
A Proofs

The following result strengthens Proposition 1 and pro-
vides a sufficient condition under which f and its convex
envelope f

c

have the same set of minimizers. This result
implies that one can minimize the function f by minimiz-
ing its convex envelope f

c

, under the assumption that the
set of minimizer of f , X ⇤

f

, is a convex set.
Lemma 2. Let f

c

be the convex envelope of f on X . Let
X ⇤

fc
be the set of minimizers of f

c

. Assume that X ⇤
f

is a
convex set. Then X ⇤

fc
= X ⇤

f

.

Proof. We prove this result by a contradiction argument.
Assume that the result is not true. Then there exists some
ex 2 X such that f

c

(ex) = f

⇤ and ex /2 X ⇤
f

, i.e., f(ex) >

f

⇤. By definition of the convex envelope, (f⇤
, ex) lies in

conv(epif). This combined with the fact that conv(epif)
is the smallest convex set which contains epif , implies that
there exists some z

1

= (⇠

1

, x

1

) and z

2

= (⇠

2

, x

2

) in epif

and 0  ↵  1 such that

(f

⇤
, ex) = ↵z

1

+ (1� ↵)z

2

. (6)

Let us first consider the case in which z

1

and z

2

belong to
the set fX ⇤

= {(⇠, x)|x 2 X ⇤
f

, ⇠ = f(x)}. The set fX ⇤
is convex. So every convex combination of its entries also
belongs to fX ⇤ as well. This is not the case for z

1

and z

2

due to the fact that (f⇤
, ex) = ↵z

1

+ (1 � ↵)z

2

does not
belong to fX ⇤ as ex /2 X ⇤. Now consider the case that either
z

1

or z
2

are not in fX ⇤. Without loss of generality, assume
that z

1

/2 fX ⇤. In this case, ⇠
1

must be larger than f

⇤ since
x

1

/2 X ⇤
f

. This implies that (f⇤
, ex) can not be expressed as

the convex combination of z
1

and z

2

since in this case: (i)
for every 0 < ↵  1, we have that ↵⇠

1

+ (1 � ↵)⇠

2

> f

⇤

and (ii) when ↵ = 0, then x

2

= ex and therefore ↵⇠
1

+(1�
↵)⇠

2

= ⇠

2

= f(ex) > f

⇤. Therefore Eqn. 6 can not hold for
any z

1

, z

2

2 epif when 0  ↵  1. Thus the assumption
that there exists some ex 2 X/X ⇤

f

such that f
c

(ex) = f

⇤ can
not be true either, which proves the result.

A.1 Proof of Lem. 1

We first prove that any underestimate (lower bound) of
function f (except f

c

) does not satisfy the constraint of the
optimization problem of Eqn. 2. This is due to the fact that
for any underestimate h(·; ✓) 2 H/f

c

, there exists some
x

u

2 X and " > 0 such that for every ✓

c

2 ⇥

c

|h(x
u

; ✓)� h(x

u

; ✓

c

)| = h(x

u

; ✓

c

)� h(x

u

; ✓)

= f

c

(x

u

)� h(x

u

; ✓) = ".

For every x 2 X , the following then holds due to the fact
that the function class H is assumed to be Lipschitz:

h(x; ✓)� h(x; ✓

c

) = h(x; ✓)� h(x

u

, ✓)� "

h(x

u

, ✓

c

)� h(x; ✓

c

)  2�d(x, x

u

)� ".

(7)

Eqn. 7 implies that for every x 2 B(x
u

, "/2�) the inequal-
ity �

c

(x) = h(x; ✓

c

) � h(x; ✓) > 0 holds. Denote the
event {x 2 B(x

u

, "/(2�))} by ⌦

u

. We then deduce that

E[�
c

(x)] � P(⌦
u

)E[�
c

(x)|⌦
u

] > 0,

where the last inequality follows due to the fact that both
P(⌦

u

) and E[�
c

(x)|⌦
u

] are larger than 0. The inequality
P(⌦

u

) > 0 holds since ⇢(x) > 0 for every x 2 X and also
that B(x

u

, "/2�) 6= ;. The inequality E[�
c

(x)|⌦
u

] > 0

holds by the fact that for every x 2 B(x
u

, "/2�) the in-
equality �

c

(x) > 0 holds.

Let eH := {h : h 2 H,E[h(x; ✓)] = E[f
c

(x)]} be a set
of all functions h in H with the same mean as the convex
envelope f

c

. We now show that f
c

is the only minimizer of
L(✓) = E[|h(x; ✓)�f(x)|] that lies in the set eH. We do this
by proving that for every h 2 eH/f

c

, the loss L(✓) > L(✓

c

),
for every ✓

c

2 ⇥

c

. First we recall that any underestimate
h 2 H/f

c

of f can not lie in eH, as we have already shown
that E[h(x; ✓)] < E[f

c

(x)] for every h 2 H/f

c

. This im-
plies that for every h 2 eH/f

c

there exists some x

o

2 X
such that h(x

o

; ✓) > f(x), or equivalently, we have that
for every h 2 eH/f

c

there exists some x

o

2 X and " > 0

such that

|h(x
o

; ✓)� f(x

o

)| = h(x

o

; ✓)� f(x

o

) = ".

Then for every x 2 X , the following holds due to the fact
that the function class H and f are assumed to be Lipschitz:

h(x; ✓)� f(x) = h(x; ✓)� h(x

o

, ✓) + " (8)
f(x

o

)� f(x) � �2�d(x, x

o

). (9)

Eqn. 8 implies that for every x 2 B(x
o

, "/2�) the in-
equality h(x; ✓) � f

c

(x) > 0 holds. Denote the event
{x 2 B(x

o

, "/2�)} by ⌦

o

. Let �(x) = f(x) � h(x; ✓).
We then deduce

E[|h(x; ✓)� f(x)|]
= P(⌦

o

)E[|�(x)| | ⌦
o

] + P(⌦c

o

)E[|�(x)| | ⌦c

o

] (10)
> P(⌦

o

)E[�(x) |⌦
o

] + P(⌦c

o

)E[�(x) |⌦c

o

] (11)
= E[�(x)] = E[f(x)� f

c

(x)]. (12)

Line (10) holds by the law of total expectation. The
inequality (11) holds since h(x; ✓) > f(x) for every
x 2 B(x

o

, "/2�). This implies that |h(x; ✓) � f(x)| >

0 > f(x) � h(x; ✓). Line (12) holds since E[h(x; ✓)] =
E[f

c

(x)] for h 2 eH. The fact that L(✓) = E[|h(x; ✓) �
f(x)|] > E[|f(x) � f

c

(x)|] = L(✓

c

) for every h(·; ✓) 2
H/f

c

implies that the set of minimizers of L(✓) coincide
with the set ⇥

c

, which completes the proof.

A.2 Proof of Thm. 1

To prove the result of Thm. 1, we need to relate the solution
of the optimization problem of Eqn. 4 with the result of
Alg. 1, for which we rely on the following lemmas.



Before we proceed, we must introduce some new nota-
tion. Define the convex sets ⇥

e and b⇥e as ⇥

e

:= {✓ :

✓ 2 ⇥,E[h(x; ✓)] = E[f
c

(x)]} and b⇥e

:= {✓ : ✓ 2
⇥,

bE
2

[h(x; ✓)] =

bE
2

[f

c

(x)]}, respectively. Also define the
subspace ⇥sub := {✓ : ✓ 2 Rp

,E[h(x; ✓)] = E[f
c

(x)]}.
Lemma 3. Let � be a positive scalar. Under Assumptions
1 and 3 there exists some µ 2 [�R,R] such that the fol-
lowing holds w.p. 1� �:

��
L(

b
✓

µ

)� min

✓2⇥

e
L(✓)

��  O
 
BRU

r
log(1/�)

T

!
.

Proof. The empirical estimate b✓
µ

is obtained by minimiz-
ing the empirical bL(✓) under some affine constraints. Ad-
ditionally, the function L(✓) takes the form of the ex-
pected value of a generalized linear model. Now set µ =

bE
2

[f

c

(x)]. In this case, the following result on stochas-
tic optimization of the generalized linear model holds for
µ =

bE
2

[f

c

(x)] w.p. 1� � (see, e.g., Shalev-Shwartz et al.,
2009, for the proof):

L(

b
✓

µ

)� min

✓2b
⇥

e
L(✓) = O

 
BRU

1

r
log(1/�)

T

!
,

where U

1

is the Lipschitz constant of |h(x; ✓)� f(x)|. We
then deduce that for every x 2 X , ✓ 2 ⇥ and ✓

0 2 ⇥,

| |h(x, ✓)� f(x)|� |h(x, ✓0)� f(x)| |  U

1

k✓ � ✓

0k.

The inequality | |a|� |b| |  |a � b|, combined with the
fact that for every x 2 X the function h(x; ✓) is Lipschitz
continuous in ✓ implies,

| |h(x, ✓)� f(x)|� |h(x, ✓0)� f(x)| |
|h(x, ✓)� h(x, ✓

0
)|  Uk✓ � ✓

0k.

Therefore the following holds:

L(

b
✓

µ

)� min

✓2b
⇥

e
L(✓) = O

 
BRU

r
log(1/�)

T

!
. (13)

For every ✓ 2 b⇥e, the following holds w.p. 1� �:

E[h(x; ✓)]� bE
2

[f

c

(x)] = E[h(x; ✓)]� bE
2

[h(x; ✓)]

 R

r
log(1/�)

2T

,

as well as,

bE
2

[f

c

(x)]� E[f
c

(x)]  R

r
log(1/�)

2T

,

in which we rely on the Höeffding inequality for concen-
tration of measure. These results combined with a union
bound argument implies that:

E[h(x; ✓)]� E[f
c

(x)] = E[h(x; ✓)]� bE
2

[f

c

(x)]

+

bE
2

[f

c

(x)]� E[f
c

(x)]

 R

r
2 log(2/�)

T

,

(14)

for every ✓ 2 b
⇥

e. We know that min

✓2b
⇥

e L(✓)  L(✓

c

),
due the fact that ✓

c

2 b
⇥

e. This combined with the fact
that ✓

c

= min

✓2⇥

e
L(✓) leads to the following sequence of

inequalities w.p. 1� �:

min

✓2b
⇥

e
L(✓)  L(✓

c

) = E[f(x)� f

c

(x)]

 E[|f(x)� h(x;

b
✓

c

)|] + E[h(x; b✓
c

)� f

c

(x)]

 min

✓2b
⇥

e
L(✓) +R

r
2 log(2/�)

T

,

where the last inequality follows from the bound of
Eqn. 14. It immediately follows that:

��� min

✓2b
⇥

e
L(✓)� min

✓2⇥

e
L(✓)

���  R

r
2 log(2/�)

T

,

w.p. 1 � �. This combined with Eqn. 13 completes the
proof.

Let b✓proj
µ

be the `
2

-normed projection of b✓
µ

on the subspace
⇥sub. We now prove bound on the error kb✓proj

µ

� b✓
µ

k.

Lemma 4. Let � be a positive scalar. Then under Assump-
tions 1 and 3 there exists some µ 2 [�R,R] such that the
following holds with probability 1� �:

kb✓proj
µ

� b✓
µ

k  R

kE[�(x)]k

r
2 log(4/�)

T

.

Proof. Set µ = µ

f

:= E[f
c

(x)]. Then b✓proj
µ

can be ob-
tained as the solution of following optimization problem:

b
✓

proj

µ

= argmin

✓2Rp
k✓ � b✓

µ

k2 s.t. E[h(x; ✓)] = µ

f

.

Thus b✓proj
µ

can be obtain as the extremum of the following
Lagrangian:

L(✓,�) = k✓ � b✓
µ

k2 + �(E[h(x; ✓)]� µ

f

).

This problem can be solved in closed-form as follows:

0 =

@L(✓,�)
@✓

= ✓ � b✓
µ

+ �E[�(x)]

0 =

@L(✓,�)
@�

= E[h(x; ✓)]� µ

f

.

(15)



Solving the above system of equations leads to
E[h(x; (b✓

µ

� �E[�(x)])] = µ

f

. The solution for �

can be obtained as

� =

µ

f

� E[h(x; b✓
µ

)]

kE[�(x)]k2 .

By plugging this in Eqn. 15 we deduce:

b
✓

proj

µ

=

b
✓

µ

� (µ

f

� E[h(x; b✓
µ

)])E[�(x)]
kE[�(x)]k2 ,

For the choice of µ =

bE
2

[f

c

(x)] we deduce:

kb✓proj
µ

� b✓
µ

k =

|µ
f

� E[h(x; b✓
µ

)]|
kE[�(x)]k

=

|E[f
c

(x)]� E[h(x; b✓
µ

)]|
kE[�(x)]k .

This combined with Eqn. 14 and a union bound proves the
result.

We proceed by proving bound on the absolute error
|L(b✓proj

µ

)� L(✓

c

)| = |L(b✓proj
µ

)�min

✓2⇥

e
L(✓)|.

Lemma 5. Let � be a positive scalar. Under Assumptions
1 and 3 there exists some µ 2 [�R,R] such that the fol-
lowing holds with probability 1� �:

��
L(

b
✓

proj

µ

)� L(✓

c

)

��
= O

 
BRU

r
log(1/�)

T

!
.

Proof. From Lem. 4 we deduce:

|E[h(x; b✓proj
µ

)� h(x;

b
✓

µ

)]|

 kb✓proj
µ

� b✓
µ

kkE[�(x)]k  2R

r
log(4/�)

T

,

(16)

where the first inequality is due to the Cauchy-Schwarz in-
equality. We then deduce:

| |L(b✓proj
µ

)� L(✓

c

)|� |L(b✓
µ

)� L(✓

c

)| |
 |L(b✓proj

µ

)� L(

b
✓

µ

)|  |E[h(x; b✓proj
µ

)� h(x;

b
✓

µ

)]|,

in which we rely on the triangle inequality | |a| � |b| | 
|a� b|. It then follows that

L(

e
✓

µ

)� L(✓

c

)  |L(b✓
µ

)� L(✓

c

)|
+ |E[h(x; b✓proj

µ

)� h(x;

b
✓

µ

)]|.

Combining this result with the result of Lem. 3 and Eqn. 16
proves the result.

In the following lemma we make use of Lem. 4 and Lem. 5
to prove that the minimizer bx

µ

= argmin

x2Xh(x;

b
✓

µ

) is
close to a global minimizer x⇤ 2 X ⇤

f

.

Lemma 6. Under Assumptions 1, 3 and 4 there exists some
µ 2 [�R,R] such that w.p. 1� �:

d(bx
µ

,X ⇤
f

) = O
 ✓

log(1/�)

T

◆
�1�2/2

!
.

Proof. The result of Lem. 5 combined with Assump-
tion 4.b implies that w.p. 1� �:

d

2

(

b
✓

proj

µ

,⇥

c

) 
✓
"

1

(�)

�

◆
�2

,

where "

1

(�) = BRU

q
log(1/�)

T

. This combined with the
result of Lem. 4 implies that w.p. 1� �:

d

2

(

b
✓

µ

,⇥

c

)  d

2

(

b
✓

proj

µ

,⇥

c

)+d

2

(

b
✓

proj

µ

,

b
✓

µ

)  2

✓
"

c

(�)

�

2

◆
�2

,

where "

c

(�) = O
✓

RBU

min(1,kE[�(x)]k)

q
log

1
�

T

◆
.

We now use this result to prove a high probability bound
on f

c

(bx
µ

)� f

⇤ :

f

c

(bx
µ

)� f

⇤
= h(✓

c

, bx
µ

)� h(✓

c

, x

⇤
)

= h(✓

c

, bx
µ

)� h(

b
✓

µ

, bx
µ

) + min

x2X
h(

b
✓

µ

, x)� h(✓

c

, x

⇤
)

 h(✓

c

, bx
µ

)� h(

b
✓

µ

, bx
µ

) + h(

b
✓

µ

, x

⇤
)� h(✓

c

, x

⇤
)

 2Ud

2

(

b
✓

µ

,⇥

c

)  2U

✓
"

c

(�)

�

2

◆
�2

,

where the last inequality follows by the fact that h is U-
Lipschitz w.r.t. ✓. This combined with Assumption 4.a
completes the proof.

It then follows by combining the result of Lem. 6, Assump-
tion 2 and the fact that f

c

is the tightest convex lower bound
of function f that there exist a µ = [�R,R] such that

f(bx
µ

)� f

⇤
= O

"✓
log(1/�)

T

◆
�1�2/2

#

This combined with the fact that f(bxbµ)  f(bx
µ

) for ev-
ery µ 2 [�R,R], completes the proof of the main result
(Thm. 1) .



A.3 Proof of Thm. 2

We prove this theorem by generalizing the result of
Lems. 3-6 to the case that f /2 H. First we need to in-
troduce some notation. Under the assumptions of Thm. 2,
for every ⇣ > 0, there exists some ✓

⇣ 2 ⇥ and � > 0 such
that the following inequality holds:

E[|h(x; ✓⇣)� f

c

(x)|]  � + ⇣.

Define the convex sets e⇥⇣

:= {✓ : ✓ 2 ⇥,E
2

[h(x; ✓)] =

E
2

[h(x; ✓

⇣

)]} and b⇥⇣

:= {✓ : ✓ 2 ⇥,

bE
2

[h(x; ✓)] =

bE
2

[h(x; ✓

⇣

)]}. Also define the subspace ⇥

⇣

sub := {✓ : ✓ 2
Rep

,E[h(x; ✓)] = E[h(x; ✓⇣)]}.
Lemma 7. Let � be a positive scalar. Under Assumptions
1 and 5 there exists some µ 2 [�R,R] such that for every
⇣ > 0 the following holds with probability 1� �:

��
L(

b
✓

µ

)� min

✓2e
⇥

⇣
L(✓)

��
= O

 
BRU

r
log(1/�)

T

!
+ � + ⇣.

Proof. The empirical estimate b✓
µ

is obtained by minimiz-
ing the empirical bL(✓) under some affine constraints. Also
the function L(✓) is in the form of expected value of some
generalized linear model. Now set µ =

bE
2

[h(x; ✓

⇣

)]. Then
the following result on stochastic optimization of the gen-
eralized linear model holds w.p. 1 � � (see, e.g., Shalev-
Shwartz et al., 2009, for the proof):

L(

b
✓

µ

)� min

✓2b
⇥

⇣
L(✓) = O

 
BRU

1

r
log(1/�)

T

!
,

where U

1

satisfies the following Lipschitz continuity in-
equality for every x 2 X , ✓ 2 ⇥ and ✓

0 2 ⇥:

| |h(x, ✓)� f(x)|� |h(x, ✓0)� f(x)| |  U

1

k✓ � ✓

0k.

The inequality | |a|� |b| |  |a � b| combined with the
fact that for every x 2 X the function h(x; ✓) is Lipschitz
continuous in ✓ implies

| |h(x, ✓)� f(x)|� |h(x, ✓0)� f(x)| |
|h(x, ✓)� h(x, ✓

0
)|  Uk✓ � ✓

0k.

Therefore the following holds:

L(

b
✓

µ

)� min

✓2b
⇥

⇣
L(✓) = O

 
BRU

r
log(1/�)

T

!
, (17)

For every ✓ 2 b⇥⇣ the following holds w.p. 1� �:

E[h(x; ✓)]� bE
2

[h(x; ✓

⇣

)] = E[h(x; ✓)]� bE
2

[h(x; ✓)]

 R

r
log(1/�)

2T

,

as well as,

bE
2

[h(x; ✓

⇣

)]� E[h(x; ✓⇣)]  R

r
log(1/�)

2T

,

in which we rely on the Höeffding inequality for concen-
tration of measure. These results combined with a union
bound argument implies that

E[h(x; ✓)]� E[h(x; ✓⇣)] = E[h(x; ✓)]� bE
2

[h(x; ✓

⇣

)]

+

bE
2

[h(x; ✓

⇣

)]� E[h(x; ✓⇣)]  R

r
2 log(2/�)

T

,

(18)
for every ✓ 2 b⇥⇣ . Then the following sequence of inequal-
ities holds:

min

✓2b
⇥

⇣
L(✓)  L(✓

⇣

) = E[|h(x; ✓⇣)� f(x)|]

L(✓

c

) + E[|h(x; ✓⇣)� f

c

(x)|]
L(✓

c

) + � + ⇣

 min

✓2b
⇥

⇣
L(✓) +R

r
2 log(2/�)

T

.

The first inequality follows from the fact that ✓
c

2 b
⇥

⇣ .
Also the following holds w.p. 1� �:

L(✓

c

)  E[|h(x; ✓⇣)� f

c

(x)|] + E[h(x; ✓⇣)]� E[f(x)]
� + ⇣ + E[h(x; ✓⇣)]� E[f(x)]

 min

✓2b
⇥

⇣
E[h(x; ✓)]� E[f(x)] +R

r
2 log(2/�)

T

+ � + ⇣

 min

✓2b
⇥

⇣
L(✓) +R

r
2 log(2/�)

T

+ � + ⇣.

The last inequality follows from the bound of Eqn. 18. It
immediately follows that

��� min

✓2b
⇥

⇣
L(✓)� min

✓2⇥

e
L(✓)

���  R

r
2 log(2/�)

T

+ � + ⇣,

w.p. 1 � �. This combined with Eqn. 17 completes the
proof.

Under Assumption 6, for every h(·; ✓) 2 H, there exists
some h(·; e✓) 2 eH such that h(x; ✓) = h(x;

e
✓) for every

x 2 X . Let e✓
µ

be the corresponding set of parameters
for b✓

µ

in e⇥. Let e✓proj
µ

be the `

2

-normed projection of e✓
µ

on the subspace ⇥

⇣

sub. We now prove bound on the error
ke✓

µ

� e✓proj
µ

k.



Lemma 8. Under Assumptions 1 and 5 and 6 there exists
some µ 2 [�R,R] such that the following holds with prob-
ability 1� �:

ke✓proj
µ

� e✓
µ

k 
R

q
2 log(4/�)

T

+ � + ⇣

kE[�(x)]k ,

Proof. e✓proj
µ

is the solution of following optimization prob-
lem:

e
✓

proj

µ

= argmin

✓2Rep
k✓ � b✓

µ

k2 s.t. E[h(x; ✓)] = µ

f

,

where µ

f

= E[f
c

(x)]. Thus e✓proj
µ

can be obtain as the
extremum of the following Lagrangian:

L(✓,�) = k✓ � e✓
µ

k2 + �(E[h(x; ✓)]� µ

f

).

This problem can be solved in closed-form as follows:

0 =

@L(✓,�)
@✓

= ✓ � e✓
µ

+ �E[(e�(x)] (19)

0 =

@L(✓,�)
@�

= E[h(x; ✓)]� µ

f

.

Solving the above system of equations leads to
E[h(x; e✓

µ

)] � �E[e�(x)] = µ

f

. The solution for �

can be obtained as

� =

µ� E[h(x; e✓
µ

)]

kE[e�(x)]k2
.

By plugging this in Eqn. 19 we deduce:

e
✓

proj

µ

=

e
✓

µ

� (µ

f

� E[h(x; e✓
µ

)])E[e�(x)]
kE[e�(x)]k2

,

We then deduce:

ke✓proj
µ

� e✓
µ

k =

|µ
f

� E[h(x; b✓
µ

)|]
kE[e�(x)]k

E[|f
c

(x)� h(x; ✓

⇣

)|] + |E[h(x; ✓⇣)]� E[h(x; b✓
µ

)]|
kE[e�(x)]k

.

This combined with Eqn. 18 and a union bound proves the
result.

We proceed by proving bound on the absolute error
|L(e✓proj

µ

)� L(✓

c

)| = |L(e✓proj
µ

)�min

✓2e
⇥

L(✓)|.

Lemma 9. Under Assumptions 1, 5 and 6 there exists some
µ 2 [�R,R] such that for every ⇣ > 0 the following bound
holds with probability 1� �:

��
L(

e
✓

proj

µ

)� L(✓

c

)

��
= O

 
⇣ + � +BRU

r
log(1/�)

T

!
.

Proof. From Lem. 8 we deduce

|E[h(x; e✓proj
µ

)� h(x;

e
✓

µ

)]|

 ke✓proj
µ

� e✓
µ

kkE[e�(x)]k  2R

r
log(4/�)

T

+ ⇣ + �.

(20)
where in the first inequality we rely on the Cauchy-Schwarz
inequality. We then deduce:

| |L(e✓proj
µ

)� L(✓

c

)|� |L(e✓
µ

)� L(✓

c

)| |
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µ
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e
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µ

)|  |E[h(x; e✓proj
µ

)� h(x;

b
✓

µ
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in which we rely on the triangle inequality | |a| � |b| | 
|a� b|. We then deduce

L(

e
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c

)  |L(b✓
µ

)� L(✓

c

)|
+ |E[h(x; e✓proj

µ

)� h(x;

e
✓

µ

)]|.

Combining this result with the result of Lem. 7 and Eqn. 20
proves the main result.

In the following lemma, we make use of Lem. 8 and Lem. 9
to prove that the minimizer bx

µ

= argmin

x2Xh(x;

b
✓

µ

) is
near a global minimizer x⇤ 2 X ⇤

f

w.r.t. to the metric d.

Lemma 10. Under Assumptions 1, 5 and 6 there exists
some µ 2 [�R,R] such that w.p. 1� �:

d(bx
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,X ⇤
f
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Proof. The result of Lem. 9 combined with Assump-
tion 6.b implies that w.p. 1� �:
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where "
1

(✓) = O(BRU

q
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T

+�+⇣). This combined
with the result of Lem. 8 implies that w.p. 1� �:
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where "

c

(�) is defined as:

"

c

(�) := O

0

@
RBU

q
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+ ⇣ + �

min(1, kE[e�(x)))k]

1

A
.

We now use this result to prove high probability bound on
f
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(bx
µ

)� f

⇤ :

f
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⇤
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where the last inequality follows by the fact that h is U-
Lipschitz w.r.t. ✓. This combined with Assumption 6.a
completes the proof.

It then follows by combining the result of Lem. 10 and As-
sumption 2 that there exist a µ 2 [�R,R] such that for
every ⇠ > 0:

f(bx
µ

)� f

⇤
= O

2

4
 r

log(1/�)

T

+ � + ⇠

!
�1�2

3

5

This combined with the fact that f(bxbµ)  f(bx
µ

) for ev-
ery µ 2 [�R,R] completes the proof of the main result
(Thm. 2) .


