REASONING UNDER UNDER UNCERTAINTY WITH SUBJECTIVE LOGIC

UAI 2016, New York

Audun Jøsang, University of Oslo http://folk.uio.no/josang

Subjective Logic - UAI 2016

Audun Jøsang

About me

- Prof. Audun Jøsang, University of Oslo, 2008
- Research interests
 - Information Security
 - Bayesian Reasoning
- Bio
 - MSc Telecom, NTH, 1988
 - Engineer, Alcatel Telecom
 - MSc Security, London 1993
 - PhD Security, NTNU 1998
 - A.Prof. QUT, Australia, 2000

Department of Informatics

@ University of Oslo

Subjective Logic – UAI 2016

Tutorial overview

1. Representations of subjective opinions

2. Operators of subjective logic

- 3. Applications of subjective logic:
 - Trust fusion and transitivity
 - Trust networks
 - Bayesian reasoning
 - Subjective networks

The General Idea of Subjective Logic

Probabilistic Logic Examples

Binary Logic	Probabilistic logic
AND: $x \wedge y$	$p(x \land y) = p(x)p(y)$
OR: $x \lor y$	$p(x \lor y) = p(x) + p(y) - p(x)p(y)$
$MP: \{ x \rightarrow y, x \} \implies y$	$p(y) = p(x)p(y x) + p(\overline{x})p(y \overline{x})$
$MT: \{ x \to y, \overline{y} \} \implies \overline{x}$	$p(x \mid y) = \frac{a(x)p(y \mid x)}{a(x)p(y \mid x) + a(\overline{x})p(y \mid \overline{x})}$ $p(x \mid \overline{y}) = \frac{a(x)p(\overline{y} \mid x)}{a(x)p(\overline{y} \mid x) + a(\overline{x})p(\overline{y} \mid \overline{x})}$
	$p(x) = p(y) \frac{p(x \mid y)}{p(x \mid y)} + p(\overline{y}) \frac{p(x \mid \overline{y})}{p(x \mid \overline{y})}$

Probability and Uncertainty

Frequentist (aleatory):

- Confident when based on much observation evidence
- Unconfident when based on little observation evidence
- E.g.: Probability of heads when flipping coin is ½ and confident

Subjective (epistemic):

- Confident when dynamics of situation are known
- Unconfident when dynamics of situation are unknown
- E.g. Probability of Oswald killed Kennedy is ½ but unconfident

Domains, variables and opinions

Binary domain $X = \{x, \overline{x}\}$ Binary variable X = xBinomial opinion

3-ary domain XRandom variable $X \in X$ Multinomial opinion

Hyperdomain $\mathcal{R}(X)$ Hypervariable $X \in \mathcal{R}(X)$ Hypernomial opinion

7

Domains and Hyperdomains

- A domain \boldsymbol{X} is a state space of distinct possibilities
- Powerset $\mathcal{P}(X) = 2^X$, set of subsets, including $\{X, \emptyset\}$
- Reduced powerset $\mathcal{R}(X) = \mathcal{P}(X) \setminus \{X, \emptyset\}$
- $\mathcal{R}(\mathbb{X}) = \{ x_1, x_2, x_3, x_4, x_5, x_6 \}$
- $\mathcal{R}(X)$ called Hyperdomain
- Cardinalities
 - |X| = 3 in this example
- $|\mathcal{P}(X)| = 2^{|X|}$ = 8 in this example
- $|\mathcal{R}(\mathbb{X})| = 2^{|\mathbb{X}|} 2$
 - = 6 in this example

Binomial subjective opinions

- Belief mass and base rate on binary domains
 - $b_x^A = b(x)$ is observer A's belief in x
 - $d_x^A = b(\overline{x})$ is observer *A*'s disbelief in *x*
 - $u_x^A = b(X)$ is observer A's uncertainty about x a_r^A is the base rate of x

Binomial opinion

 $\boldsymbol{\omega}_{x}^{A} = (\boldsymbol{b}_{x}^{A}, \boldsymbol{d}_{x}^{A}, \boldsymbol{u}_{x}^{A}, \boldsymbol{a}_{x}^{A})_{\boldsymbol{a}_{x}}$ base rate of x $b_{x}^{A} + d_{x}^{A} + u_{x}^{A} = 1$ Binary domain X

Binomial opinions

U vertex

• Projected probability: $P(x) = b_x + a_x \cdot u_x$ Example $\omega_x = (0.4, 0.2, 0.4, 0.9), \quad P(x) = 0.76$

Opinion types


```
Absolute opinion: b_x=1.
Equivalent to TRUE.
```


Dogmatic opinion: $u_x=0$. Equivalent to probabilities.

Vacuous opinion: $u_x=1$. Equivalent to UNDEFINED.

General uncertain opinion: $u_x \neq 0$.

Audun Jøsang

Subjective Logic - UAI 2016

Beta PDF representation

Beta
$$(p(x), \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p(x)^{\alpha - 1} (1 - p(x))^{\beta - 1}$$

 $\alpha = r + Wa$
 $\beta = s + W(1 - a)$

Example: r = 2, s = 1, a = 0.9, E(x) = 0.76

Binomial Opinion \leftrightarrow Beta PDF

- (r,s,a) represents Beta PDF evidence parameters.
- (b,d,u,a) represents binomial opinion.
- P(x) = E(x)Op \rightarrow Beta: $\begin{cases} r = Wb / u \\ s = Wd / u \\ b + d + u = 1 \end{cases}$

• Beta
$$\rightarrow$$
 Op:
$$\begin{cases} b = \frac{r}{r+s+W} \\ d = \frac{s}{r+s+W} \\ u = \frac{W}{r+s+W} \end{cases}$$

FIG 1: Beta function after 7 positive and 1 negative results

Online demo

http://folk.uio.no/josang/sl/

Likelihood and Confidence

Likelihood catego	ries:	Absolutely not	Very unlikely	Unlikely	Somewhat unlikely	Chances about even	Somewhat likely	Likely	Very likely	Absolutely
Confidence categories:		9	8	7	6	5	4	3	2	1
No confidence	E	9E	8E	7E	6E	5E	4E	3E	2E	1E
Low confidence	D	9D	8D	7D	6D	5D	4D	3D	2D	1D
Some confidence	С	9C	8C	7C	6C	5C	4C	3C	2C	1C
High confidence	В	9B	8B	7B	6B	5B	4B	3B	2B	1B
Total confidence	Α	9A	8A	7A	6A	5A	4A	ЗA	2A	1A

Mapping qualitative to opinion

- Category mapped to corresponding field of triangle
- Mapping depends on base rate
- Non-existent categories depending on base-rates

Mapping categories to opinions

- Overlay category matrix with opinion triangle
- Matrix skewed as a function of base rate
- Not all categories map to opinions
 - For a low base rate, it is impossible to describe an event as highly likely and uncertain, but possible to describe it as highly unlikely and uncertain.
 - E.g. with regard to tuberculosis which has a low base rate, it would be wrong to say that a patient is likely to be infected, with high uncertainty. Similarly it would be possible to say that the patient is probably not infected, with high uncertainty

Multinomial domain

- Generalisation of binary domain
- Set of exclusive and exhaustive singletons.
- Example domain: $X = \{x_1, x_2, x_3, x_4\}, |X| = 4.$

Multinomial Opinions

- Domain: $X = \{x_1 \dots x_k\}$
- Random variable $X \in \mathbb{X}$
- Multinomial opinion: $\omega_X = (b_X, u_X, a_X)$
- Belief mass distribution b_X where $u + \Sigma b_X(x) = 1$ $b_X(x)$ is belief mass on $x \in \mathbb{X}$
- Uncertainty mass: u_X is a single value in range [0,1]
- Base rate distribution a_X where $\Sigma a_X(x) = 1$ $a_X(x)$ is base rate of $x \in X$
- Projected probability: $P_X(x) = b_X(x) + a_X(x) \cdot u_X$

Opinion tetrahedron (ternary domain)

Dirichlet PDF representation

$$\operatorname{Dir}(p_X) = \frac{\Gamma\left(\sum_{i=1}^k \alpha_X(x_i)\right)}{\prod_{i=1}^k \Gamma(\alpha_X(x_i))} \prod_{i=1}^k p_X(x_i)^{\alpha(x_i)-1}$$

$$r_X(x_i)$$
 : # observations of x_i

 $a_X(x_i)$: base rate of x_i

 E_X : Expected proba. distr.

 $\mathbf{E}_X = \mathbf{P}_X$

Example:

- 6 red balls
- 1 yellow ball
- 1 black ball

$$\Sigma p_X(x_i) = 1$$
$$\alpha_X(x_i) = r_X(x_i) + W \cdot a_X(x_i)$$

Audun Jøsang

Multinomial Opinion ↔ Dirichlet PDF

- Dirichlet PDF evidence parameters: (r_X, a_X)
- Multinomial opinion parameters: (b_X, u_X, a_X)

 $o Op \rightarrow Dir:$

 $\begin{cases} r_X(x) = \frac{W \cdot b_X(x)}{u_X} \\ u_X + \sum b_X(x) = 1 \end{cases}$

W = 2

• Dir \rightarrow Op:

 $\begin{cases} b_X(x) = \frac{r_X(x)}{W + \sum r_X(x)} \\ u_X = \frac{W}{W + \sum r_Y(x)} \end{cases}$

Non-informative prior weight: W

- Value normally set to W = 2.
- When W is equal to the frame cardinality, then the prior Dirichlet PDF is a uniform.
- Normally required that the prior Beta is uniform, which dictates W = 2
- Beta PDF is a binomial Dirichlet PDF
- Setting W > 2 would make Dirichlet PDF insensitive to new observations, which would be an inadequate model.

Prior trinomial Dirichlet PDF, W = 2

Density

Example:

Urn with balls of 3 different colours.

- t1: Red
- t2: Yellow
- t3: Black

Ternary *a priori* probability density.

Posterior trinomial Dirichlet PDF

A posteriori probability density after picking:

- 6 red balls (t1)
- 1 yellow ball (t2)
- 1 black ball (t3)

-W=2

Posterior trinomial Dirichlet PDF

Density

A posteriori probability density after picking:

- 20 red balls (t1)
- 20 yellow balls (t2)
- 20 black balls (t3)

- W = 2

p(t1)

Posterior trinomial Dirichlet PDF

Density

A posteriori probability density after picking:

- 20 red balls (t1)
- 20 yellow balls (t2)
- 50 black balls (t3)

- W = 2

p(t1)

Hyper-Opinions

- Domain: $X = \{x_1 \dots x_k\}$
- $\mathcal{P}(X)$ is the powerset of X
- Hyperdomain $\mathcal{R}(X) = \mathcal{P}(X) \setminus \{X, \emptyset\}$
- $\mathcal{R}(X)$ is the reduced powerset
- Hypervariable: $X \in \mathcal{R}(X)$
- Hyper opinion: $\omega_X = (b_X, u_X, a_X)$
- Belief mass distribution: b_X where $u_X + \sum_{X \in \mathcal{R}(X)} b_X(x) = 1$ $b_X(x)$ is belief mass on $x \in \mathcal{R}(X)$
- Base rate distribution: a_X where $\sum_{X \in X} a_X(x) = 1$ $a_X(x)$ is base rate of $x \in X$
- Proj. probability: $P_X(x) = a_X(x) \cdot u_X + \sum_{x_i \in \mathcal{R}(X)} a_X(x \mid x_j) \cdot b_X(x_j)$

Audun Jøsang

Hyper Dirichlet PDF

Opinions v. Fuzzy membership functions

Subjective Logic Operators

Homomorphic correspondence

•
$$P(\omega_x \cdot \omega_y) = P(\omega_x) \cdot P(\omega_y)$$

• $\mathsf{B}(\omega_x \cdot \omega_y) = \mathsf{B}(\omega_x) \wedge \mathsf{B}(\omega_y)$

for probabilistic multiplication for Boolean conjunction

Subjective logic operators 1

Opinion operator name	Opinion operator symbol	Logic operator symbol	Logic operator name
Addition	+	U	UNION
Subtraction	-	١	DIFFERENCE
Complement	7	x	NOT
Projected probability	P(x)	n.a.	n.a.
Multiplication	•	\wedge	AND
Division	/	$\overline{\wedge}$	UN-AND
Comultiplication	U		OR
Codivision	Ū		UN-OR

Subjective logic operators 2

Opinion operator name	Opinion operator symbol	Logic operator symbol	Logic operator name
Transitive discounting	\otimes	:	TRANSITIVITY
Cumulative fusion	\oplus	\diamond	n.a.
Averaging fusion	\oplus	♦	n.a.
Constraint fusion	\odot	&	n.a.
Inversion, Bayes' theorem	$\widetilde{\Phi}$	~	CONTRAPOSITION
Conditional deduction	0		DEDUCTION (Modus Ponens)
Conditional abduction	õ	Ĩ	ABDUCTION (Modus Tollens)

Subjective Trust Networks

Trust transitivity

Functional trust derivation requirement

- Functional trust derivation through transitive paths requires that the last trust edge represents functional trust (or an opinion) and that all previous trust edges represent referral trust.
- Functional trust can be an opinion about a variable.

Audun Jøsang

Trust transitivity characteristics

Trust is diluted in a transitive chain.

Computed with discounting/transitivity operator of SL

Graph notation: [A, E] = [A; B] : [B; C] : [C, E]

SL notation:

$$\omega_{E}^{(A;B;C)} = \omega_{B}^{A} \otimes \omega_{C}^{B} \otimes \omega_{E}^{C}$$

Subjective Logic - UAI 2016

Trust Fusion

Combination of serial and parallel trust paths

Graph notation: $[A, E] = (([A;B] : [B;D]) \diamond ([A;C] : [C;D])) : [D,E]$

SL not.:
$$\omega_E^{[A;B;D] \Diamond [A;C;D]} = ((\omega_B^A \otimes \omega_D^B) \oplus (\omega_C^A \otimes \omega_D^C)) \otimes \omega_E^D)$$

Subjective Logic - UAI 2016

Discount and Fuse: Dilution and Confidence

Discounting dilutes trust confidence

Fusion strengthens trust confidence

Incorrect trust / belief derivation

Perceived: $([A, B] : [B, X]) \diamond ([A, C] : [C, X])$

Hidden: $([A, B] : [B, D] : [D, X]) \diamond ([A, C] : [C, D] : [D, X])$

Audun Jøsang

Subjective Logic – UAI 2016

Hidden and perceived topologies

Perceived topology:

Hidden topology:

$([A, B] : [B, X]) \diamond ([A, C] : [C, X])$ $\neq ([A, B] : [B, D] : [D, X]) \diamond ([A, C] : [C, D] : [D, X])$

(D, E) is taken into account twice

Correct trust / belief derivation

Perceived and_real topologies are equal:

 $(([A; B] : [B; D]) \diamond ([A; C] : [C; D])) : [D, X]$

Subjective Logic - UAI 2016

Computing discounted trust

Example: Weighing testimonies

- Computing beliefs about statements in court.
- *J* is the judge.
- W_1, W_2, W_3 are witnesses providing testimonies.

<u>File E</u>dit <u>V</u>iew F<u>a</u>vorites <u>T</u>ools <u>H</u>elp

Address 🕘 http://security.dstc.edu.au/spectrum/trustengine/demo2.html

Simple Trust Network Demo

Four entities, labelled A, B, C and D have opinios about each other represented as points in triangles. Entity A is trying to form an opinion about D, and receives opinions from B and C as to the trustworthiness of D. Furthermore, A has his own opinions about the trustworthiness of B and C.

Left-click and drag opinion points to set opinion values. Entity A combines these opinions using the <u>Subjective Logic Operators</u> to derive his own opinion about **D**, as shown by the bottom opinion triangle. In detail, entity A *discounts* **B**'s opinion about **D** by his opinion about **B**, and does similarly for **C**. Finally, he combines the two discounted opinions using the *consensus* operator in order to determine his opinion about **D**. Right-click on the opinion triangles to see the exact values of each opinion. Opinion values can also be visualised using <u>three-coloured rectangles</u>.

- ILI 🔼

Links

💌 🔁 Go

Bayesian Reasoning

Deduction and Abduction

Deduction visualisation

- Evidence pyramid is mapped inside hypothesis pyramid as a function of the conditionals.
- Conclusion opinion is linearly mapped

Deduction – online operator demo

http://folk.uio.no/josang/sl/

Bayes' Theorem

 Traditional statement of Bayes' theorem:

$$p(x \mid y) = \frac{p(x)p(y|x)}{p(y)}$$

 Bayes' theorem with base rates:

$$p(x \mid y) = \frac{a(x) p(y \mid x)}{a(y)}$$

• Marginal base rates:

$$a(y) = a(x)p(y \mid x) + a(\overline{x})p(y \mid \overline{x})$$

 Bayes' theorem with marginal base rates

$$\int p(x \mid y) = \frac{a(x)p(y|x)}{a(x)p(y|x) + a(\overline{x})p(y|\overline{x})}$$
$$p(x \mid \overline{y}) = \frac{a(x)p(\overline{y}|x)}{a(x)p(\overline{y}|x) + a(\overline{x})p(\overline{y}|\overline{x})}$$

The Subjective Bayes' Theorem

Deduction and abduction notation

Audun Jøsang

Subjective Logic - UAI 2016

Example: Medical reasoning

- Medical test reliability determined by:
 - true positive rate p(y | x) where x: infected
 - false positive rate $p(y | \overline{x})$

y: positive test

- Bayes' theorem: $p(x \mid y) = \frac{p(x)p(y \mid x)}{p(y)} = \frac{a(x)p(y \mid x)}{a(x)p(y \mid x) + a(\overline{x})p(y \mid \overline{x})}$
- Probabilistic model hides uncertainty
- Use subjective Bayes' theorem to determine $\omega_{(infected)}$

$$\omega_{X\,\widetilde{|}\,Y}=\mathfrak{F}(\omega_{Y|X},\ a_X)$$

- GP derives $\omega_{(infected | positive)}$ and $\omega_{(infected | negative)}$
- Finally compute diagnosis $\omega_{(infected \,\widetilde{\parallel}\, test \, result)}$
- Medical reasoning with SL reflects uncertainty

Audun Jøsang

Abduction – Online operator demo

http://folk.uio.no/josang/sl/

The General Idea of Subjective Networks

Example SN Model

 $\omega_{Z}^{A} = (((\omega_{B}^{A} \otimes \omega_{X}^{B}) \oplus (\omega_{C}^{A} \otimes \omega_{X}^{C})) \otimes \omega_{Y|X}^{A}) \otimes \omega_{Z|Y}^{A}$

Audun Jøsang

Subjective Networks

New Book on Subjective Logic

<text><text><image><image><image>

Springer

springer.com

A. Jøsang Subjective Logic

A Formalism for Reasoning Under Uncertainty

Series: Artificial Intelligence: Foundations, Theory, and Algorithms

- A critical tool in understanding and incorporating uncertainty into decision-making
- First comprehensive treatment of subjective logic and its operations, by the researcher who developed the approach
- Helpful for researchers and practitioners who want to build artificial reasoning models and tools for solving real-world problems

This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions,