.) In
this case, the dependence on κκH in C may be further im-
proved to

√
κκH (Allen-Zhu, 2016).

6 ACCELERATION STRATEGIES

In this section, we propose three practical acceleration
strategies. We follow the notations in Section 3 and Algo-
rithm 1. As will be shown in Section 7.1, all of these strate-
gies result in faster convergence in practice. For first and
second strategies, we also provide their theoretical analyses
in Propositions 2 and 3 respectively. See Sections S-5 and
S-6 for the proofs of these two propositions.

6.1 GEOMETRIC SAMPLING AND AVERAGING

Instead of choosing xs+1 according to option I or II in Al-
gorithm 1, inspired by Konečný and Richtárik (2013), we
can introduce a “forgetting” effect by considering two other
sampling or averaging schemes:

option III: Sample τs randomly from [m] according to
the distribution Q , (βm−1/c, βm−2/c, . . . , 1/c) and set
xs+1 := xs,τs ,

option IV: xs+1 := 1
c

∑m
t=1 β

m−txs,t,

where 0 < β ≤ 1 − ηγµ < 1 and the normalization con-
stant c ,

∑m
t=1 β

m−t. Since β ∈ (0, 1), we observe that
in both options III and IV, more recent iterates (i.e., iterates
xs,t with larger indices t) will have larger contributions to
xs+1. Theoretically, these two schemes can be analyzed in
a unified manner, as shown in the following proposition.

Proposition 2. In Algorithm 1, if we choose η <
min{b/12, 1}/(ΓL) and m sufficiently large, then with ei-
ther option III or IV, we have

E [f(xs)− f(x∗)] ≤ ρs
(
f(x0)− f(x∗)

)
, where (31)

ρ ,
b

γµc′η
(
b− 4ηΓL/(1− ηγµ)

)
+

4ηΓL

b− 4ηΓL/(1− ηγµ)

(
1 +

1

c′

)
< 1 (32)

and c′ , c/(1− ηγµ)m.

Remark 8. In the literature (Gower et al., 2016; Moritz
et al., 2016), usually option I or II (in Algorithm 1) is an-
alyzed theoretically to prove that the stochastic L-BFGS
algorithms therein converge linearly. However, for faster
convergence in practice, xs+1 is chosen to be the last in-
ner iterate xs,m. However, the latter is not amenable to
linear convergence analysis. This gap between theory and
practice is filled in by our geometric sampling or averag-
ing scheme, i.e., option III or IV. Specifically, as shown in

Figure 2, our scheme not only yields linear convergence in
theory, but also performs as well as the “last inner iterate”
scheme in practice.

6.2 SUBSAMPLED GRADIENT STABILIZATION

In Algorithm 1, at the beginning of each outer iteration s,
we compute a full gradient gs to stabilize the subsequent
(inner) iterations. Inspired by Harikandeh et al. (2015), we
propose a strategy that only computes a subsampled gradi-
ent g̃s at the start of each outer iteration s. Specifically, we
uniformly sample a subset B̃s of [n] with size b̃s without
replacement and then form g̃s , (1/b̃s)

∑
i∈B̃s
∇fi(xs).

The size of B̃s, namely b̃s, increases with the index s

until it reaches n. By judiciously choosing b̃s, we can
show that the resulting algorithm still enjoys linear con-
vergence with rate ρ, when integrated with the geometric
sampling/averaging scheme in Section 6.1. Before we for-
mally state this result in Proposition 3, we first make an
assumption in additional to Assumptions 1 and 2.

Assumption 5. The inner iterates {xs,t}s≥0,t∈[m] gener-
ated by the modified algorithm in Section 6.2 are bounded
almost surely, i.e., there exists B < ∞ such that for any
s ≥ 0 and t ∈ [m], ‖xs,t − x∗‖ ≤ B.

Proposition 3. Let Assumptions 1, 2 and 5 hold. For any
ξ > 0 and S ∈ N, and for any s ∈ (S], if we choose
b̃s ≥ b̃s , nS2αs/(S

2αs + (n − 1)ξ2ρ2s), where αs ,
1/n

∑n
i=1 ‖∇fi(xs)‖

2, we have

E [f(xs)− f(x∗)] ≤ ρs
{(

f(x0)− f(x∗)
)

+

(
1 +

1

c′

)
ξb

b− 4ΓLη/(1− ηγµ)

(
κ

1/2
H B + ηΓξ

)}
.

Remark 9. Several remarks are in order. First, we re-
mark that assumptions involving almost sure boundedness
of iterates (e.g., Assumption 5) have appeared many times
in the literature of stochastic optimization (Borkar, 2008;
Harikandeh et al., 2015; Hu et al., 2009) and are always
observed to hold in our experiments. Second, under this as-
sumption, we can show that {αs}s≥0 are bounded almost
surely using Lipschitz continuity of ∇fi, for any i ∈ [n]
in Assumption 2. Consequently, there exists B′ <∞ such
that αs ≤ B′ for any s ≥ 0 and hence

b̃s ≤
nS2B′

S2B′ + (n− 1)ξ2ρ2s (33)

≤ nS2B′

(n− 1)ξ2

(
ρ−2

)s
. (34)

As a sanity check, we observe that (33) increases to n as
s → ∞. By further upper bounding (33) by (34), we
obtain a practical rule to select b̃s. Namely, it suffices
to choose b̃s = min{ζυs, n}, for some constants ζ > 0

and υ > 1. As shown in Section 7, this rule works
well in practice. Third, for any ε > 0, we can choose
S ∈ N such that our algorithm achieves ε-suboptimality,
i.e., E

[
f(xS)− f(x∗)

]
< ε.

6.3 SMALL APPROXIMATE HESSIANS

In additional to high dimensionality and large size, spar-
sity is also a typical attribute for modern data, i.e., many
feature vectors only have a few nonzero entries. For ERM
problems (2) (with Tikhonov regularization), this implies
that the Hessian of f in (1),

∇2f(x) =
1

n

n∑
i=1

`′′(aTi x, bi)(aia
T
i) + λI, (35)

tends to be sparse. Based on this observation, we pro-
pose a strategy that aims to approximate∇2f(x) by several
smaller Hessian matrices and update them efficiently. For
sparse data, collecting curvature information via smaller
dense Hessians can be more effective than directly manip-
ulating the high-dimensional sparse Hessian. As a result,
the algorithm converges faster in practice (see Figure 4).

Before describing our strategy, we first introduce some no-
tations. We partition [n] into K groups, and denote the set
of partitions as P , {P1, . . . ,PK}. For any i ∈ [K],
we define Si , ∪j∈Pi

supp(aj), where supp(aj) denotes
the support of the vector aj . We define di , |Si| and de-
note the elements in Si as {si,1, . . . , si,di}. We also define
Fi =

∑
j∈Pi

fj so that f = 1
n

∑K
i=1 Fi. We define a pro-

jection matrix Ui ∈ Rdi×d such that for any p ∈ [di] and
q ∈ [d], upq = 1 if q = si,p and 0 otherwise. Accordingly,
for any l ∈ Pi, define a function φi,l : Rdi → R such that
fl , φi,l ◦ Ui. Note that φi,l is uniquely defined by the
definition Ui. Also define φi ,

∑
l∈Pi

φi,l. Therefore,

∇2f(x) =
1

n

K∑
i=1

UT
i ∇2φi(Uix)Ui, ∀x ∈ Rd. (36)

We now describe our strategy. In Algorithm 1, for any i ∈
[K] and any j ∈ {r−M ′+1, . . . , r}, define correction pairs
sj,i,Ui(xj − xj−1) and yj,i,

∑
l∈Tr,i∇

2φi,l(Uixj)sj,i,
where Tr,i with size bH/K is uniformly sampled from Pi.
Accordingly, define Sr,i , [sr−M ′+1,i, . . . , sr,i], Yr,i ,
[yr−M ′+1,i, . . . ,yr,i]. Instead of storingHr, we only store
matrices {(Sr,i,Yr,i)}Ki=1. To reconstruct approximation
Br,i for each ∇2φi at Uixr, as usual, we apply M ′ BFGS
updates (S-51) (using the correction pairs stored in Sr,i

and Yr,i) to B
(0)
r,i , δr,iI, where δr,i , ‖yr,i‖2/sTr,iyr,i.

This procedure can be implemented efficiently via a com-
pact representation (Nocedal and Wright, 2006), i.e.,

Br,i = δr,iI−Wr,iM
−1
r,iW

T
r,i, (37)

Mr,i ,

[
δr,iSr,i

TSr,i Lr,i
Lr,i

T −Dr,i

]
, (38)

where Wr,i , [δ
(i)
r S

(i)
r ,Y

(i)
r] and Lr,i and Dr,i are the

lower triangular matrix (excluding diagonal) and diagonal
matrix of STr,iYr,i respectively. Analogous to (36), we de-
fine the approximation of∇2f at Uixr, denoted as Br, as

Br ,
1

n

K∑
i=1

UT
i Br,iUi. (39)

We remark that the strong convexity of each function fi
(see Assumption 2), together with the full-row-rank prop-
erty of Ui, ensures ∇2φi�0 on Rdi . This implies positive
curvature sTr,iyr,i > 0 and hence the positive definiteness
of Br,i, for any r ≥ 0 and i ∈ [K]. As a result, Br � 0
on Rd. This suggests the usage of the conjugate gradient
(CG) method to compute the search direction at time (s, t),
namely ps,t , −B−1

r vs,t, via solving the positive definite
system Brps,t = −vs,t. In particular, for any z ∈ Rd,
Brz and zTBrz in CG can be computed very efficiently
using (37) and (39). For example, zTBrz equals

1

n

K∑
i=1

δr,i ‖zi‖2 − (WT
r,izi)

TM−1
r,i (WT

r,izi), (40)

where zi , Uiz. We observe that the total computational
cost in (40) isO(M ′(M ′

2
+d′)), where d′ ,

∑K
i=1 di. For

sparse data, usually d′ = O(d), so this cost is still linear in
d. In addition, we can compute (40) in parallel across i ∈
[K]. (Intuitively, this amounts to collecting curvature from
each function φi in parallel.) In this case, the computational
time will be greatly reduced to O(M ′(M ′

2
+ maxi di)).

Since typically maxi di � d, the computational savings
from parallel curvature collection can be significant.9

7 NUMERICAL EXPERIMENTS

We consider two ERM problems, including logistic regres-
sion (with Tikhonov regularization) and ridge regression.
For logistic regression, bi ∈ {−1, 1} and

fi(x) , log
(

1 + e−bi(a
T
i x)
)

+
λ

2
‖x‖2 , ∀ i ∈ [n]. (41)

For ridge regression, bi ∈ R and

fi(x) ,
(
aTi x− bi

)2
+
λ

2
‖x‖2 , ∀ i ∈ [n]. (42)

Simple calculations show the smoothness parametersLi for
(41) and (42) are ‖ai‖2 /4+λ and 2 ‖ai‖2 +λ respectively.
In both (41) and (42), we choose λ = 1/n, following the
convention in the literature (e.g., Konečný et al. (2016)).

We test logistic and ridge regression on rcv1.binary
and E2006-tfidf datasets respectively (Chang and Lin,
2011). (In the sequel we abbreviate them as rcv1 and
E2006.) The size-dimension statistics (n, d) for these two

9The memory parameter M (note that M ′ ≤ M) is usually
set to a small constant, e.g., 5 or 10. Thus it has much less effects
on the computational complexity compared to d or maxi di.

datasets are (20242, 47236) and (16087, 15036) respec-
tively. From (35), we define a sparsity estimate of ∇2f
at any x ∈ Rd as σ ,

∣∣supp(AAT + I)
∣∣ /d2, where

A , [a1. . . . ,an] is the data matrix. For rcv1 and
E2006, σ equals 0.0154 and 0.0404 respectively. For both
datasets, the norms of all feature vectors {ai}ni=1 have been
normalized to unit. Since the the smoothness parameters
Li for both ERM problems only depend on ‖ai‖ and λ, we
have Li = Lj for any i, j ∈ [n]. Thus the nonuniform dis-
tribution P in Section 3 becomes uniform, and the advan-
tage of nonuniform sampling of Bs,t cannot be observed.

To estimate the global optimum x∗ as ground truth, we use
batch L-BFGS-B algorithm (Zhu et al., 1997). We ran-
domly initialize x0 according to a scaled standard normal
distribution.10 We use the number of data passes (i.e., num-
ber of data points accessed divided by n), rather than time,
to measure the efficiency of algorithms. This has been a
well-established convention in the literature since execu-
tion time highly depends on implementation of algorithms.

Finally we describe the parameter setting. We set the mini-
batch size b =

√
n, Hessian update period Υ = 10 and the

memory parameter M = 10. We set bH = bΥ so that the
computation for yr can be amortized to each inner itera-
tion. We set the number of inner iterations m = n/b, so
that each outer iteration will access 2n data points. Lastly,
we set η = 1 × 10−2. From Figure 1, we observe that
when η is too large, e.g., η = 0.1, Algorithm 1 only
converges sublinearly; whereas when η is too small, e.g.,
η = 1 × 10−3, Algorithm 1 converges linearly but slowly.
This corresponds well to our theoretical analysis in Theo-
rem 1, which indicates that when η falls below a threshold,
ρ increases as η decreases. For both ERM problems, we
find η = 1× 10−2 yields fast linear convergence.

7.1 PERFORMANCE OF ACCELERATION
STRATEGIES

We first examine the performance of Algorithm 1 with
different schemes of choosing xs+1. We consider five
schemes in total, including (a) uniform sampling (option
I), (b) uniform averaging (option II), (c) geometric sam-
pling (option III), (d) geometric averaging (option IV) and
(e) last inner iterate (in Remark 8). For options III and IV,
we set β = 1/2. From Figure 2, we observe that options III
and IV perform as well as the “last inner iterate” scheme,
on both ERM problems, and outperform the schemes based
on uniform sampling/averaging significantly. For all the
subsequent experiments, we use option IV to select xs+1.

We next compare the performance of Algorithm 1 with and
without using the subsampled gradient stabilization strat-
egy in Section 6.2. As suggested by Remark 9, we choose

10The performance of our algorithms were observed to be in-
sensitive to the initialization of x0.

0 20 40
Number of data passes

-20

-10

0

lo
g
(f
(x

s
)
−

f
(x

∗
))

(a) logistic regression (rcv1)

0 20 40
Number of data passes

-20

-10

0

η=1e-4

η=1e-3

η=1e-2

η=1e-1

(b) ridge regression (E2006)

Figure 1: Log suboptimality versus number of passes
through data of Algorithm 1 with different step sizes η.

b̃s = min{ζυs, n}, where ζ = n/υq , υ = 3 and q = 8.
That is, the number of component gradients in g̃s exponen-
tially increases in the first p = 8 outer iterations and then
remains at n. From Figure 3, we observe that this simple
parameter selection method works well on both ERM prob-
lems, especially in the initial phase (when s is small). In
addition, we also observe when s is large, both algorithms
have almost the same (linear) convergence rates. This cor-
roborates our analysis in Proposition 3.

We finally compare the performance of Algorithm 1 with
and without using the low-dimensional approximate Hes-
sian strategy in Section 6.3. We set the number of partitions
K = 5 and partition [n] evenly and randomly. From Fig-
ure 4, we observe that our strategy leads to improvements
of convergence on both logistic and ridge regression prob-
lems, and the improvement on the latter is very significant.
Moreover, our strategy preserves the linear convergence of
Algorithm 1 on both problems. As discussed in Section 6.3,
our strategy can be even more efficient in scenarios where
parallel computational resources are available.

7.2 COMPARISON TO OTHER ALGORITHMS

We combine all of our acceleration strategies in Section 6
and compare the resulting algorithm with three benchmark-
ing algorithms, including SVRG in Johnson and Zhang
(2013) and two state-of-the-art stochastic L-BFGS algo-
rithms in Moritz et al. (2016) and Gower et al. (2016). For
the algorithm in Gower et al. (2016), we focus on its vari-
ant (b), since it consistently outperformed other variants
in experiments. We tested all the three benchmarking al-
gorithms on both ERM problems with different step sizes
η ∈ {10−4, 10−3, . . . , 1} and selected the best η for each
algorithm. The outer iterate xs+1 in all these algorithms
are selected via “the last iterate” scheme. From Figure 5,
we observe that on both ERM problems, our algorithm has
faster convergence compared to all the benchmarking al-
gorithms. The improvement of convergence is particularly
significant on the ridge regression problem. This observa-
tion is consistent with our observations in Section 7.1.
Future work and open problems: see Section S-7.

0 20 40
Number of data passes

-20

-10

0

10

lo
g
(f
(x

s
)
−

f
(x

∗
)) a b c d e

(a) logistic regression (rcv1)

0 20 40
Number of data passes

-20

-10

0

10

(b) ridge regression (E2006)

Figure 2: Comparison of Algorithm 1 with different selec-
tion schemes for xs+1.

0 20 40
Number of data passes

-20

-10

0

10

lo
g
(f
(x

s
)
−

f
(x

∗
)) Full

Exp.

(a) logistic regression (rcv1)

0 20 40
Number of data passes

-20

-10

0

10

(b) ridge regression (E2006)

Figure 3: Comparison of Algorithm 1 without (Full) and
with (Exp.) using the strategy in Section 6.2.

0 10 20 30
Number of data passes

-20

-10

0

lo
g
(f
(x

s
)
−

f
(x

∗
)) Large

Small

(a) logistic regression (rcv1)

0 10 20 30
Number of data passes

-20

-10

0

(b) ridge regression (E2006)

Figure 4: Comparison of Algorithm 1 without (Large) and
with (Small) using the strategy in Section 6.3.

0 10 20
Number of data passes

-20

-10

0

lo
g
(f
(x

s
)
−

f
(x

∗
))

SVRG
Moritz
Gower
Ours

(a) logistic regression (rcv1)

0 10 20
Number of data passes

-20

-10

0

(b) ridge regression (E2006)

Figure 5: Comparison of our algorithm (Ours) with bench-
marking algorithms (SVRG, Moritz and Gower).

References
Z. Allen-Zhu. Katyusha: The first direct acceleration of

stochastic gradient methods. arXiv:1603.05953, 2016.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Care-
ful quasi-newton stochastic gradient descent. J. Mach.
Learn. Res., 10:1737–1754, Dec. 2009.

V. S. Borkar. Stochastic approximation: a dynamical sys-
tems viewpoint. Cambridge, 2008.

L. Bottou. Online algorithms and stochastic approxima-
tions. In Online Learning and Neural Networks. Cam-
bridge University Press, 1998.

L. Bottou and Y. LeCun. Large scale online learning. In
Proc. NIPS, pages 1361–1368. Vancouver, BC, Canada,
Dec. 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer.
A stochastic quasi-newton method for large-scale opti-
mization. SIAM J. Optim., 26(2):1008–1031, 2016.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2:
27:1–27:27, 2011.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Proc. NIPS,
pages 1646–1654, Montréal, Québec, Canada, 2014.

D. Goldfarb. A family of variable metric updates derived
by variational means. Math. Comput., 24(109):23–26,
1970.

R. M. Gower, D. Goldfarb, and P. Richtárik. Stochas-
tic block BFGS: squeezing more curvature out of data.
In Proc. ICML, pages 1869–1878, New York City, NY,
USA, June 2016.

R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt,
J. Konečný, and S. Sallinen. Stopwasting my gradi-
ents: Practical svrg. In Proc. NIPS, pages 2251–2259.
Montréal, Quebec, Canada, 2015.

C. Hu, W. Pan, and J. T. Kwok. Accelerated gradient meth-
ods for stochastic optimization and online learning. In
Porc. NIPS, pages 781–789. Vancouver, B.C., Canada,
2009.

R. Johnson and T. Zhang. Accelerating stochastic gradi-
ent descent using predictive variance reduction. In Proc.
NIPS, pages 315–323, Lake Tahoe, Nevada, USA, 2013.

J. Konečný and P. Richtárik. Semi-stochastic gradient de-
scent methods. arXiv:1312.1666, 2013.

J. Konečný, J. Liu, P. Richtárik, and M. Takáč. Mini-batch
semi-stochastic gradient descent in the proximal setting.
IEEE J. Sel. Top. Signal Process., 10(2):242–255, 2016.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst
for first-order optimization. In Proc. NIPS, pages 3384–
3392, 2015.

D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Math. Program., 45
(3), Dec. 1989.

A. Mokhtari and A. Ribeiro. Global convergence of on-
line limited memory BFGS. J. Mach. Learn. Res., 16(1):
3151–3181, Jan 2015.

P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-
convergent stochastic L-BFGS algorithm. In Proc. AIS-
TATS, pages 249–258, Cadiz, Spain, May 2016.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite
sums with the stochastic average gradient. Math. Pro-
gram., 162(1):83–112, 2017.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic
quasi-Newton method for online convex optimization. In
Proc. ATSTATS, San Juan, Puerto Rico, March 2007.

J. Sohl-Dickstein, B. Poole, and S. Ganguli. Fast large-
scale optimization by unifying stochastic gradient and
quasi-newton methods. In Proc. ICML, pages 604–612,
Beijing, China, June 2014.

D. Williams. Probability with Martingales. Cambridge
University Press, 1991.

L. Xiao and T. Zhang. A proximal stochastic gradient
method with progressive variance reduction. SIAM J.
Optim., 24(4):2057–2075, 2014.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778:
L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw., 23
(4), Dec 1997.

