
SUPPLEMENTARY MATERIAL.
Structured Prediction: From Gaussian Perturbations

to Linear-Time Principled Algorithms

A DETAILED PROOFS

In this section, we state the proofs of all the theorems and claims in our manuscript.

A.1 Proof of Theorem 1

Here, we provide the proof of Theorem 1. First, we derive an intermediate lemma needed for the final proof.

Lemma 1 (Adapted3 from Lemma 6 in McAllester, 2007). Assume that there exists a finite integer value ` such that

| [
(x,y)2S

P(x)|  `. Let Q(w) be a unit-variance Gaussian distribution centered at ↵w for ↵ =

q
2 log (2n`/kwk2

2

).

Simultaneously for all (x, y) 2 S, y0 2 Y(x) and w 2 W , we have:

P
w

0⇠Q(w)

[H(x, y0, f
w

0
(x))�m(x, y0, f

w

0
(x), w) < 0]  kwk2

2

/n

or equivalently:

P
w

0⇠Q(w)

[H(x, y0, f
w

0
(x))�m(x, y0, f

w

0
(x), w) � 0] � 1� kwk2

2

/n (7)

Proof. First, note that w0 � ↵w is a zero-mean and unit-variance Gaussian random vector. By well-known Gaussian
concentration inequalities, for any p 2 P(x) we have:
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The high-probability statement in eq.(7) can be written as:
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Next, we provide the final proof.

Proof of Theorem 1. Define the Gibbs decoder empirical distortion of the perturbation distribution Q(w) and training set
S as:
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In PAC-Bayes terminology, Q(w) is the posterior distribution. Let the prior distribution P be the unit-variance zero-mean
Gaussian distribution. Fix � 2 (0, 1) and ↵ > 0. By well-known PAC-Bayes proof techniques, Lemma 4 in (McAllester,
2007) shows that with probability at least 1� �/2 over the choice of n training samples, simultaneously for all parameters
w 2 W , and unit-variance Gaussian posterior distributions Q(w) centered at w↵, we have:
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Thus, an upper bound of L(Q(w), S) would lead to an upper bound of L(Q(w), D). In order to upper-bound L(Q(w), S),
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For clarity of presentation, define:
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where the step in eq.(10.a) holds since d : Y ⇥ Y ! [0, 1]. The step in eq.(10.b) follows from Lemma 1 which states that
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By eq.(8) and eq.(10.d), we prove our claim.

A.2 Proof of Theorem 2

Here, we provide the proof of Theorem 2. First, we derive an intermediate lemma needed for the final proof.
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Next, we provide the final proof.

Proof of Theorem 2. Note that sampling from the distribution Q(w, x) as defined in eq.(9) is NP-hard in general, thus
our plan is to upper-bound the expectation in eq.(10.c) by using the maximum over random structured outputs sampled
independently from a proposal distribution R(w, x) with support on Y(x).



Let T (w, x) be a set of n0 i.i.d. random structured outputs drawn from the proposal distribution R(w, x), i.e.,
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For sets T (w, x) of sufficient size n0, our goal is to upper-bound eq.(10.c) in the following form for all parameters w 2 W:
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v(x, y, ŷ, w)  max
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◆
(13)

Thus, we will show that A(w, S) p1/n and B(w, S,T(w))  O(
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A(w, S) is deterministic, the value of B(w, S,T(w)) is stochastic given that T(w) is a collection of sampled random
structured outputs.

Fix a specific w 2 W . If data is separable then v(x, y, y0, w) = 0 for all (x, y) 2 S and y0 2 Y(x). Thus, we have
A(w, S) = B(w, S,T(w)) = 0 and we complete our proof for the separable case.4 In what follows, we focus on the
nonseparable case.

Bounding the Deterministic Expectation A(w, S). Here, we show that in eq.(12), A(w, S) p1/n for all parameters
w 2 W and any training set S, provided that we use a sufficient number n0 of random structured outputs sampled from the
proposal distribution.

4The same result can be obtained for any subset of S for which the “separability” condition holds. Therefore, our analysis with the
“nonseparability” condition can be seen as a worst case scenario.



By well-known identities, we can rewrite:
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��(x, y, ŷ) · w � 0)

1

A

3

5

= E
�

2

4
sup

w2R`\{0}

0

@ 1

n

X

i2{1...n}

�
i

max

j2{1...n0}
d
ij

1

�kz
ij

k
1

� z
ij

· w � 0

�
1

A

3

5 (16.a)


X

j2{1...n0}

E
�

2

4
sup

w2R`\{0}

0

@ 1

n

X

i2{1...n}

�
i

d
ij

1

�kz
ij

k
1

� z
ij

· w � 0

�
1

A

3

5 (16.b)


X

j2{1...n0}

E
�

2

4
sup

w2R`\{0}

0

@ 1

n

X

i2{1...n}

�
i

1

�kz
ij

k
1

� z
ij

· w � 0

�
1

A

3

5 (16.c)


X

j2{1...n0}

E
�

2

4
sup

w2R`+1\{0}

0

@ 1

n

X

i2{1...n}

�
i

1 (z
ij

· w � 0)

1

A

3

5 (16.d)

 2n0
r

s log (`+ 1) log (n+ 1)

n
(16.e)

where in the step in eq.(16.a), the terms �
i

, d
ij

and z
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correspond to �
(x,y)

, d(y, ŷ) and �(x, y, ŷ) respectively. Thus,
we assume that index i corresponds to the training sample (x, y) 2 S, and that index j corresponds to the structured
output ŷ 2 T (⇡(x), x). Note that since | [
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P(x)|  `, thus the step in eq.(16.a) considers w, z
ij

2 R` \ {0} without
loss of generality. The step in eq.(16.b) follows from the fact that for any two function classes G and H, we have that
R({max (g, h) | g 2 G ^ h 2 H})  R(G) +R(H). The step in eq.(16.c) follows from the composition lemma and the

5Note that for the analysis of B(w, S,T(w)), the training set S is fixed and randomness stems from the collection T(w). Also, note
that for applying McDiarmid’s inequality, independence of each set T (w, x) for all (x, y) 2 S is a sufficient condition, and identically
distributed sets T (w, x) are not necessary.



fact that d
ij

2 [0, 1] for all i and j. The step in eq.(16.d) considers a larger function class, since the value of kz
ij

k
1

can
be taken as an additional entry in the vector z

ij

we consider w, z
ij

2 R`+1 \ {0}. The step in eq.(16.e) follows from the
Massart lemma, the Sauer-Shelah lemma and the VC-dimension of sparse linear classifiers. That is, for any function class

G, we have that R(G) 
q

2V C(G) log (n+1)

n

where V C(G) is the VC-dimension of G. Furthermore, by Theorem 20 of
(Neylon, 2006), V C(G)  2s log (`+ 1) for the class G of sparse linear classifiers on R`+1, with 3  s  9

20

p
`+ 1.

By eq.(8), eq.(10.c), eq.(14.c), eq.(15) and eq.(16.e), we prove our claim.

A.3 Proof of Claim i

Proof. For all (x, y) 2 S and w 2 W , by definition of the total variation distance, we have for any event A(x, y, y0, w):
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0
(w,x)

[A(x, y, y0, w)]

����  TV (R(w, x)kR0
(w, x))

Let the event A(x, y, y0, w) : d(y, y0) = 1 ^H(x, y, y0)�m(x, y, y0, w) � 0. Since R(w, x) fulfills Assumption A with
value �

1

and since TV (R(w, x)kR0
(w, x))  �

2

, we have that for all (x, y) 2 S and w 2 W:
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(w, x))
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which proves our claim.

A.4 Proof of Claim ii

Proof. Since d(y, y0) = 1 (y 6= y0) and since R(x) is a uniform proposal distribution with support on Y(x), we have:

P
y

0⇠R(x)

[d(y, y0) = 1] =

1

|Y(x)|
X

ŷ2Y(x)

1 (d(y, ŷ) = 1)

= 1� 1

|Y(x)|
� 1� 1/2 (17.a)

where the step in eq.(17.a) follows since |Y(x)| � 2.

A.5 Proof of Claim iii

Proof. Let s = (s
1

, s
2

, s
3

. . . s
v

) be the pre-order traversal of y. Let s0 = (s
2

, s
1

, s
3

. . . s
v

) be a node ordering where we
switched s

1

with s
2

. Let Y 0
(x) be the set of directed spanning trees of v nodes with node ordering s0.6 Let R0

(x) be the
uniform proposal distribution with support on Y 0

(x). Since Y 0
(x) is the set of directed spanning trees of v nodes with a spe-

cific node ordering, then |Y 0
(x)| =Qv

i=2

(i� 1) = (v � 1)!. Moreover, since d(y, y0) = 1

2(v�1)
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|A(y)
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�A(y0)
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6We use the node ordering s

0 in order to have trees in Y 0
(x) with all edges different from y. If we use the node ordering s instead,

every tree in Y 0
(x) will contain the edge (s2, s1), thus no tree in Y 0

(x) will have all edges different from y.



and since R0
(x) is a uniform proposal distribution with support on Y 0

(x), we have:

P
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0
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(i� 2) (18.a)

= 1� v � 2

v � 1

where the step in eq.(18.a) follows from the fact that when choosing the parent for the node in position i in the ordering s0,
we have one option less (i.e., the option that is in y).

A.6 Proof of Claim iv

Proof. Let s = (s
1

, s
2

, s
3

. . . s
v

) be the pre-order traversal of y. Let s0 = (s
2

, s
1

, s
3

. . . s
v

) be a node ordering where
we switched s

1

with s
2

. Let Y 0
(x) be the set of directed acyclic graphs of v nodes and b parents per node,

and with node ordering s0.7 Let R0
(x) be the uniform proposal distribution with support on Y 0

(x). Since Y 0
(x)

is the set of directed acyclic graphs of v nodes and b parents per node, and with a specific node ordering, then
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and since R0

(x) is a uniform proposal distribution with support on Y 0
(x), we have:
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where the step in eq.(19.a) follows from the fact that when choosing the b parents for the node in position i in the ordering
s0, we have one option less (i.e., the option that is in y). The step in eq.(19.b) follows from the fact that the function z�1

z

is nondecreasing as well as
�
a

2

�  �a
b

�
for a � b+ 2 and b � 2. The step in eq.(19.c) follows from the fact v/(v � 2) � 1

for v > 2.
7We use the node ordering s

0 in order to have graphs in Y 0
(x) with all edges different from y. If we use the node ordering s instead,

every graph in Y 0
(x) will contain the edge (s2, s1), thus no graph in Y 0

(x) will have all edges different from y.



A.7 Proof of Claim v

Proof. Since Y(x) is the set of sets of b elements chosen from v possible elements, then |Y(x)| = �v
b

�
. Moreover, since

d(y, y0) = 1

2b

(|y � y0|+ |y0 � y|) and since R(x) is a uniform proposal distribution with support on Y(x), we have:
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where the step in eq.(20.a) follows from the fact that for a fixed set y of b elements, if the set ŷ has b� i common elements
with y, then there are

�
v�b

i

�
possible ways of choosing the remaining i non-common elements in y0 from out of v � b

possible elements. The step in eq.(20.b) follows from well-known inequalities for the binomial coefficient. The step in
eq.(20.c) follows from making b = b↵vc. The step in eq.(20.d) follows for any ↵ 2 [0, 1/2].

A.8 Proof of Claim vi

Proof. Let � ⌘ �(x, y)� �(x, y0). We also introduce a superindex p for the partitions. That is, for all p 2 P(x), let
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where we used the fact that for a uniform proposal distribution R(x), we have P
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since we assume that n  |P(x)|/4, we have 1/
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n) and we prove our claim.



A.9 Proof of Claim vii

Proof. Let � ⌘ �(x, y)� �(x, y0). By assumption |�
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| = b for all p 2 P(x). Note that
k�k
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Finally, since we assume that n  |P(x)|/4, we have 1/
p|P(x)|  1/(2

p
n) and we prove our claim.

A.10 Proof of Claim viii

Proof. Algorithm 1 depends solely on the linear ordering induced by the parameter w and the mapping �(x, ·). That is, at
any point in time, Algorithm 1 executes comparisons of the form �(x, y) · w > �(x, ŷ) · w for any two structured outputs
y and ŷ.

A.11 Proof of Claim ix

Proof. Algorithm 2 depends solely on the linear ordering induced by the parameter w and the mapping �(x, ·). That is, at
any point in time, Algorithm 2 executes comparisons of the form �(x, y) · w > �(x, ŷ) · w for any two structured outputs
y and ŷ.


