Introduction to Parallel and High-Performance Computing

(with Machine-Learning applications)

Anshul Gupta, IBM Research

Prabhanjan (Anju) Kambadur, Bloomberg L.P.

Introduction to Parallel and High-Performance Computing (with Machine-Learning applications)

Part 1 Part 2

Parallel computing basics and parallel algorithm analysis Parallel algorithms for <u>Building a Classifier</u>

• Why parallel computing?

Why parallel computing?Parallel computing platforms

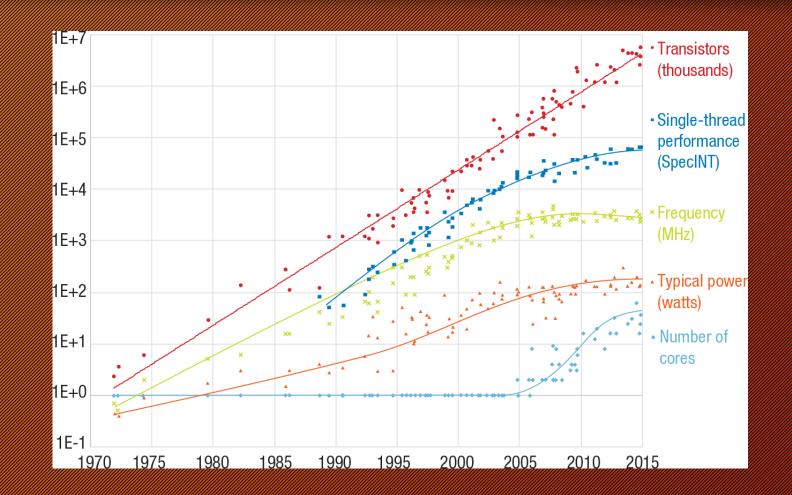
- Why parallel computing?
- Parallel computing platforms
- Parallel algorithm basics

- Why parallel computing?
- Parallel computing platforms
- Parallel algorithm basics
- Decomposition for parallelism

- Why parallel computing?
- Parallel computing platforms
- Parallel algorithm basics
- Decomposition for parallelism
- Parallel programming models

- Why parallel computing?
- Parallel computing platforms
- Parallel algorithm basics
- Decomposition for parallelism
- Parallel programming models
- Parallel algorithm analysis

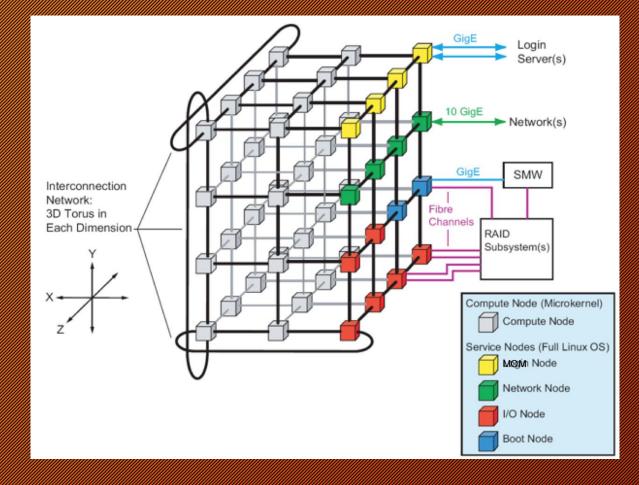
Why parallel computing?



Microprocessor trends: 1972--2015

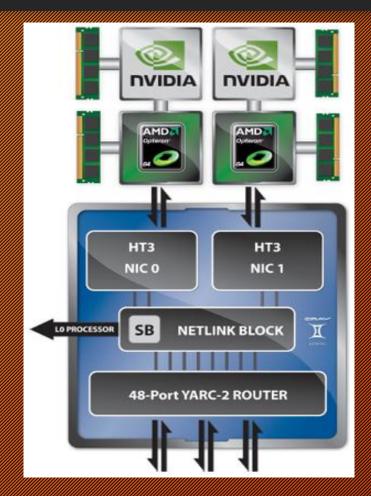
Kirk M. Bresniker, Sharad Singhal, R. Stanley Williams, "Adapting to Thrive in a New Economy of Memory Abundance", *Computer*, vol.48, no. 12, pp. 44-53, Dec. 2015, doi:10.1109/MC.2015.368

Parallel computing platforms



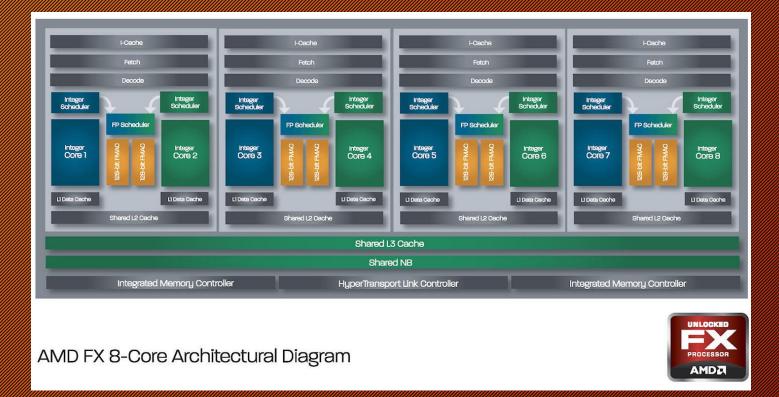
Highest level of parallelism:

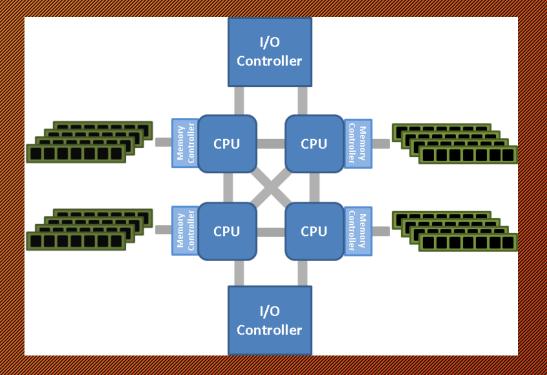
- Compute nodes on an interconnection network
- Possibly, thousands of nodes
- Distributed memory
- Distributed or shared address space
- Scalability analysis crucial



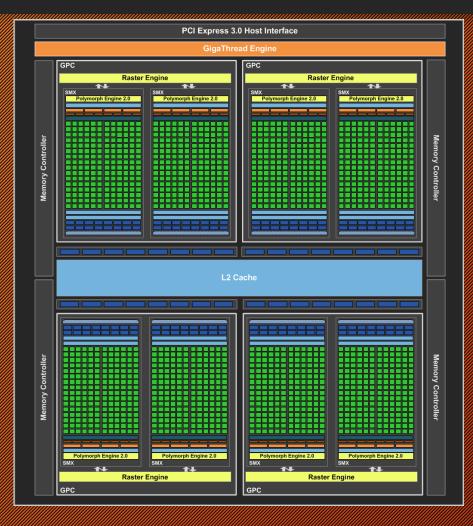
A generalized compute node

- (Possibly) multiple CPUs
- (Possibly) multiple GPUs





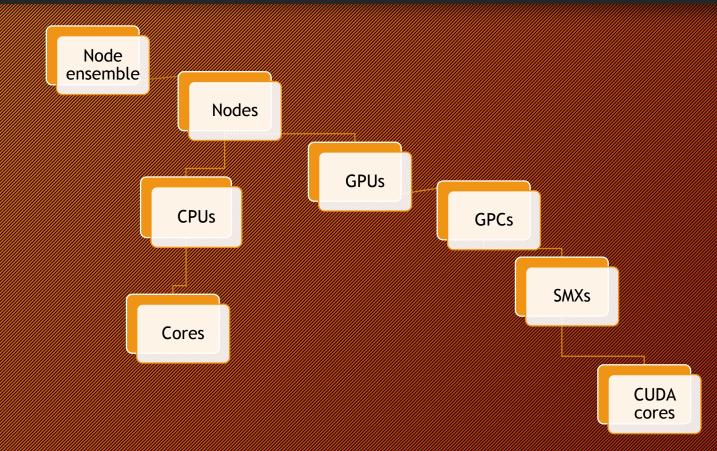
Shared memory on a node, but Non-Uniform Memory Access (NUMA).



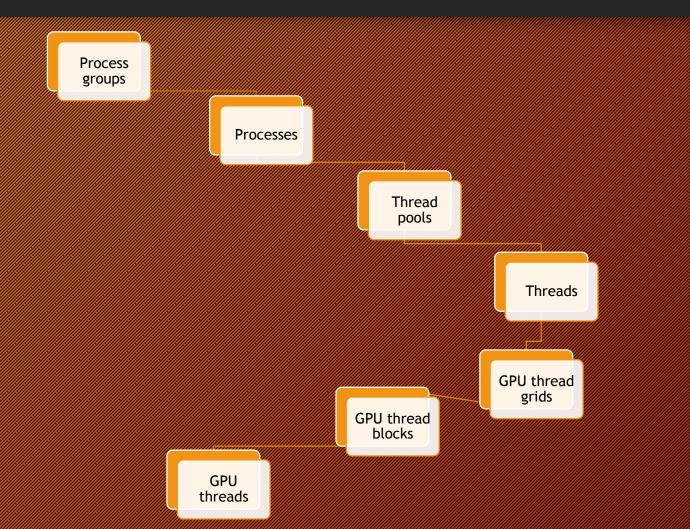
Nvidia GeForce GTX 680 (Kepler)

- 4 GPCs (graphics processing clusters)
- 8 SMXs (streaming multiprocessors)
- 192 X 8 = 1536 CUDA cores

Parallel hardware hierarchy



Parallel program hierarchy



Distributed Memory

Shared Memory

<u>Accelerator</u>

Distributed Memory

- Multiple processes
- Distributed address space
- Explicit data movement
- Locality!

Distributed Memory

- Multiple processes
- Distributed address space
- Explicit data movement
- Locality!

Shared Memory

- Multiple threads
- Shared address space
- Implicit data movement
- Locality!

Distributed Memory

- Multiple processes
- Distributed address space
- Explicit data movement
- Locality!

Shared Memory

- Multiple threads
- Shared address space
- Implicit data movement
- Locality!

<u>Accelerator</u>

- Host memory ← PCle
 → Device memory
- Explicit data movement
- Locality!

Algorithm design is critical to devising a computing solution

- Algorithm design is critical to devising a computation solution
- Serial algorithm is a recipe or sequence of basic steps or operations

- Algorithm design is critical to devising a computation solution
- Serial algorithm is a recipe or sequence of basic steps or operations
- Parallel algorithm is a recipe for solving the given problem using an ensemble of hardware resources

- Algorithm design is critical to devising a computation solution
- Serial algorithm is a recipe or sequence of basic steps or operations
- Parallel algorithm is a recipe for solving the given problem using an ensemble of hardware resources
- Specifying parallel algorithm involves a lot more than specifying a sequence of basic steps

- Algorithm design is critical to devising a computation solution
- Serial algorithm is a recipe or sequence of basic steps or operations
- Parallel algorithm is a recipe for solving the given problem using an ensemble of hardware resources
- Specifying parallel algorithm involves a lot more than specifying a sequence of basic steps

 Identifying portions of work that can be performed concurrently

- Identifying portions of work that can be performed concurrently
- Mapping concurrent pieces of work onto computing agents running in parallel

- Identifying portions of work that can be performed concurrently
- Mapping concurrent pieces of work onto computing agents running in parallel
- Making the input, output, and intermediate data available to the right computing agent at the right time

- Identifying portions of work that can be performed concurrently
- Mapping concurrent pieces of work onto computing agents running in parallel
- Making the input, output, and intermediate data available to the right computing agent at the right time
- Managing simultaneous requests for shared data

- Identifying portions of work that can be performed concurrently
- Mapping concurrent pieces of work onto computing agents running in parallel
- Making the input, output, and intermediate data available to the right computing agent at the right time
- Managing simultaneous requests for shared data
- Synchronizing computing agents for correct program execution

- Identifying portions of work that can be performed concurrently
 Decomposition
- Mapping concurrent pieces of work onto computing agents running in parallel
- Making the input, output, and intermediate data available to the right computing agent at the right time - <u>Data Dependencies</u>
- Managing simultaneous requests for shared data
- Synchronizing computing agents for correct program execution -<u>Task Dependencies</u>

Task Decomposition

Data Decomposition

Task Decomposition

 Concurrent tasks are identified and mapped onto to threads or processes

Task Decomposition

- Concurrent tasks are identified and mapped onto to threads or processes
- Tasks share or exchange data as needed

Task Decomposition

- Concurrent tasks are identified and mapped onto to threads or processes
- Tasks share or exchange data as needed
- May be static or dynamic

Task Decomposition Data Decomposition

Concurrent tasks are identified and mapped onto to threads or processes

- Tasks share or exchange data as needed
- May be static or dynamic

• Data is partitioned (input, output, or intermediate)

Decomposition for concurrency

Task Decomposition

Data Decomposition

- Concurrent tasks are identified and mapped onto to threads or processes
- Tasks share or exchange data as needed
- May be static or dynamic

- Data is partitioned
- Partitions are assigned to computing agents
- "Owner computes" rule

Decomposition for concurrency

Task Decomposition

Data Decomposition

- Concurrent tasks are identified and mapped onto to threads or processes
- Tasks share or exchange data as needed
- May be static or dynamic

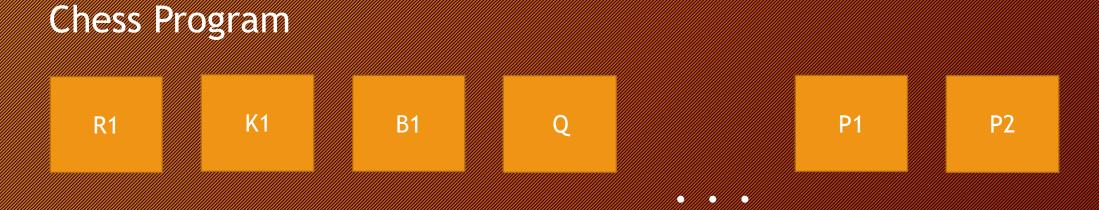
- Data is partitioned
- Partitions are assigned to computing agents
- "Owner computes" rule
- Usually static

Decomposition for concurrency

Data Decomposition Task Decomposition Decomposition Decompositions

(Example: sparse matrix factorization)

Task decomposition example



- Each task evaluates all moves of a single piece (branch-and-bound)
- Small data (board position) can be replicated
- Dynamic load balancing required

Data decomposition example

Dense Matrix-Vector Multiplication

Pı			
P2			
P3			
P4			
P ₅			
P ₆	•		
Pī			
P8_			
P ₈ 			

 Focus on one level of hierarchy at a time - from top to bottom.

- Focus on one level of hierarchy at a time from top to bottom.
- Devise the best decomposition strategy at the given level

- Focus on one level of hierarchy at a time from top to bottom.
- Devise the best decomposition strategy at the given level
- Computing agents are likely to be parallel themselves

- Focus on one level of hierarchy at a time from top to bottom.
- Devise the best decomposition strategy at the given level
- Computing agents are likely to be parallel themselves
- Minimize interactions, synchronization, and data movement among computing agents

- Focus on one level of hierarchy at a time from top to bottom.
- Devise the best decomposition strategy at the given level
- Computing agents are likely to be parallel themselves
- Minimize interactions, synchronization, and data movement among computing agents
- Minimize load imbalance and idling among computing agents

- Focus on one level of hierarchy at a time from top to bottom.
- Devise the best decomposition strategy at the given level
- Computing agents are likely to be parallel themselves
- Minimize interactions, synchronization, and data movement among computing agents
- Minimize load imbalance and idling among computing agents

 Serial run time, Ts: time required by best known method on a single computing agent

- Serial run time, Ts: time required by best known method on a single computing agent
- Problem size, W = total amount of work: T_s = kW

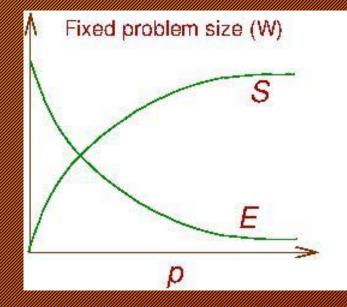
- Serial run time, T_s: time required by best known method on a single computing agent
- Problem size, W = total amount of work: Ts = kW
- Parallel run time, T_P: time elapsed between start of computation until the last of the p computing agents finishes

- Serial run time, Ts: time required by best known method on a single computing agent
- Problem size, W = total amount of work: Ts = kW
- Parallel run time, T_P: time elapsed between start of computation until the last of the p computing agents finishes
- Overhead, sum of all wasted compute resources: $T_0 = pT_P T_S$

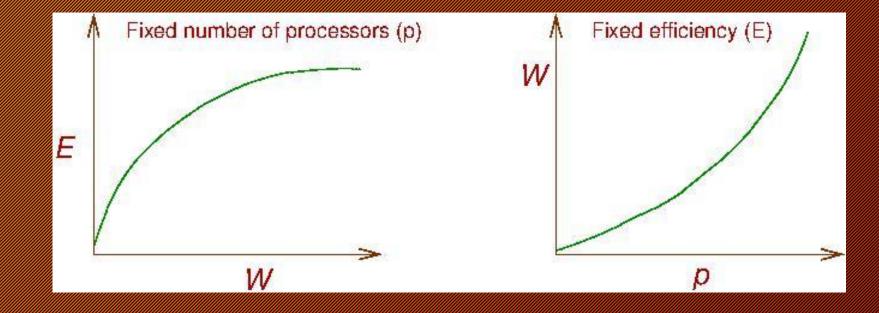
- Serial run time, Ts: time required by best known method on a single computing agent
- Problem size, W = total amount of work: Ts = kW
- Parallel run time, T_P: time elapsed between start of computation until the last of the p computing agents finishes
- Overhead, sum of all wasted compute resources: To = pTp Ts
- Speedup, ratio of serial to parallel time: $S = T_s/T_P = pT_s/(T_s+T_o)$

- Serial run time, Ts: time required by best known method on a single computing agent
- Problem size, W = total amount of work: Ts = kW
- Parallel run time, T_P: time elapsed between start of computation until the last of the p computing agents finishes
- Overhead, sum of all wasted compute resources: To = pTp Ts
- Speedup, ratio of serial to parallel time: $S = T_s/T_P = pT_s/(T_s+T_P)$
- Efficiency, fraction of overall time spent doing useful work:
 E = S/p = T_s/pT_P = T_s/(T_s+T_o)

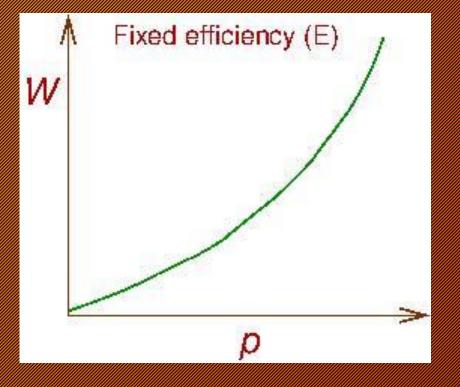
- Serial run time, Ts: time required by best known method on a single computing agent
- Problem size, W = total amount of work: T_s = kW
- Parallel run time, T_P: time elapsed between start of computation until the last of the p computing agents finishes
- Overhead, sum of all wasted compute resources: To = pTp Ts
- Speedup, ratio of serial to parallel time: $S = T_s/T_P = pT_s/(T_s+T_o)$
- Efficiency, fraction of overall time spent doing useful work:
 E = S/p = T_s/pT_P = T_s/(T_s+T_o)



- W = problem size (opcount)
- *p* = number of computing agents
- S = speedup
- E = efficiency = S/p

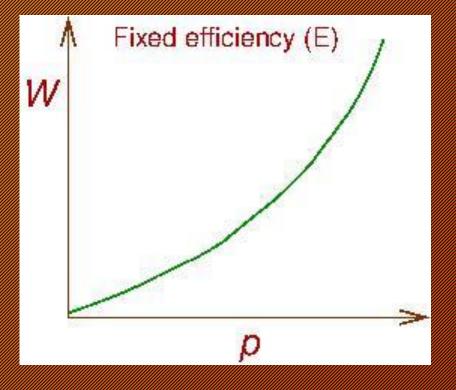


Isoefficiency function



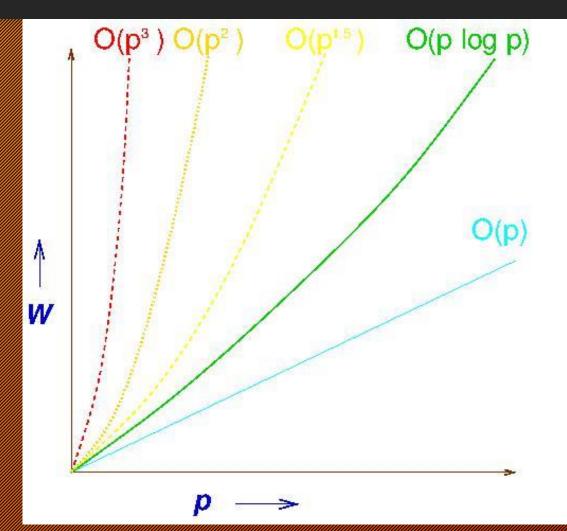
 Function *f*_€(*p*) of the number of computing agents *p* by which the problem size *W* must grow in order to maintain a given efficiency *E*.

Isoefficiency function



- Function f_€(p) of the number of computing agents p by which the problem size W must grow with p in order to maintain a given efficiency E.
- Captures the effect of communication, loadimbalance, contention, serialbottlenecks, etc.

Isoefficiency function



Typical Interpretation

O(p) lower bound/optimal

> O(p), < O(p^{1.5})
fairly scalable

> O(p^{1.5}), < O(p²) moderately scalable

> O(p²), < O(p³)
poorly scalable

 $E = S/p = T_s/pT_P$

E = S/p = Ts/pT+

Since $T_0 = pT_P - T_S$ or $pT_P = T_S + T_O$

E = \$1/p = Ts/pT+

Since $T_0 = pT_P - T_S$ or $pT_P = T_S + T_O$

Therefore, $E = T_s/(T_s + T_o)$, or $E = kW/(kW + T_o)$, because $T_s = kW$

E = \$1/p = Ts/pT+

Since $T_0 = pT_P - T_S$ or $pT_P = T_S + T_O$

Therefore, $E = T_s I (T_s + T_o)$, or $E = kW I (kW + T_o)$, because $T_s = kW$

 $W = T_0 \cdot E/k(1-E)$

E = SVp = Ts/pT+

Since $T_0 = pT_P - T_S$ or $pT_P = T_S + T_O$

Therefore, $E = T_s I (T_s + T_o)$, or $E = kW I (kW + T_o)$, because $T_s = kW$

 $W = T_0 E/k(1-E)$

W ~ To

Algorithm A

<u>Algorithm B</u>

 $T_{P} = O(n^{3}/p) + O(n^{2}/Jp)$

 $T_{P} = O(n^{3}/p) + O(n/n)$

Algorithm A $T_P = O(n^3/p) + O(n^2/Jp)$

 $W = O(n^3) \implies n^3 \sim n^2 \int p$

Algorithm B

 $T_{P} = O(n^{3}/p) + O(nJn)$

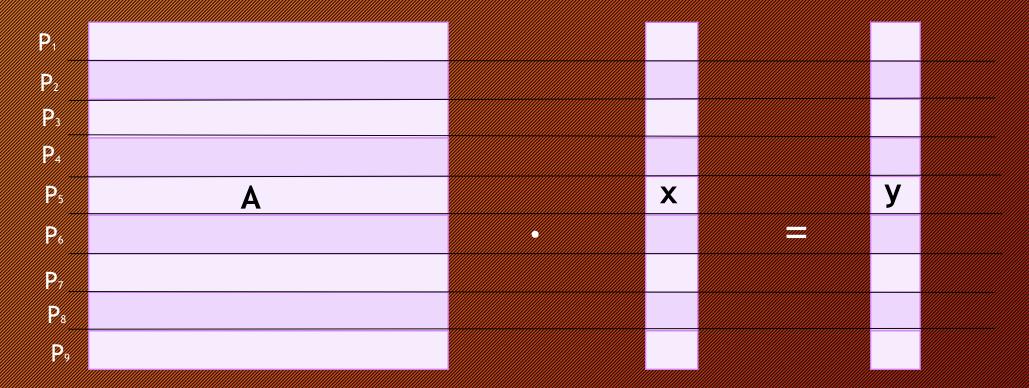
 $W = O(n^3) \implies n^3 \sim n^{1.5}p$

<u>Algorithm A</u>	<u>Algorithm B</u>				
$T_{P} = O(n^{3}/p) + O(n^{2}/Jp)$	T _P = O(n³/p) + O(n√n)				
$W = O(n^3) \Rightarrow n^3 \sim n^2 \int p$	W = O(n ³) => n ³ ~ n ^{1.5} p				
n ~ <i>∫</i> p	n ^{1.5} ~ p				

<u>Algorithm A</u>	<u>Algorithm B</u>
$T_P = O(n^3/p) + O(n^2/Jp)$	T _P = O(n³/p) + O(n√n)
$W = O(n^3) \implies n^3 \sim n^2 \int p$	W = O(n ³) => n ³ ~ n ^{1.5} p
n ~ /p	n ^{1.5} ~ p
$W = O(n^3) = O(p^{1.5})$	$W = O(n^3) = O(p^2)$

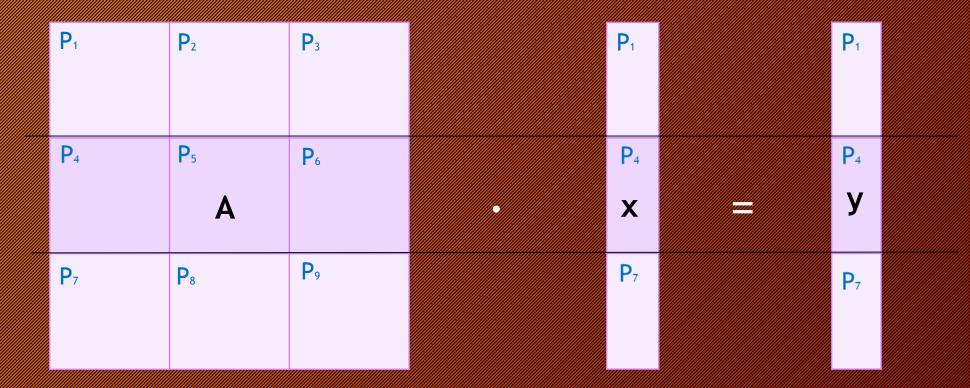
Parallel algorithm design and analysis

Dense Matrix-Vector Multiplication (1-D decomposition)

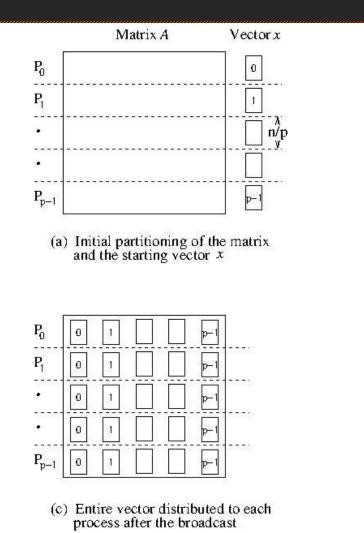


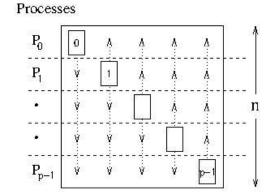
Parallel algorithm design and analysis

Dense Matrix-Vector Multiplication (2-D decomposition)

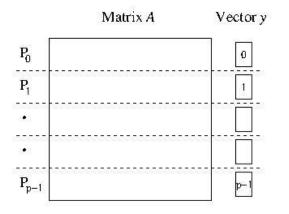


Parallel matrix-vector multiplication: 1-D decomposition



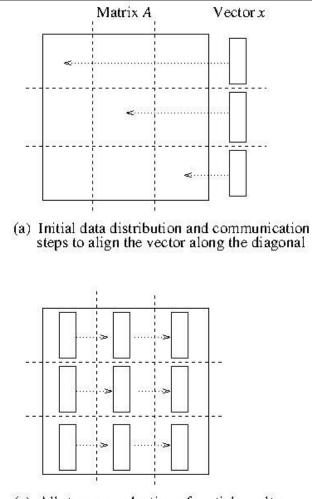


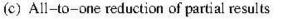
(b) Distribution of the full vector among all the processes by all-to-all broadcast

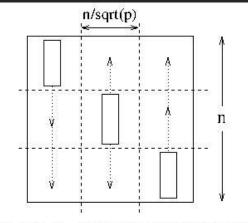


(d) Final distribution of the matrix and the result vector y

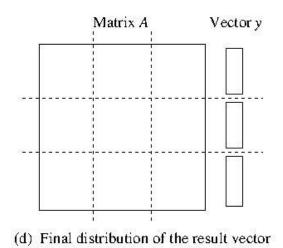
Parallel matrix-vector multiplication: 2-D decomposition







(b) One-to-all broadcast of portions of the vector along process columns



 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}n$

$$T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}n$$
$$T_{O} = t_{s}p\log(p) + t_{w}pn$$

$$T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}n$$

$$T_{O} = t_{s}p\log(p) + t_{w}pn$$

$$W = O(n^{2})$$

 $T_P = n^2/p + t_s \log(p) + t_w n$ $T_O = t_s p \log(p) + t_w p n$ $W = O(n^2)$ 1: $n^2 \sim p \log(p)$

 $T_{p} = n^{2}/p + t_{s}\log(p) + t_{w}n$ $T_{0} = t_{s}p\log(p) + t_{w}pn$ $W = O(n^{2})$ 1: $n^{2} \sim p\log(p)$ 2: $n^{2} \sim pn$, or $n \sim p$, or $W = O(n^{2}) = O(p^{2})$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}n$ $T_{O} = t_{s}p\log(p) + t_{w}pn$ $W = O(n^{2})$ 1: $n^{2} \sim p\log(p)$ 2: $n^{2} \sim pn$, or $n \sim p$, or $W = O(n^{2}) = O(p^{2})$

 $T_{p} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$ $T_{O} = t_{s}p\log(p) + t_{w}n\int p\log(p)$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$ $T_{O} = t_{s}p\log(p) + t_{w}n\int p\log(p)$ $W = O(n^{2})$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$ $T_{O} = t_{s}p\log(p) + t_{w}n\int p\log(p)$ $W = O(n^{2})$ 1: $n^{2} \sim p\log(p)$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$ $T_0 = t_s plog(p) + t_w n \int plog(p)$ $W = O(n^2)$ 1: $n^2 \sim plog(p)$ 2: $n^2 \sim n \int p \log(p)$, or $n \sim \int p \log(p)$, or $W = O(n^2) = O(p \log^2 p)$

 $T_{P} = n^{2}/p + t_{s}\log(p) + t_{w}(n/\int p)\log(p)$ $T_0 = t_s plog(p) + t_w n \int plog(p)$ $W = O(n^2)$ 1: $n^2 \sim plog(p)$ 2: $n^2 \sim n \int p \log(p)$, or $n \sim \int p \log(p)$, or $W = O(n^2) = O(p \log^2 p)$

Isoefficiency function of dense sparse matrixvector multiplication

1-D decomposition2-D decomposition $W \sim p^2$ $W \sim p \log^2 p$

2-D decomposition is likely to yield higher speedups, require smaller problems to deliver the speedups, and scale more readily to larger number of computing agents.

Parallelism necessary for continued performance improvement.

- Parallelism necessary for continued performance improvement.
- Complex hierarchy of parallel computing hardware and programming paradigms

- Parallelism necessary for continued performance improvement.
- Complex hierarchy of parallel computing hardware and programming paradigms
- Systematic top down parallel application design

- Parallelism necessary for continued performance improvement.
- Complex hierarchy of parallel computing hardware and programming paradigms
- Systematic top down parallel application design
- Decomposition strategy is critical

- Parallelism necessary for continued performance improvement.
- Complex hierarchy of parallel computing hardware and programming paradigms
- Systematic top down parallel application design
- Decomposition strategy is critical
- Analysis important to understand scalability

Thank you!