
Near-Optimal Interdiction of Factored MDPs

Swetasudha Panda and Yevgeniy Vorobeychik
Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN

swetasudha.panda,yevgeniy.vorobeychik@vanderbilt.edu

Abstract

Stackelberg games have been widely used to
model interactions between attackers and de-
fenders in a broad array of security domains.
One related approach involves plan interdic-
tion, whereby a defender chooses a subset of
actions to block (remove), and the attacker
constructs an optimal plan in response. In pre-
vious work, this approach has been introduced
in the context of Markov decision processes
(MDPs). The key challenge, however, is that
the state space of MDPs grows exponentially
in the number of state variables. We propose
a novel scalable MDP interdiction framework
which makes use of factored representation of
state, using a parity function basis for repre-
senting a value function over a Boolean space.
We demonstrate that our approach is signifi-
cantly more scalable than prior art, while re-
sulting in near-optimal interdiction decisions.

1 INTRODUCTION

Stackelberg game approaches to security have received
considerable attention in recent years, both in theoreti-
cal investigation and practical use [8, 11, 14]. A major
challenge in such approaches is high-resolution model-
ing of adversarial evasion of defensive measures. Letch-
ford and Vorobeychik proposed modeling such evasion
in a Stackelberg framework of plan interdiction [12],
where the Stackelberg leader eliminates a subset of at-
tack actions, and the adversary computes an optimal plan
in the restricted action space. This approach was devel-
oped both in the context of deterministic (PDDL-based)
planning, and planning with Markov decision processes
(MDPs). However, while interdiction of deterministic
plans was quite scalable, the approach scaled very poorly

in the context of MDPs. The central challenge with MDP
interdiction is the exponential size of the state space in
the number of state variables.

We aim to address the problem of MDP interdiction
at scale by leveraging approximation techniques devel-
oped for factored MDPs. Scalability in factored MDPs
has been achieved by two basic approaches: a) explot-
ing structure in the MDP transition model and reward
function [3, 2, 9], and b) value function approximation
[1, 9, 10, 4, 16, 5]. Factored MDPs [6] represent the
complex state space using state variables and the tran-
sition model using a dynamic Bayesian network. This
representation allows an exponential reduction in the rep-
resentation size of structured MDPs. Moreover, efficient
approximate solution algorithms have been proposed that
exploit structure in factored MDPs.

Starting with the approximation methods for factored
MDPs, we develop a mixed-integer linear programming
approach for factored MDP interdiction. In doing so,
we face two challenges: 1) effective basis representation,
and 2) a super-exponential set of constraints correspond-
ing to alternative evasion plans for the attacker. To ad-
dress the first challenge, we propose using a Fourier (par-
ity function) basis over a Boolean hypercube to represent
the value function over a binary factor space. While there
always exists an exact Fourier basis for functions over a
Boolean space, the representation is exponential in size.
We address this challenge by developing iterative basis
generation methods. Addressing the second challenge
of an intractably large constraint space, we develop a
novel constraint generation algorithm using a combina-
tion of linear programming factored MDP solvers and
novel heuristics for attack plan generation. We demon-
strate the effectiveness of the proposed approaches on
realistic examples from the international planning com-
petition (IPC). In particular, we show that our approach
offers dramatically improved scalability without signifi-
cantly compromising solution quality.

2 PRELIMINARIES

Our work builds on solution approaches for discounted
infinite-horizon MDPs, and particularly for factored
MDPs, which we now introduce.

MDPs and Factored MDPs Formally, a discounted
infinite-horizon MDP is defined as a tuple D =
(X, A,R, P, γ) where X is a finite set of |X| = N
states; A is a finite set of actions; R is a reward function
R : X×A 7→ R, in whichR(x, a) is the reward obtained
by the agent in state x after taking action a; P is a Marko-
vian transition model where P (x′|x, a) is the probability
of moving from state x to x′, after taking action a; and
γ ∈ [0, 1) is the discount factor which exponentially dis-
counts future rewards. It is well-known that such MDPs
always admit an optimal stationary deterministic policy,
which is a mapping π : X 7→ A, where π(x) is the ac-
tion the agent takes at state x [15]. Each policy can be
associated with a value function Vπ ∈ RN , where Vπ(x)
is the discounted cumulative value obtained by starting
at state x and following policy π. Formally,

Vπ(x) = Eπ

[∞∑
t=0

γtR(Xt, π(Xt))
∣∣x(0) = x

]
,

where X(t) is a random variable representing the state of
the system after t steps.

The discounted reward MDP is a natural model for se-
curity, since it captures the fact that attackers prefer to
achieve their goals (positive rewards) earlier, and incur
costs (negative rewards) later. Additionally, it captures
an element of deterrence: the attack which takes too
many steps has far more opportunities to fail in practice.
Thus, minor (low-reward) goals may be preferred over
major (high-reward) goals if they can be achieved much
more quickly.

Factored MDPs exploit problem structure to compactly
represent MDPs. The set of states is described by a
set of random state variables X = {X1, . . . , Xn}.
Let Dom(Xi) be the domain of values for Xi. A
state x defines a value xi ∈ Dom(Xi) for each vari-
able Xi. Throughout, we assume that all variables
are Boolean. The transition model for each action a
is compactly represented as the product of local fac-
tors by using a DBN. Let Xi denote the variable Xi

at the current time and X ′i the same variable at the
next time step. For a given action a, each node X ′i
is associated with a conditional probability distribution
(CPD) Pa(X ′i|Parentsa(X ′i)). The transition probabil-
ity is given by Pa(x′|x) =

∏
i Pa(x′i|x[Parentsa(X ′i)]),

where x[Parentsa(X ′i)] is the value in x to the variables
in Parentsa(X ′i). The complexity of this representation is

linear in the number of state variables and exponential in
the number of variables in the largest factor. The reward
function is represented as the sum of a set of localized
reward functions. Let Ra1 , . . . , R

a
r be a set of functions,

where the scope of each Rai is restricted to the variable
cluster Wa

i ⊂ {X1, . . . , Xn}. The reward for taking ac-

tion a at state x is then Ra(x) =
r∑
i=1

Rai (Wa
i) ∈ R.

Linear Programming Methods for Solving MDPs A
common method for computing an optimal policy of an
MDP is by using the following linear program (LP):

min
∑
x

α(x)V (x) (1a)

s.t.: ∀x, a, V (x) ≥ R(x, a) + γ
∑
x′

P (x′|x, a)V (x′).

(1b)

where the variables V (x) represent the value function
V(x), starting at state x. The state relevance weights
αs are such that α(x) > 0 and

∑
x
α(x) = 1. The

optimal policy π∗ can be computed as the greedy pol-
icy with respect to V∗, π∗ = arg maxa[R(x, a) +
γ
∑
x′
P (x′|x, a)V (x′)]. The dual of this LP (dual LP)

maximizes the total expected reward for all actions:

max
∑
x

∑
a

φa(x)R(x, a) (2a)

s.t.: ∀x, a, φa(x) ≥ 0 (2b)

∀x,
∑
a

φa(x) = α(x) + γ
∑
a

∑
x′

P (x|x′, a)φa(x′).

(2c)

where φa(x) called the visitation frequency for state x
and action a is the (discounted) expected number of
times that state x will be visited and action a will be
executed in this state. There is a one-to-one correspone-
dence between policies in the MDP and feasible solu-
tions to the dual LP.

In the case of factored MDPs, there is no guarantee that
the structure extends to the value function [9] and lin-
ear value function approximation is a common approach.
A factored (linear) value function V is a linear func-
tion over a set of basis functions H = {h1, . . . , hk},
such that V(x) =

∑k
j=1 wjhj(x) for some coefficients

w = (w1, . . . , wk)′, where the scope of each hi is re-
stricted to some subset of variables Ci. The approximate
LP corresponding to (1) is given by Guestrin et al. [6]:

min
∑
i

αiwi (3a)

s.t.: ∀a,maxx{Ra(x) +
∑
i

wi[γg
a
i (x)− hi(x)]} ≤ 0.

(3b)

where for basis hi, αi =
∑
x
α(x)hi(x) is the factored

equivalent of α and gai (x) =
∑
x′
P (x′|x, a)hi(x

′) is the

factored representation of expected future value. The
non-linear constraint in LP (3) can be represented by a
set of linear constraints using approaches similar to vari-
able elimination in cost networks. The factored dual ap-
proximation LP [7] is defined on a set of variable clus-
ters B ⊇ BFMDP where BFMDP = {Wa

1 , . . . ,W
a
r :

∀a} ∪ {C1, . . . ,Ck} ∪ {Γa(C1), . . . ,Γa(Ck) : ∀a},
Γa(C) = ∪Xi∈CPARENTSa(Xi) = Scope[g] is the set
of parent state variables of variables in C (Scope[h]) in
the DBN for action a. This factored dual LP is given by:

max
∑
a

r∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)Raj (wa

j)

s.t.:
∀i = 1, . . . , k :∑
c∈Dom[Ci]

µ(c)hi(c) =
∑

c∈Dom[Ci]

α(c)hi(c)

+ γ
∑
a

∑
y∈Dom[Γa(C

′
i)]

µa(y)gai (y) (4a)

∀Bi,Bj ∈ B,∀y ∈ Dom[Bi ∩Bj],∀a :∑
bi∼[y]

µa(bi) =
∑

bj∼[y]

µa(bj) (4b)

∀B ∈ B,∀b ∈ Dom[B],∀a, µa(b) ≥ 0 (4c)

µ(b) =
∑
a′

µa′ (b), (4d)

∑
b′∈Dom[B]

µ(b
′
) =

1

1− γ
(4e)

where µa(b) =
∑

x∼[b] φa(x),∀b ∈ Dom[B] is the
marginal visitation frequency for a subset of state vari-
ables B ⊂ X (b ∈ Dom[B] represents enumeration of
the variables in B and x ∼ [b] are the assignments of x
that are consistent with b), and µ(b) =

∑
a µa(b). The

constraints ensure that these µa variables are consistent
across variable subsets. The factored dual approximation
is guranteed to be equivalent to the dual LP-based ap-
proximation [7] if the factored MDP cluster set B forms
a junction tree. Triangulation Tr(BFMDP) constructs a
junction tree by adding cluster sets to B if needed. Ap-
proximate triangulation T̂r(B) returns some cluster set
B′ such that B ⊆ B′. The constant basis function h0—
i.e., with scope as the empty set {∅}—is always included
in H for feasibility of the above factored LPs.

Computing Attack Policies Policies in factored
MDPs can be compactly represented assuming the de-
fault action model [10]. Different actions often have
very similar transition dynamics, only differing in their
effect on a small subset of variables. In factored
MDPs that follow a default transition model for each
action a, Effects[a] ⊂ X′ are the variables in
the next state whose local probability model is dif-
ferent from the model for the default action d, i.e.,
Pa(X ′i|Parentsa(X ′i)) 6= Pd(X

′
i|Parentsd(X ′i)) [10].

Similarly, in the default reward model, there is a set of
reward functions for the default action d. The extra re-
ward of any action a has scope restricted to Wa

i . With
the above assumptions, the greedy policy relative to a
factored value function can be represented as a decision
list [6].

However, this default action model is often not applica-
ble in many real world examples. In such cases, we solve
the approximate factored dual LP and monitor the values
of the µa variables as a proxy to determine if a certain
action appears in the computed policy. More precisely,
if φa is a feasible solution to the exact dual LP, then in
a state x, φa(x) > 0 if a = π(x) and φa(x) = 0 for
all other actions. In the approximate solution with a sub-
set of basis functions, all φa variables may not be rep-
resented by the set of µa variables. However, we can
approximately determine the set of actions in a policy by
removing those actions a from the set of allowed actions,
for which µa(b) = 0 ∀b ∈ Dom[B],∀B ∈ B.

3 MDP INTERDICTION

3.1 PROBLEM DEFINITION

We model MDP interdiction as a Stackelberg (two-stage,
one-shot) game with two players: defender and attacker.
The defender, who is the Stackelberg leader, commits to
a set of mitigations, and the attacker, who is the follower,
computes an MDP policy which optimally responds to
(e.g., evades) these mitigations.

Formally, the MDP interdiction problem (MDPI) is de-
fined by a tuple {M, Cm, R

D, RA,X, A, P, γ}, M is
the set of mitigation strategies available to the defender,
RD and RA are the reward functions for the defender
and the attacker respectively, Cm is the cost of a mit-
igation m ∈ M to the defender, and X, A, P, γ are
the state space, action space, transition function, and
discount factor of an infinite-horizon discounted MDPs
which the attacker is solving in response to mitigations
deployed by the defender. The semantics of a mitigation
m ∈ M is that it removes (protects against) a subset
of attack actions from the original attacker action space

A.1 For a given set of mitigations M ⊆ M deployed by
the defender, we can define an attacker’s resulting MDP,
τ(M) = [X, A(M), RA, P, γ] over the restricted action
space A(M) which includes only the actions which are
not removed by any mitigation m ∈ M . In the MDPI
Stackelberg game, the defender first chooses M ⊆ M,
and the attacker subsequently chooses a policy π in the
resulting restricted MDP τ(M). Since the attacker is ef-
fectively facing a decision problem, it will suffice to re-
strict attention to optimal attacker policies which are de-
terministic and stationary. Let Π∗(M) be the set of op-
timal deterministic stationary policies of τ(M). Define
VA(x, π) to be the attacker’s value function for a policy
π starting at state x in MDP τ(M), and let VD(x, π) be
the defender’s value function (i.e., using the defender’s
reward function RD). Let x0 be the initial state of the
MDP. We seek a strong Stackelberg equilibrium (SSE) of
MDPI, in which the defender solves

max
M⊆M

VD(x0, π
∗(M))−

∑
m∈M

Cm,

where π∗(M) ∈ arg maxπ∈Π∗(M) VA(x0, π), and the
attacker breaks ties in the defender’s favor.

3.2 GENERAL APPROACH

Letchford and Vorobeychik proposed a general ap-
proach for MDP interdiction [12] based on a mixed-
integer linear programming (MILP). If we define vari-
ables Dm which are 1 iff the defender chooses
a mitigation m, the defender’s objective becomes
max

∑
x

∑
a
φa(x)RD(x, a)−

∑
m∈M

DmCm, where φa(x)

are the dual variables of the MDP linear program
as before. The attacker’s objective is then given by
max

∑
x

∑
a
φa(x)RA(x, a). To account for the attacker’s

best response, a set of constraints was introduced for the
defender so that a) the optimal attacker policy chosen by
the MILP is feasible given the set of defender mitiga-
tions, and b) the attacker’s utility corresponding to this
computed policy is better than that of any other feasible
policy. Since the general approach relies on the exact
representation of the state space, it fails to scale. Below
we introduce our general framework which leverages the
factored representation of MDPs, enabling scalability to
practical problem instances.

1This is quite general; for example, we can model mitiga-
tions which modify the initial state by including actions with
no preconditions and effects which represent initial state, and
allow interdiction of these actions.

3.3 A MILP FORMULATION FOR FACTORED
MDP INTERDICTION

We first exhibit the defender and attacker objectives us-
ing a factored representation of states. Given a set of
basis functions H and the variable cluster set BFMDP

the defender’s utility is given by

∑
a

r∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)RDaj (wa

j)−
∑
m∈M

DmCm,

where the expected sum of rewards is represented by the
µa variables, the factored version of the visitation fre-
quencies with scope restricted to that of the local reward
functions. The first term is to minimize the attacker’s
value of the initial state (we setRD = −RA in our exper-
iments) and the second term represents mitigation costs.
The attacker’s objective, in turn, is

∑
a

r∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)RAaj (wa

j).

For each mitigation m ∈ M , let Am,a = 1 iff m re-
moves action a. To ensure that the computed policy is
feasible, we add the constraints 4a-4e in the approximate
factored dual LP. Let δπ = 1 if and only if the policy π
is interdicted, i.e., there is a deployed mitigation m that
removes at least one action from π. We denote the fol-
lowing MILP formulation for MDPI by MDPI MILP:

max
∑
a

r∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)RDaj (wa

j)−
∑
m

DmCm

s.t.:

∀a,m,DmAm,a ≤ Da ≤
∑
m′

Dm′Am′,a (5a)

∀a,∀B ∈ B,∀b ∈ Dom[B],

µa(b) ≤ Z(1−Da) (5b)

∀π, a ∈ π,Da ≤ δπ ≤
∑
a′∈π

Da′ (5c)

∀π,
∑
a

r∑
j=1

∑
wa

j∈Dom[Wa
j]

µa(wa
j)RAaj (wa

j)

≥ VA(x0, π)− Zδπ (5d)
constraints 4a− 4e

where Z is a large number and B = Tr(BFMDP). (We
use T̂r(B) = B so that B = BFMDP). The constraints
5a compute a variable Da such that Da = 1 iff there is
a mitigation m that interdicts action a. Constraint 5b
ensures that if an action is interdicted, the correspond-
ing visitation frequencies are 0. Constraints 5c compute

δπ . Constraints 5d represents the condition that the pol-
icy generated for the attacker is its best response to the
defender’s choce of mitigations.

If H , the set of basis functions considered is general
enough to include the full value function space, the so-
lution to this MILP yields the optimal interdiction de-
cision for the defender. The key challenge, however, is
(a) what basis function space we should consider, and
(b) given that capturing arbitrary value functions in the
basis space is likely intractable, how can we best ap-
proximate a value function basis in this space. Finally,
the set of constraints captures all possible attack poli-
cies, thereby rendering the MILP too large to be tractable
even with a compact set of bases. We address these chal-
lenges next, starting with the issue of iteratively gener-
ating constraints to avoid complete enumeration of the
policy space (Section 4), and proceeding to address the
basis selection problem thereafter (Section 5).

4 CONSTRAINT GENERATION FOR
FACTORED MDP INTERDICTION

The MDP interdiction algorithm requires the addition
of policies and the corresponding utilities as constraints
(captured by Constraint 5d). To compute the attacker’s
best response, we solve the approximate primal LP 3
for a given basis set H (we deal with the basis selec-
tion problem in Section 5). We can then compute the
attacker’s policy as discussed in Section 2.

4.1 CONSTRAINT GENERATION WITH BASIS
FUNCTION SELECTION

We define the master problem MDPI MASTER(P̂) as a
relaxed version of the MILP with the constraints 5a-5d
corresponding to a subset P̂ of all possible policies. For
now, suppose that we have a method for selecting a sub-
set of “important” basis functions (Section 5).

The constraint generation procedure (Algorithm 1)
works as follows. In any iteration, P̂ contains a small
set of attack policies generated thus far. We solve the
master problem with P̂ to obtain a set of mitigations
M̂ ⊆ M, along with a policy π̂ ∈ P̂ with a util-
ity of V̂ = VA(x0, π̂) which is the attacker’s best de-
cision from the feasible subset of policies in P̂ . Now
there are two possibilities: either π̂ is the actual best re-
sponse of the attacker, in the presence of the deployed
mitigations, or the actual attacker best response is not in
P̂ . To confirm, we can compute the best response for
the attacker by solving a factored MDP (LP 3), remov-
ing actions which are blocked by the mitigations M̂ . At
this point, we also improve our basis function set, as de-

scribed in Section 5 (GENERATEBASIS(AM̂ , H)). The
resulting solution will either have a utility of V̂ to the at-
tacker, confirming M̂ as the optimal set of mitigations,
or will be a strict improvement on V̂ , in which case we
add the resulting policy (computed as described in Sec-
tion 2), and its utility, to the master program, and repeat.

Algorithm 1 Constraint Generation with Basis Selection

function CONSTRAINTGENERATION(P̂, H)
V =∞
V̂ = 0
while V̂ < V do

(M̂,Da, V̂) =MDPI MASTER(P̂, H)
AM̂ = ∅
for a ∈ A do

if Da = 0 then
AM̂ = AM̂ ∪ a

(π, V, Ĥ) = GENERATEBASIS(AM̂ , H)
if V > V̂ then
P̂ = P̂ ∪ π
H = Ĥ

This constraint generation procedure suffers from two
important bottlenecks: the number of iterations can be
large, and each iteration can be computationally costly.
Next we improve upon the baseline procedure above by
alleviating both of these issues.

4.1.1 Reducing the Number of Iterations of
Constraint Generation

A natural way to begin the constraint generation process
is with an empty subset of attack policies P̂ . However,
this results in a large number of iterations of the con-
straint generation procedure building up enough attack
policies to prevent trivial mitigation solutions, which
mitigate no actions, or a single action sufficient to make
all policies in P̂ infeasible. To address this, we start
by selecting a subset of (possibly all) attacker actions
â ∈ A. For each â, we solve the attacker’s best response
with the single action â, using the approximate primal
LP 3. The corresponding attack policies have only a sin-
gle action. We then define the initial subset P̂ using these
sets of attacker policies and the corresponding utilities,
allowing us to warm start the constraint iteration proce-
dure and saving a considerable amount of computation
time in the process.

4.1.2 Fast Constraint Generation

While warm starting considerably reduces the number of
iterations of the constraint generation procedure, each it-

eration still involves a costly set of computational oper-
ations even to evaluate whether new policies need to be
added. However, we observe that to make progress in
constraint generation, we only need to find some policy
which yields a better utility for the attacker than the op-
timal policy computed in the master program.

A major part of the overhead is the size of the basis set.
To speed up computation, we propose to attempt gen-
erating an improved policy (ATTACKERPOLICY(A,H))
first using only a small subset of the basis function (e.g.,
H1 with each basis using a single state variable, as dis-
cussed in Section 5). If the attacker’s utility computed
in the subproblem is greater than the best response com-
puted by the master program, we add this policy to the
set of constraints. Otherwise, we fall back on the full
combined basis selection and factored MDP solution ap-
proach. This approach may need more iterations to con-
verge, but each iteration will be much faster. Algorithm
2 is a formalization of these ideas.

Algorithm 2 Fast Constraint Generation

function CONSTRAINTGENERATION(P̂, H1)
V =∞
V̂ = 0
while V̂ < V do

(M̂,Da, V̂)=MDPI MASTER(P̂, H1)
AM̂ = ∅
for a ∈ A do

if Da = 0 then
AM̂ = AM̂ ∪ a

(π, V) = ATTACKERPOLICY(AM̂ , H1)
if V > V̂ then
P̂ = P̂ ∪ π

else
(π, V, Ĥ) = GENERATEBASIS(AM̂ , H1)

5 BASIS GENERATION

In this section we address the issue of selecting a basis
function space for linear value function approximation
and, subsequently, the incremental generation of the “im-
portant” set of basis functions H .

5.1 FOURIER BASIS FUNCTIONS ON
BOOLEAN FEATURE SPACE

We start by making use of the assumption that all vari-
ables are Boolean. In this case, the Fourier (parity) ba-
sis for Boolean function is a natural basis choice: every
function f : {0, 1}n → R can be uniquely represented
as f(x) =

∑
S⊆{1,...,n} f̂(S)hS(x) [13], where hS is a

parity function over the subset S of the variables:

hS(x) =
∏
i∈S

(−1)xi =

{
+1, if

∑
i∈S xi mod 2 = 0.

−1, if
∑
i∈S xi mod 2 = 1.

(6)

While the full Fourier representation of the value func-
tion is therefore linear, and exact, it has 2n bases. Con-
sequently, it is crucial to intelligently select a small sub-
set which yields a sufficiently good approximation of the
value function for the purposes of computing an approx-
imately optimal set of mitigations. We do this by an iter-
ative basis function selection process described below.

5.2 ITERATIVE BASIS FUNCTION SELECTION

The attacker solves the approximate LP (3) to compute
the best response to the imposed mitigations. Observe
that the basis functions correspond to variables in this LP.
Column generation can be used to generate only those
variables which have the potential to improve the objec-
tive function. Thus, basis functions can be iteratively
generated while computing the attacker’s policy. How-
ever, since the variables w corresponding to the basis
functions are unconstrained, the concept of reduced cost
is not well-defined. In this case, we compute the magni-
tude of the constraint violation in the dual LP instead.

Recall that the non-linear constraint in the LP (3)
maxx{Ra(x) +

∑
i

wi[γg
a
i (x) − hi(x)]} ≤ 0 is repre-

sented as a set of linear constraints using variable elimi-
nation [6]. Instead of enumerating the entire state space,
one variable is eliminated at a time. There is one set
of factored LP constraints for each action a. Let Xj

be the variable being eliminated. If Xj appears in any
set C ∪ Γa(C), (C = Scope[h]), and/or Wa (the scope
of any local reward function) these set of state variables
are “relevant” while eliminating Xj . Denote this set
of relevant variables by Zaj . Only these variables are
enumerated while maximizing over Xj . For each enu-
meration, the linear constraint is of the form umax ≥
uR +

∑
i wiu

γgi−hi , where umax is the variable intro-
duced after elimination, uR is the relevant factored re-
ward term and uγgi−hi represents γgi−hi for a relevant
hi. After all state variables are eliminated, the remaining
elimination-introduced variables have empty scope and
the final maximization constraint is added. The number
of constraints in this LP grows exponentially in the in-
duced width of the cost network, the undirected graph
defined over the variables X1, . . . , Xn, with an edge be-
tween Xl and Xm if they appear together in Zaj . Given
this construction, we describe our basis function selec-
tion approach as follows.

We begin with a subset of basis functions H0 and solve

the above factored LP. It is necessary to include h0 = ∅
in H0 to ensure feasibility of the LP. Next, we need to
determine whether a new basis function will improve the
current LP objective. We consider the dual LP

max
λk≥0

∑
k

uRk λk

s.t.:
∑
k

uγgi−hi

k λk = αi,∀i,
(7)

where λk is the dual variable corresponding to a factored
linear constraint k in the primal LP, and uRk and uγgi−hi

k

are the reward function and basis function terms respec-
tively in constraint k. If a new basis hl is added, it gen-
erates a new column in the primal LP, and thus, a new
constraint in the dual LP. If the new constraint is not sat-
isfied given the current λ, the objective can be improved
by adding this basis. More precisely, if the new con-
straint is violated given the current λ, the amount of vio-
lation β = |

∑
k u

γgl−hl

k λk − αl| can be used to decide
whether to include the new basis. We compute the mag-
nitude of constraint violation for a possible new basis and
choose the basis which maximizes this violation. We add
this basis to the primal LP and repeat. Finally, we return
the updated set of basis functions. The corresponding LP
objective is the attacker’s utility, given a set of actions A.
We outline this procedure formally in Algorithm 3.

Algorithm 3 Iterative Basis Function Selection
function GENERATEBASIS(A,H)

λ, V ′ =ATTACKERPOLICY(A,H)
for s ∈ {1, . . . , smax} do

while Hs 6= ∅ do
β = 0
for hl ∈ Hs and hl /∈ H do

if |
∑
k u

γgl−hl

k λk − αl| > β then
β = |

∑
k u

γgl−hl

k λk − αl|
ĥl = hl

H = H ∪ ĥl
(λ, V) =ATTACKERPOLICY(A,H)
if |V − V ′| < θ then return V ′, H
Hs = Hs \ ĥl
V ′ = V

In Algorithm 3, ATTACKERPOLICY(A,H) solves the
LP (3) and Hs is the set of parity basis functions over
s state variables. To maintain smaller cost networks,
we consider all bases of a particular size before mov-
ing to the next size until s = smax, for some smax ≤ n.
Within a particular size, we consider those variable clus-
ters that are also connected in the underlying DBN of
the factored MDP (i.e., one variable is the parent node
of the other variable). We observe that many dual vari-
ables λk will be 0 so that we can restrict all computa-

tions to the set of active constraints {k, λk > 0}. Finally,
using the parity basis functions allows two simplifica-
tions. First, we consider the ga variable corresponding
to a basis h: ga(y) =

∑
c∈C

∏
i|Xi∈C Pa(c[Xi]|y)h(c),

for each assignment y ∈ Γa(C), where C is the scope
of h and the sum is over Dom[C], the enumeration of
variables in C. In our case, using the parity basis, this
sum of products can be reorganized as a product of sums:
ga(y) =

∏
i|Xi∈C P (xi = 0|y, a) − P (xi = 1|y, a).

These terms can be precomputed for each state variable
allowing efficient computation. Second, we consider
α =

∑
x
α(x)h(x) =

∑
c∈C

α(c)h(c), where α(c) is the

marginal of α over Dom[C]. In the case of parity basis
functions, αl = 0,∀l 6= 0 and β = |

∑
k u

γgl−hl

k λk|.

6 GREEDY INTERDICTION

In this section, we propose a greedy heuristic for fac-
tored MDP interdiction which requires the generation
of attacker policies in response to specific mitigations.
Specifically, we start with a mitigation strategy by ran-
domly choosing an action to block. The attacker then
computes a policy with utility V using the restricted set
of actions. Next, we evaluate actions in the available set
of actions Aav , at random, choosing an action to block
if it decreases the sum of the attacker utility and total
mitigation cost. Here we assume that each mitigation
blocks exactly one action. The algorithm proceeds until
no action can be found to be blocked so as to improve
the defender’s utility. This greedy algorithm is outlined
as Algorithm 4.

We speed up greedy interdiction similar to fast constraint
generation in Section 4.1.2 by computing policies with a
small subset of basis functions (e.g., H1). At the very
end, we make further additions to the set of basis func-
tions to compute the attacker’s policy in response to the
greedily computed mitigation strategy to check whether
the attacker can indeed improve on the approximate best
response computed over the restricted space.

7 EXPERIMENTS

We evaluate our MDP interdiction algorithms on sev-
eral instances of three problem domains from the in-
ternational planning competition (IPC 2014): a) sysad-
min b) academic advising and c) wildfire. While these
have little direct connection to security, they provide the
most meaningful evaluation of our approaches in terms
of effectiveness and scalability: prior security-related do-
mains which consider multi-stage attacks use toy exam-
ples which would not provide a meaningful evaluation.

Algorithm 4 Greedy Factored MDP Interdiction
Aav = A
Am = ∅
An = Aav
V̂ =∞
while An 6= ∅ do

a =CHOOSERANDOM(Aav)
V = ATTACKERPOLICY(Aav \ a,H)
if V A < V̂ then

Am = Am ∪ a
V̂ = V
Aav = Aav \ a
An = Aav
if Aav = ∅ then

break
else

An = An \ a
return V = GENERATEBASIS(A \Am, H)

For all experiments, each defender mitigation m ∈ M
blocks exactly one action a. We also let RA(x, a) =
−RD(x, a)−Ca, whereCa is the cost of action a, which
we set to 0 for the default (no-op) action and to 0.5 for all
other actions.. We set the cost of imposing a mitigation
Cm = 1 for all m. We use the discount factor of γ =
0.9. The experiments are run on a 2.4GHz hyperthreaded
8-core Ubuntu Linux machine with 16 GB RAM, with
CPLEX version 12.51 used to solve MILP instances.

7.1 COMPARISON WITH EXACT MDP
INTERDICTION

2 3 4 5 6 7 8 9 10
Number of state variables

0.0

0.5

1.0

1.5

2.0

R
u
n
ti
m
e
 i
n
 s
e
co
n
d
s

1e6
optimal

s=4

s=3

s=2

s=1

2 3 4 5 6 7 8 9 10
Number of state variables

5

10

15

20

25

30

35

40

45

U
ti
lit
y

optimal

s=4

s=3

s=2

s=1

Figure 1: Comparison of exact and approximate MDP
interdiction in terms of runtime (left) and attacker utility
(right; lower is better for the defender).

First, we compare the performance of the constraint gen-
eration with basis selection algorithm to the state-of-
the-art optimal solution in MDP interdiction proposed
by Letchford and Vorobeychik [12]. We consider the
sysadmin domain with n = 2 − 10 state variables (2n

states) and 10 actions. We evaluate our approach with
s = 1, 2, 3 and 4, where s is the maximum number of
state variables in the scope of any basis.

As expected, the runtime of the exact MDPI is dominated

by our approach for sufficiently many state variables
(Figure 1(a)); more significantly, the exact approach runs
out of memory for larger problem sizes.

From Figure 1(b) we can see that while the utility of
approximate interdiction improves significantly as s in-
creases from 1 to 2, it already becomes close to optimal
when s = 2, with little added value from increasing it
further. The results are similar for other IPC domains.
Consequently, our experiments below use s = 2.

7.2 SCALABILITY

We evaluate the constraint generation approach on larger
problem sizes on the sysadmin domain (up to 60 state
variables and 60 actions). Even with constraint genera-
tion with only a subset of basis functions, our baseline
algorithm (marked as “slow bilevel”) scales poorly for
n > 30. On the other hand, the use of fast constraint
generation (Algorithm 2, marked as “fast bilevel”), sig-
nificantly improves scalability (Figure 2 left). Indeed, the
baseline (slow bilevel) becomes intractable for n ≥ 50,
whereas we can successfully solve these with the “fast”
approach. Since we compute the utility of the final at-
tacker policy using basis generation, the solution accu-
racy is not compromised (Figure 2 right).

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

106

R
u
n
ti
m
e
 i
n
 s
e
co

n
d
s

slow bilevel

fast_bilevel

10 15 20 25 30 35 40 45
Number of state variables

20

40

60

80

100

120

U
ti
lit
y

slow bilevel

fast_bilevel

Figure 2: Comparison between baseline (slow) and fast
interdiction on the sysadmin domain in terms of runtime
(left) and utility (right).

In the second set of scalability experiments, we evalu-
ate our approaches on 10 problem instances of the aca-
demic advising domain. The problem size increases with
problem number from 10 to 30 courses (20 to 60 state
variables and 10 to 30 actions). For each problem size,
there are two instances, corresponding to different pro-
gram requirements and course prerequisites. The first
(odd numbered) problem instance is somewhat simpler
(fewer prerequisites per course). The second (even num-
bered) instance is more complicated, with a larger num-
ber of prerequisites per course (larger number of connec-
tions in the underlying DBN). Problem 10 has the largest
problem size with 30 courses, 11 program requirements,
3 prerequisites for most courses and 4 prerequisites for
8 courses. As demonstrated in Figure 3, we observe a
similar trend as before: the fast constraint generation ap-
proach significantly outperforms baseline without com-

promising much solution quality. The baseline is in-
tractable for problems 7 to 10 (n ≥ 50).

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti
m
e
 i
n
 s
e
co
n
d
s

slow bilevel

fast_bilevel

1 2 3 4 5 6
Problem number

−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

U
ti

lit
y

slow bilevel

fast_bilevel

Figure 3: Comparison between baseline (slow) and fast
interdiction on the academic advising domain in terms of
runtime (left) and utility (right).

In the third set of experiments, we evaluate on 6 problem
instances of the wildfire domain. The grid size increases
with problem number from m = 3 to 5 (n = 2 ×m2 =
18 to 50 state variables, and 36 to 100 actions). For each
grid size, there are two instances, corresponding to dif-
ferent neighbourhood configurations and targets (cells on
the grid that need to be protected). The first (odd num-
bered) problem instance has fewer targets than the sec-
ond (even numbered) instance. The results are shown in
Figure 4. The baseline is again intractable on problems 5
and 6 (n = 50) which can be solved by fast bilevel.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti
m
e
 i
n
 s
e
co

n
d
s

slow bilevel

fast bilevel

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Problem number

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

slow bilevel

fast bilevel

Figure 4: Comparison between baseline (slow) and fast
interdiction on the wildfire domain in terms of runtime
(left) and utility (right).

7.3 EFFECTIVENESS OF GREEDY
INTERDICTION

Finally, we compare the greedy interdiction algorithm to
fast constraint generation. As shown in Figures 5-7, the
greedy algorithm is faster for larger problem sizes, sav-
ing up to an order of magnitude of computation time,
without significantly compromising solution quality.

8 CONCLUSION

We presented a MILP approach for factored MDP inter-
diction, using a parity basis for linear value function ap-
proximation over binary state variables. We offered an
iterative basis generation approach to select the most ef-
fective set of basis functions, and presented several vari-
ations of constraint generation, combined with basis se-

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

R
u
n
ti
m
e
 i
n
 s
e
co

n
d
s

greedy

fast_bilevel

10 20 30 40 50 60
Number of state variables

20

40

60

80

100

120

140

160

U
ti
lit
y

greedy

fast_bilevel

Figure 5: Comparison between fast interdiction and
greedy in terms of runtime (left) and utility (right) on
the sysadmin domain.

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti
m
e
 i
n
 s
e
co

n
d
s

greedy

fast_bilevel

1 2 3 4 5 6 7 8 9 10
Problem number

−300

−250

−200

−150

−100

U
ti

lit
y

fast_bilevel

greedy

Figure 6: Comparison between fast interdiction and
greedy in terms of runtime (left) and utility (right) on
the academic advising domain.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti
m
e
 i
n
 s
e
co

n
d
s

greedy

fast bilevel

1 2 3 4 5 6
Problem number

−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

greedy

fast bilevel

Figure 7: Comparison between fast interdiction and
greedy in terms of runtime (left) and utility (right) on
the wildfire domain.

lection, to solve the MILP. We evaluated our approaches
on several realistic problem instances and demonstrated
significantly increased scalability while achieving near-
optimal solutions. Finally, we proposed a greedy algo-
rithm for MDP interdiction and showed that it can further
improve scalability.

In this paper, we only model deterministic mitigation
strategies. Related research on Stackelberg games for
security often considers randomized defensive resource
allocation, which in our case would translate to random-
ized mitigations that can yield considerably higher utility
to the defender. Within our framework, such an exten-
sion is quite non-trivial, and remains an important ques-
tion for future research.

Acknowledgements This research was partially sup-
ported by NSF (CNS-1640624, IIS-1526860, IIS-
1649972, CNS-1238959), ONR (N00014-15-1-2621),
ARO (W911NF-16-1-0069), NIH (UH2 CA203708-01,
R01HG006844), and AFRL (FA 8750-14-2-0180).

References

[1] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-
dynamic programming: an overview. In Decision
and Control, 1995., Proceedings of the 34th IEEE
Conference on, volume 1, pages 560–564. IEEE,
1995.

[2] Craig Boutilier, Thomas Dean, and Steve Hanks.
Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Ar-
tificial Intelligence Research, 11(1):94, 1999.

[3] Craig Boutilier, Richard Dearden, and Moisés
Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial intelli-
gence, 121(1):49–107, 2000.

[4] Thomas G Dietterich. Hierarchical reinforcement
learning with the maxq value function decomposi-
tion. J. Artif. Intell. Res.(JAIR), 13:227–303, 2000.

[5] Carlos Guestrin, Daphne Koller, and Ronald Parr.
Max-norm projections for factored mdps. In IJCAI,
volume 1, pages 673–682, 2001.

[6] Carlos Guestrin, Daphne Koller, Ronald Parr, and
Shobha Venkataraman. Efficient solution algo-
rithms for factored mdps. Journal of Artificial In-
telligence Research, 19:399–468, 2003.

[7] Carlos Ernesto Guestrin. Planning under uncer-
tainty in complex structured environments. PhD
thesis, Stanford University, 2003.

[8] Manish Jain, James Pita, Milind Tambe, Fernando
Ordónez, Praveen Paruchuri, and Sarit Kraus.
Bayesian stackelberg games and their application
for security at los angeles international airport.
ACM SIGecom Exchanges, 7(2):10, 2008.

[9] Daphne Koller and Ronald Parr. Computing fac-
tored value functions for policies in structured
mdps. In IJCAI, volume 99, pages 1332–1339,
1999.

[10] Daphne Koller and Ronald Parr. Policy iteration
for factored mdps. In Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence,
pages 326–334. Morgan Kaufmann Publishers Inc.,
2000.

[11] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiek-
intveld, Vincent Conitzer, and Milind Tambe.
Stackelberg vs. nash in security games: An ex-
tended investigation of interchangeability, equiva-
lence, and uniqueness. J. Artif. Intell. Res.(JAIR),
41:297–327, 2011.

[12] Joshua Letchford and Yevgeniy Vorobeychik. Opti-
mal interdiction of attack plans. In Proceedings of
the 2013 international conference on Autonomous
agents and multi-agent systems, pages 199–206. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems, 2013.

[13] Ryan O’Donnell. Some topics in analysis of
boolean functions. In Proceedings of the fortieth
annual ACM symposium on Theory of computing,
pages 569–578. ACM, 2008.

[14] Praveen Paruchuri, Jonathan P Pearce, Janusz
Marecki, Milind Tambe, Fernando Ordonez, and
Sarit Kraus. Playing games for security: An ef-
ficient exact algorithm for solving bayesian stack-
elberg games. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and
multiagent systems-Volume 2, pages 895–902. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems, 2008.

[15] Martin L Puterman. Markov decision processes:
Discrete stochastic dynamic programming. 1994.

[16] Robert St-Aubin, Jesse Hoey, and Craig Boutilier.
Apricodd: Approximate policy construction using
decision diagrams. In NIPS, pages 1089–1095,
2000.

