A LIST OF NOTATION

:=	defined to be equal
\mathbb{N}	the natural numbers, starting with 0
\mathbb{Q}	the rational numbers
\mathbb{R}^{-}	the real numbers
t	(current) time step, $t \in \mathbb{N}$
k, n, i	time steps, natural numbers
p	a rational number
\mathcal{X}^*	the set of all finite strings over the alphabet
	X
\mathcal{X}^∞	the set of all infinite strings over the alpha-
	bet \mathcal{X}
\mathcal{X}^{\sharp}	the set of all finite and infinite strings over
	the alphabet \mathcal{X}
0	a reflective oracle
Õ	a partial oracle
a	a query to a reflective oracle
$\overset{q}{\mathcal{T}}$	the set of all probabilistic Turing machines
,	that can query an oracle
T,T'	probabilistic Turing machines that can
-,-	query an oracle, $T, T' \in \mathcal{T}$
K(x)	the Kolmogorov complexity of a string x
λ_T	the semimeasure corresponding to the
\mathcal{A}_{1}	probabilistic Turing machine T
λ_{e}^{O}	the semimeasure corresponding to the
γT	probabilistic Turing machine T with reflec-
	tive oracle <i>Q</i>
$\overline{\lambda}^O$	the completion of Q into a massive using
\wedge_T	the completion of λ_T into a measure using the reflective eracle Ω
4	the finite set of possible actions
A	the finite set of possible actions
e	the finite set of possible percents $\mathcal{E} \subset \mathcal{O}$
C	the finite set of possible percepts, $\mathcal{L} \subseteq \mathcal{O} \times$
a B	two different actions $\alpha \beta \in A$
α, ρ	two different actions, $\alpha, \beta \in \mathcal{A}$
u_t	the observation in time step t
v_t	the reward in time step t bounded between
r_t	0 and 1
0.	the percent in time step t we use a_{1} —
c_t	the percept in time step <i>i</i> , we use $e_t = (a, r_i)$ implicitly
m	(o_t, r_t) implicitly the first $t = 1$ interactions
$a_{\leq t}$	the first $t = 1$ interactions,
	$u_1e_1u_2e_2\ldots u_{t-1}e_{t-1}$ (a mistory of length $t = 1$)
C	the empty string/the history of length 0
t C	a small positive real number
5	a sman positive real number

the discount function $\gamma: \mathbb{N} \to \mathbb{R}_{\geq 0}$ γ

- Γ_t a discount normalization factor, Γ_t := $\sum_{k=t}^{\infty} \gamma_k$
- u, μ environments/semimeasures
- multi-agent environment σ
- $\sigma^{\pi_{1:n}}$ history distribution induced by policies π_1, \ldots, π_n acting in the multi-agent environment σ
 - subjective environment of agent i
- a policy, $\pi: (\mathcal{A} \times \mathcal{E})^* \to \mathcal{A}$ π

 σ_i

- an optimal policy for environment ν
- the ν -expected value of the policy π
- the optimal value in environment ν
- $\begin{array}{c} \pi_{\nu}^{*} \\ V_{\nu}^{\pi} \\ V_{\nu}^{*} \\ \mathcal{M} \end{array}$ a countable class of environments
- $\mathcal{M}^{O}_{\mathrm{refl}}$ the class of all reflective-oraclecomputable environments
- w
- ξ
- a universal prior, $w \in \Delta \mathcal{M}_{refl}^{O}$ the universal mixture over all environments \mathcal{M}_{refl}^{O} , a semimeasure the completion of λ_T^O into a measure using the reflective oracle O $\overline{\xi}$