SUPPLEMENTARY MATERIAL.

Structured Prediction: From Gaussian Perturbations
to Linear-Time Principled Algorithms

A DETAILED PROOFS

In this section, we state the proofs of all the theorems and claims in our manuscript.

A.1 Proof of Theorem 1

Here, we provide the proof of Theorem 1. First, we derive an intermediate lemma needed for the final proof.
Lemma 1 (Adapted® from Lemma 6 in McAllester, 2007). Assume that there exists a finite integer value ¢ such that

| Uz,yyes P(x)| < L Let Q(w) be a unit-variance Gaussian distribution centered at aw for o = 1/ 2log (2n€/||ng)
Simultaneously for all (z,y) € S, y' € V(z) and w € W, we have:

IU/N%(W)[H(m7yI7fw/(x)) - m(mvyl7fw/(x)vw) < 0] < ”w”§/n

or equivalently:

w’~ECD2(w)[H(x’ y/a fw’ (I)) - m(x, y/a fw’ (I)a ’LU) > O] >1- ||wH;/n @)

Proof. First, note that w’ — aw is a zero-mean and unit-variance Gaussian random vector. By well-known Gaussian
concentration inequalities, for any p € P(x) we have:

IP; r > < 2 —62/2
Bl —awyl 2 <2
By the union bound and setting ¢ = o = /2 log (2n€/||w||§), we have:

2
wlw%(w)[(zlp € U(w,y)esp(x)) |w;) - awp| > Oé} < 2| U(:fc,y)ES P(x”e_a /2

2
[[wlly

= | U(m,y)ES P(Z‘)| n

2
< lwllz/n
or equivalently:

B [0 € U yyesP(@) [y, = awy| < a] 21 = [lw]3/n

The high-probability statement in eq.(7) can be written as:
§=fw(®) = H(z,y',j) —m(z,y",j,w) >0
Next, we use proof by contradiction, i.e., we will assume:
§ = fu(x) and H(z,y',§) — m(z,y’,§,w) <0
*We make two small corrections to Lemma 6 of (McAllester, 2007). First, it is only stated for 4/ = f,, () but it does not make

use of the optimality of fu, (), thus, it holds for any y’ € Y(z). Second, for the union bound over all p € U, 4)esP(z), we as-
sume that | U, ,)es P(x)] < L. Instead, Lemma 6 in (McAllester, 2007) incorrectly assumes |P(z)| < £ for all x € X, and thus

U@ yes P@)] <32 yes [P@)] < nl.



and arrive to a contradiction § # f,, (x). From the above, we have:

m(z,y',g,w") = m(z,y', §, 0w + (w' — aw))
= Ozm(x, y/a gaw) - (¢(x7y/) - (]5(1‘,@)) ' (OZUJ - U)/)
> aH(z,y',9) = ((z,y') — d(2,9)) - (aw —w')
=aH(z,y.)~ D (ep.x.y) — clp.2,9))(ow, —w))

pEP ()

> aH(xvylvg) - Z |C(p,$7y/) - C(pvxvg)HawP - w;|
pEP(x)

>aH(z,y',9) — Y lep,z,y) —c(p,z,9)|a
pEP(x)

=0

Note that m(x,y’, §,w’) > 0 if and only if ¢(z,y’) - w > ¢(x,§) - w. Therefore § # f,(2) since it does not maximize
¢(x,-) - w as defined in eq.(1). Thus, we prove our claim. O

Next, we provide the final proof.

Proof of Theorem 1. Define the Gibbs decoder empirical distortion of the perturbation distribution @ (w) and training set
S as:

LQW).LS) =~ 3 B [dy, fu ()]

n (.9)€S w' ~Q(w)

In PAC-Bayes terminology, Q(w) is the posterior distribution. Let the prior distribution P be the unit-variance zero-mean
Gaussian distribution. Fix ¢ € (0,1) and o > 0. By well-known PAC-Bayes proof techniques, Lemma 4 in (McAllester,
2007) shows that with probability at least 1 — §/2 over the choice of n training samples, simultaneously for all parameters
w € W, and unit-variance Gaussian posterior distributions Q)(w) centered at wa, we have:

KL(Q(w)|P) +log (2n/65)
L(Q(w), D) < L(Q(w), S) + \/ 2(n 1)

Q). )+ \/ Jwll302/2 + log (2n/9) &

2(n—1)

Thus, an upper bound of L(Q(w), .S) would lead to an upper bound of L(Q(w), D). In order to upper-bound L(Q(w), S),
we can upper-bound each of its summands, i.e., we can upper-bound E,, ) [d(y, fu (x))] for each (z,y) € S. Define
the distribution Q (w, x) with support on Y(x) in the following form for all y € Y(x):

P [=yl= P [fulx)= 9
y,NQ(W)[y yl w,NQ(w)[f (z) =] ©)

For clarity of presentation, define:

U(%y’y/aw) = H(l’,%y/) - m(sc,y, y/a ’LU)



Let u = u(z,y, fu (z),w). Simultaneously for all (z,y) € S, we have:

By fu@] = E (. () 1> 0) +d(y, fu() 1< 0)

< ,N%( )[d(y, fu () 1(u>0)+1(u < 0)] (10.2)
= B S @) 1@z + P <0

< B0 for@) 1= 0] + fully/n (10.b)
= B A, fur () 1, fur (), w) 2 0)] + o]l /.

= & AWy L@,y w) 2 0+ fwlly/n (10)
< max d(y,§) 1(u(z,y,9,w) > 0) + [wl3/n (10.d)

9e¥(x)

where the step in eq.(10.a) holds since d : Y x Y — [0, 1]. The step in eq.(10.b) follows from Lemma 1 which states that

P gy, 9, fu (z),w) < 0] < [wl|2/n for a = y/21og (2n€/||w||3), simultaneously for all (z,y) € S,y € V(x)
and w € W. By the definition in eq.(9), then the step in eq.(10.c) holds. Let g : J — [0, 1] be some arbitrary function, the
step in eq.(10.d) uses the fact that E, [¢(y)] < max, g(y).

By eq.(8) and eq.(10.d), we prove our claim. O

A.2 Proof of Theorem 2

Here, we provide the proof of Theorem 2. First, we derive an intermediate lemma needed for the final proof.
Lemma 2. Let A € R¥ be a random variable, and w € R* be a constant. If E[ju(A)] - w < 1/2 then we have:

-1
P|A[l; — A-w < 0] < exp <32||w||2>
2

Proof. Lett > 0, we have that:

PA]l, — A w < 0] = Plu(A) - w > 1] (11.a)
=Pl(u(A) = E[p(A)]) - w >1—=E[u(A)] - w]
< P{(u(A) — Blu(A)]) -w > 1/2] (11.b)
= Plexp (t(u(A) — E[p(A)]) - w) > e'/?]
< /2 Bfexp (t(u(A) — E[u(A) - w)] (110
< exp (4/2 n 2t2||w||§) (11.d)

where the step in eq.(11.a) follows from dividing [|Al|; — A-w by [|Al|;. Note that A = 0 does not fulfill either of
the two expressions [|A|l; — A-w <0, or pu(A)-w > 1. The step in eq.(11.b) follows from E[u(A)]-w < 1/2 and
thus 1 — E[u(A)] - w > 1/2. The step in eq.(11.c) follows from Markov’s inequality. The step in eq.(11.d) follows
from Hoeffding’s lemma and the fact that the random variable z = (u(A) — E[u(A)]) - w fulfills E[z] = 0 as well as
z € [—2||w||y, +2||w]|,]. In more detail, note that ||1(A)]|, < 1 since it holds trivially for A = 0, and for A # 0 we have
that [|(A)[ly, = [|A]l5/[|All; < 1. By Jensen’s inequality ||E[u(A)]|l, < E[||u(A)|l,] < 1. Then, note that by Cauchy-
Schwarz_inequality [(#(A) — Elu(A)]) - w] < [[a(A) — Ela(A)]lallwlly < (a(A)]; + [EGA)l) w], < 2w,
Finally, let g(t) = —t/2+2t2||w\|§. By making dg/0t =0, we get the optimal setting ¢t* = 1/(8||w||§) Thus,
g(t*) = —1/(32||w|\§) and we prove our claim. O

Next, we provide the final proof.
Proof of Theorem 2. Note that sampling from the distribution Q(w, z) as defined in eq.(9) is NP-hard in general, thus

our plan is to upper-bound the expectation in eq.(10.c) by using the maximum over random structured outputs sampled
independently from a proposal distribution R(w, ) with support on Y (z).



Let T(w,z) be a set of n’ i.i.d. random structured outputs drawn from the proposal distribution R(w, x),
T(w,x) ~ R(w,z)™ . Furthermore, let T(w) be the collection of the n sets T'(w,z) for all (z,y) €S, ie.
T(w ) {T(w, )} (2,y)es and thus T(w) ~ {R(w, z)" }(4.y)es- For clarity of presentation, define:

o(z,y,y ,w) =d(y,y") 1(H(z,y,y') —m(z,y,y',w) > 0)

For sets T'(w, ) of sufficient size n’, our goal is to upper-bound eq.(10.¢) in the following form for all parameters w € W:

1
< — s —|—O log®/? n n
Z yNQ(M) v(a,yy w)] <= Y jdmax o(z,y,§,w) + O (108" /i)

n
Y)ES (z,y)€S

Note that the above expression would produce a tighter upper bound than the maximum loss over all possible structured
outputs since maxgep(w,z) V(Z, Y, ¥, w) < maxgey)v(z,y, §, w). For analysis purposes, we decompose the latter equa-
tion into two quantities:

Aw=2 ¥ (B besol- B e senda]) a2

(wges @) T(w,2)~R(w,z)" |JET(w,z)

B(w,S, T(w)) =~ > ( E { max  v(z,y,j,w )} max_v(x,y,§,w )) (13)

n (z,9)€S T(w,w)wR(w,a:)n' geT (w,z) HET (w,x)

Thus, we will show that A(w, S) < \/1/n and B(w, S, T(w)) < O(log*?n/y/n) for all parameters w € W, any training
set S and all collections T(w), and therefore A(w, S) + B(w, S, T(w)) < O(10g**n/\/n). Note that while the value of
A(w, S) is deterministic, the value of B(w, S, T(w)) is stochastic given that T(w) is a collection of sampled random
structured outputs.

Fix a specific w € W. If data is separable then v(x,y,y’,w) =0 for all (z,y) € S and y’ € Y(z). Thus, we have
A(w, S) = B(w, S, T(w)) = 0 and we complete our proof for the separable case.* In what follows, we focus on the
nonseparable case.

Bounding the Deterministic Expectation A(w, S). Here, we show that in eq.(12), A(w, S) < \/1/n for all parameters
w € W and any training set S, provided that we use a sufficient number n’ of random structured outputs sampled from the
proposal distribution.

“The same result can be obtained for any subset of S for which the “separability”” condition holds. Therefore, our analysis with the
“nonseparability” condition can be seen as a worst case scenario.



By well-known identities, we can rewrite:

1 1 ,
A(w,S) =~ / ( P [v(r,y,y,w) <z — P [uzyy,w Sz)dz (14.a)
@=2 3 [ (B e 0 S - B o) <
1 /
S - Z , ]P) [v(x7yay/aw) < 1]n
(x,y)GSy ~R(w,z)
1 ,
== > P {dy,y)<1VH@yy)—myy,w) <0"
(pes D
1 "
2 X ( (A, y) = 1A H(z,y,5") — mla,y, o/ w) > 0})
n (eg)e NR(w x)
< Py (1—mm( P [dyy)=1], P [Hyy)-myy w>>o1))n/
— n y/NR(w,a;) b b) leR(w7I) b b) b b ) -
G Xm w(ie B W=, ) -y <o)
n o '~ R(w,z) ; ; '~ R(w,z) s Yy yYr Y
< (5 ( -1 ))n (14.b)
< max ,exp [ —— .
32[|w|l5

=+/1/n (14.¢)

where the step in eq.(14.a) holds since for two independent random variables g,h € [0,1], we have

=1- fo [¢9 < z]dz and Plmax(g,h) < z] =Plg < z]P[h < 2]. Therefore, E[max(g,h)] = 1 —
fo [g < 2]P[h < z]dz. For the step in eq.(14.b), we used Assumption A for the first term in the max.
For the second term in the max, we used Assumption B. More formally, let A = ¢(z,y) — ¢(z,y’) then
H(z,y,y') = [|All; and m(z,y,y',w) = A - w. By Assumption B, we have that ||E[u(A)]||, < 1/(2y/n) < 1/(2|w]|,).
By Cauchy-Schwarz inequality we have E[u(A)]-w < ||E[p(A)]],l|wlly < [Jwlly/(2]|w],) < 1/2. Since
E[u(A)]-w <1/2, we apply Lemma 2 in the step in eq.(14.b). For the step in eq.(14.c), let

a = max (1og(1/3 32[|w||5 ) Note that max (5 , exXp ( )) = e~ !/ Furthermore, let n’ = £alogn. Therefore,

_ =1
32[wll3
n’
— (p—1/a\ialogn _ S Llogn _
max (ﬁ , eXp (32Hw|\§>) = (e ) e =4/1

Bounding the Stochastic Quantity B(w, S, T(w)). Here, we show that in eq.(13), B(w, S, T(w)) < O(1og*? n/\/n) for
all parameters w € W, any training set .S and all collections T(w). For clarity of presentation, define:

g(z,y, T,w) = maxv(z,y,J,w)
geT
Thus, we can rewrite:

B(w, S, T(w)) = Z ( E [9(z,y, T(w,z),w)] — g(w,y,T(w,x),w))

(z.g)€S T(w,z)~R(w,z)"’

Let r(z) = [Y(z)| and thus YV(x) = {y1...Yr@)}. Let w(x) = (71 ... 7)) be a permutation of {1...r(z)} such
that ¢(x,yx,) - w < -+ < G(T,Yr,(,,) - w. Let II be the collection of the n permutations 7(z) for all (z,y) € S,
ie. I ={m(x)}@yes. From Assumption C, we have that R(n(z),z)= R(w,z). Similarly, we rewrite
T(m(x),x) = T(w,z) and T(II) = T(w).

S|

Furthermore, let Wiy s be the set of all w € WV that induce II on the training set S. For the parameter space W, collection
IT and training set .S, define the function class &yy 17,5 as follows:

Gwms = {g9(x,y, T,w) [ w e WnsA(z,y) €S}

Note that since | V()| < r forall (z,y) € S, then | Uy y)es Y(@)| < 32, ) es [V(@)] < nr. Note that each ordering of
the nr structured outputs completely determines a collection IT and thus the collection of proposal distributions R(w, x)



for each (z,y) € S. Note that since | U, ,)es P(x)| < £, we need to consider ¢(x,y) € RY. Although we can consider
w € RY, the vector w is sparse with at most s non-zero entries. Thus, we take into account all possible subsets of s
features from ¢ possible features. From results in (Bennett, 1956; Bennett & Hays, 1960; Cover, 1967), we can conclude
that there are at most (nr)2(*~1) linearly inducible orderings, for a fixed set of s features. Therefore, there are at most
(£) (nr) 2= < £%(nr)?* collections I1.

Fix § € (0,1). By Rademacher-based uniform convergence® and by a union bound over all £ (nr)2* collections II, with
probability at least 1 — 6/2 over the choice of n sets of random structured outputs, simultaneously for all parameters
w e W:

s(log £ + 2log (nr)) + log (4/4)

B(w, S, T(w)) <2 mT(H)(ﬁw,Hys) + 3\/ (15)

where R (1) (B, 11, ) is the empirical Rademacher complexity of the function class &yy 11, s with respect to the collection
T(II) of the n sets T'(w(x), x) for all (x,y) € S. For clarity, define:

otherwise

c(p,z,y) —clp,z,y’) ifpe Pz
Ap(x,y,y’){o(p y) —clp,a,y') ifp e Px)

Let o be an n-dimensional vector of independent Rademacher random variables indexed by (z,y) € S, ie.,
Plo(3,y) = +1] = Plo(4,) = —1] = 1/2. The empirical Rademacher complexity is defined as:

1
S)({']I'(H)(Q51/\/,1_[7S) =E sup - Z U(I’y)g(l‘,y,T(ﬂ'(l‘),J}),U})
7 |gedywms \ 7
L (z,y)eS
1
=E sup - Z O (x,y) max d(y, ?)) 1 (H(.’l?, Y, ?) - m(mv Y, g7 w) > O)
o weWm, s n @GT(W(m),x)
L (z,y)eS
1
=E | sup — O(x max d(y,9) 1 ([|A(z,y,9)|, — Az, y,9) -w >0
E| swp | 3 g max dn) 1IA@ 30 — Awyg) v 2 0)
L (z,y)eS
=E sup Z al max d“ 1 (||z”||1 Zij - w > 0) (16.2)
7 [weR4\{0} 16{1
1
< ]E Sljp g Z o; dij 1 (”Zinl — Zijj W > 0) (16.b)
je{tomy” |wERN{O} ie{1...n} |
1
< Z ]E sup - Z o;l (||z”||1 — 2z rw > 0) (16.¢)
je{lony [ wERNO} ie{1...n}
1
< Z E sup = Z o; 1(zi5 -w >0) (16.d)
je{tomy 7 [wERHINOF \ T T
<2n,\/5log(€+1)log(n—|—1) (6.0
< - .

where in the step in eq.(16.a), the terms o, d;; and z;; correspond to o(, .. d(y,9) and A(z,y,7) respectively. Thus,
we assume that index ¢ corresponds to the training sample (z,y) € S, and that index j corresponds to the structured
output § € T(m(x),z). Note that since | U(, ,)es P(x)| < £, thus the step in eq.(16.a) considers w, z;; € R \ {0} without
loss of generality. The step in eq.(16.b) follows from the fact that for any two function classes & and §), we have that
R({max (g,h) | g € B AL € H}) <R(B) + R($H). The step in eq.(16.c) follows from the composition lemma and the

*Note that for the analysis of B(w, S, T(w)), the training set S is fixed and randomness stems from the collection T(w). Also, note
that for applying McDiarmid’s inequality, independence of each set T'(w, x) for all (z,y) € S is a sufficient condition, and identically
distributed sets T'(w, x) are not necessary.



fact that d;; € [0,1] for all 7 and j. The step in eq.(16.d) considers a larger function class, since the value of ||z, can
be taken as an additional entry in the vector z;; we consider w, z;; € R \ {0}. The step in eq.(16.e) follows from the
Massart lemma, the Sauer-Shelah lemma and the VC-dimension of sparse linear classifiers. That is, for any function class

&, we have that R(B) < 4/ %ﬁg(nﬂ) where VC(®) is the VC-dimension of &. Furthermore, by Theorem 20 of
(Neylon, 2006), VC (&) < 2slog (¢ + 1) for the class & of sparse linear classifiers on R“*?, with 3 <s < 22/ + 1.

By eq.(8), eq.(10.c), eq.(14.c), eq.(15) and eq.(16.e), we prove our claim. O

A.3 Proof of Claim i

Proof. For all (z,y) € S and w € W, by definition of the total variation distance, we have for any event A(z,y,y’, w):

P Ay w)]- P [Alyy,w)]| < TV(R(w, )| R (w, )

y'~R(w,x) y'~ R (w,x)

Let the event A(z,y,y',w) : d(y,v') = 1A H(x,y,y") — m(z,y,y’,w) > 0. Since R(w, x) fulfills Assumption A with
value 8; and since TV (R(w, z)||R'(w, z)) < B2, we have that for all (z,y) € S and w € W:

A(z,y,9" w)] > P [Alz,y,y",w)] = TV (R(w, )| R (w, )
y' ~R(w,z) y'~R(w,z)

>1-51 -5

which proves our claim. O

A.4 Proof of Claim ii

Proof. Since d(y,y’) = 1(y # v') and since R(z) is a uniform proposal distribution with support on Y (), we have:

P [dy,y) =1 = 55— 1(d(y,9) =
B ) =1 = gy 3 1069 =
b
V()]
>1-1/2 (17.a2)
where the step in eq.(17.a) follows since |Y(x)| > 2. O

A.5 Proof of Claim iii

Proof. Let s = (s1, 82,83 . ..5,) be the pre-order traversal of y. Let ' = (s2, $1, 83 - . - S, ) be a node ordering where we
switched s; with so. Let )’(z) be the set of directed spanning trees of v nodes with node ordering s".° Let R'(z) be the
uniform proposal distribution with support on )’ (). Since )’ (z) is the set of directed spanning trees of v nodes with a spe-
cific node ordering, then |Y'(z)| = [[;_, (i — 1) = (v — 1)!. Moreover, since d(y,y’) = ﬁ > AW — Al

5We use the node ordering s’ in order to have trees in )’ (x) with all edges different from 3. If we use the node ordering s instead,
every tree in )’ () will contain the edge (s2, s1), thus no tree in )’ (x) will have all edges different from y.



and since R’(x) is a uniform proposal distribution with support on )’'(z), we have:

P [dyy)=1> P [dyy)=1
y,NR(m)[ (v,9) ]_y,NR,(m)[ (v, ') =1]

= B I Iy - AWyl =20 - 1)

ij

=t O | Sy - 4@l =20 -1

ye)/’(L) ij

=3

v—2
v—1

=1—

where the step in eq.(18.a) follows from the fact that when choosing the parent for the node in position 7 in the ordering s/,
we have one option less (i.e., the option that is in ). O

A.6 Proof of Claim iv

Proof. Let s = (s1, $2,83 ... 8,) be the pre-order traversal of y. Let s’ = (s9,51,83...5,) be a node ordering where
we switched s; with s5.  Let )'(x) be the set of directed acyclic graphs of v nodes and b parents per node,
and with node ordering s’.” Let R/(z) be the uniform proposal distribution with support on )’(z). Since )'(x)
is the set of directed acyclic graphs of v nodes and b parents per node, and with a specific node ordering, then
V(@) = T G = DT (1) = BT pen (). Moreover, since d(y. ) = sy Soy [ 41 — AW
and since R'(x) is a uniform proposal distribution with support on )’ ( ), we have:

P [dy,y)=1> P [dyy)=1
y,NR(w)[ (v,9") Ly,NR,(I)[ (y,y') =1]

= Ay il =02v—-b—1
LB Z| (4] = )

-1
—1
( )) 5 1S M - Al =sar -0
i=b+42 geY’ (z)
-1 b+1 v i—1
e I T E R
1=b+2 =3 1=b+2
1 () -1 (Bt
e AL
1 (-1 & (5 -1
51 ) (19.b)
ey ALy
bv
TP+ 3b+2)(v—2) (19.0)
b2 +2b+2
= 24+ 3b+2

where the step in eq.(19.a) follows from the fact that when choosing the b parents for the node in position ¢ in the ordering
s’, we have one option less (i.e., the option that is in g). The step in eq.(19.b) follows from the fact that the function 2=%
is nondecreasing as well as (5) < () fora > b+ 2 and b > 2. The step in eq.(19.c) follows from the fact v/(v — 2) > 1
forv > 2. O

"We use the node ordering s’ in order to have graphs in )’ (2) with all edges different from y. If we use the node ordering s instead,
every graph in )’ (z) will contain the edge (sz2, s1), thus no graph in )’ (x) will have all edges different from y.



A.7 Proof of Claim v

Proof. Since Y(x) is the set of sets of b elements chosen from v possible elements, then |Y(z)| = (}). Moreover, since
d(y,y') = 35 (ly — ¥'| + ¥’ — y|) and since R(x) is a uniform proposal distribution with support on )(x), we have:

P ldwy)=1]= —y|=2b
y/NR(x)[ (y,y') =1] ym R( )Hy Y+ 1y =yl ]
=1- P —yl <2
o R(I ly —'[+ 1y =yl <20]
v
- () > 1(ly—gl+ 1§ -yl < 2b)
geY(x)
v —1 b-—1 b
N (b) Z( > (20.)
—1
—b
21— () R aon
v -1 ev— beroo tb Lo—tqt
- (b> (b—1)!
—1pv—|av]| [+ tlav]—1o—t g4
= ( ) € fv—l_avj € (20C)
Lawv (lav] — 1)
z1-1/2 (20.d)

where the step in eq.(20.a) follows from the fact that for a fixed set y of b elements, if the set i has b — ¢ common elements
with y, then there are (”;b) possible ways of choosing the remaining ¢ non-common elements in y’ from out of v — b
possible elements. The step in eq.(20.b) follows from well-known inequalities for the binomial coefficient. The step in
€q.(20.c) follows from making b = |awv|. The step in eq.(20.d) follows for any « € [0,1/2]. O

A.8 Proof of Claim vi

Proof. Let A = ¢(x,y) — ¢(x,y"). We also introduce a superindex p for the partitions. That is, for all p € P(z), let
AP = ¢(z,y) — ¢(,y’) for some y' € V,(x). By assumption, since y' € V,(z) then |[AP| = b and (Vg # p) AP = 0.
Note that [|AP[|; =37 cp(,) |AF] = [AD| = b. Thus [AD|/[|AP||, = 1and (Vq # p) A}/[|AP[|; = 0. Therefore:
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where we used the fact that for a uniform proposal distribution R(x), we have Py p(w.2) [y € Vy(2)] = 1/|P(z)|. Finally,
since we assume that n < |P(z)|/4, we have 1/1/|P(z)| < 1/(24/n) and we prove our claim. O



A.9 Proof of Claim vii

Proof. Let A= ¢(x,y) — d(x,y'). By assumption |A,|=b for all peP(x). Note that
[Ally = 2 pep() [Apl = [P(2)] b. Thus [Ap[/[|[All, = 1/[P(x)| for all p € P(z). Therefore:
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Finally, since we assume that n < |P(z)|/4, we have 1/1/|P(z)| < 1/(24/n) and we prove our claim. O

A.10 Proof of Claim viii

Proof. Algorithm 1 depends solely on the linear ordering induced by the parameter w and the mapping ¢(x, -). That is, at
any point in time, Algorithm 1 executes comparisons of the form ¢(z,y) - w > ¢(z,§) - w for any two structured outputs
yand 9. O

A.11 Proof of Claim ix

Proof. Algorithm 2 depends solely on the linear ordering induced by the parameter w and the mapping ¢(x, -). That is, at
any point in time, Algorithm 2 executes comparisons of the form ¢(x,y) - w > ¢(x,§) - w for any two structured outputs
yand g. O



