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I. Supplementary

The proof of Lemma 1

Proof. From
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it follows that ∇G(W ) = 2ATW − 2BT , ∇2G(W ) =
2AT . Thus G(W ) is convex and it is minimal if
∇G(W ) = ATW − BT = 0 with W = A−1

T BT . This
shows that with WT = A−1

T BT , we obtain
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Corollary 1. Given that At = γI +
∑

t mtm
⊤
t , for all

t ≥ 1:
A−1

t−1 −A−1
t −A−1

t mtm
⊤
t A

−1
t

=(m⊤
t A

−1
t−1mt)A

−1
t mtm

⊤
t A

−1
t .

(1)

Proof. From the quality At −At−1 = mtm
⊤
t ,

A−1
t−1 (At −At−1)A

−1
t = A−1

t−1

(
mtm

⊤
t

)
A−1

t ,

we get A−1
t−1 −A−1

t = A−1
t−1mtm

⊤
t A

−1
t . Similar, A−1

t−1 −
A−1

t = A−1
t mtm

⊤
t A

−1
t−1. Thus,

A−1
t−1 −A−1

t −A−1
t mtm

⊤
t A

−1
t

=
(
A−1

t−1 −A−1
t

)
mtm

⊤
t A

−1
t =

(
m⊤

t A
−1
t−1mt

)
A−1

t mtm
⊤
t A

−1
t .

The proof of Lemma 2

Proof. Given that
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Online Learning in Binary and Multi-class Setting

Binary-class setting reduces a multi-class problem into
many binary-class sub-problems (i.e., given a dataset of N
classes, N binary-class problems are generated via 1-vs-
rest schema: for each binary-class problem, we assign the
label of one class samples with +1 and other N −1 class
samples with −1), while CMOG in this paper is directly a
multi-class setting. We compare the two settings in terms
of loss function, margin, model-update and performance
evaluation.

Generally, a binary classification model is to differentiate
binary-class samples with label ”±1”. And binary clas-
sifier (f ) predicts the sample label with a boundary 0,
that is, given a sample x, if predicted value f(x) > 0, x



is predicted to class +1; If f(x) < 0, it is predicted to
class −1. We update a binary classifier based on a hinge
loss function in binary setting, L(x) = [1 − y · f(x)]+,
where y ∈ {±1}, [.]+ = max{., 0}. In addition, we define
absolute value |f(x)| as ”margin”: the higher the ”margin”
(distance to boundary 0), the more confident the predicted
result is. However, binary classifier under 1-vs-rest schema
can only answer whether a sample belongs to one class
or not. Given three classes (a, b, c) where we set class ”a”
as label +1 and the other two classes ”b” and ”c” as −1,
then the model f(x) trained on above binary labels can tell
whether x belongs to ”a” or not. If not ”a”, the model can-
not identify whether x belongs to ”b” or ”c”. To address
the above issue, we present a multi-class setting, where we
give each class a linear model, i.e., fa(x), fb(x) and fc(x).
We predict the label of x via argmaxi∈{a,b,c} fi(x).
And the loss function for multi-class setting is L(x) =[
1−

(
fy(x)−maxi∈{a,b,c}/{y} fi(x)

)]
+

, where y is the
true class of x and maxi∈{a,b,c}/{y} fi(x) is the highest
score among ”wrong” classes, e.g., if x belongs to ”a”,
then L(x) = [1 − (fa(x) − max{fb(x), fc(x)})]+. Dif-
ferent from ”margin” (|f(x)|) in binary setting, ”margin”
in multi-class schema is fŷt(x) − fy′′

t
(x), defined as δ

in def 2. In addition, when updating the model, multi-
class model can update two linear models simultaneously
at each around, since the y is a vector with true class
coordinate yt to +1 and a wrong class with the highest
score y

′′

t to −1. In binary setting, the y is only a binary
variable (i.e., ±1), thus only one linear model is updated.

For the evaluation metrics, although the cumulative error
rate and number of queried labels are applied into both
binary-class and multi-class setting, the two groups of
results are unable to be compared. Given a dataset with
N classes, the binary-setting (1-vs-rest schema) generates
a set of N independent binary-class classifiers while each
classifier is built on all data samples. After running N
times of experiments independently to evaluate the N
binary-classifiers, the error rate and queried number are
averaged over the outputs of N experiments. Note that
the average result can only tell the model effectiveness in
binary classification. On the other hand, in the multiple-
class setting, we run only 1 time of experiment to train the
multiple class models simultaneously. This performance
can tell the learner accuracy for multi-class classification.
Due to the different experimental setting, a few binary-
setting algorithms unable to be adapted into multi-class
setting would not be included in baselines of this work,
while the GPA adapted into multi-class setting would
achieve a different result from binary-setting and the two
groups of results are incomparable.


