
Context-dependent feature analysis with random forests
Supplementary materials

Antonio Sutera1 Gilles Louppe2
1 Dept. of EE & CS, University of Liège, Belgium
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A Details of Example 1

Table 1: Values of X1, X2, Xc and Y .

X1 X2 Xc Y
0 0 0 0
0 0 0 0
0 0 1 2
0 0 1 3
0 1 0 2
0 1 0 3
0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
1 0 1 2
1 0 1 3
1 1 0 2
1 1 0 3
1 1 1 1
1 1 1 1

B Proof of Theorem 1

Theorem. Xc is irrelevant to Y with respect to V iff all
variables in V are context-independent to Y with respect
to Xc (and V ) and I(Y ;Xc) = 0.

Necessary condition.

Proof. If Xc is irrelevant to Y w.r.t. V , we have, by defi-
nition, that I(Y ;Xc|B) = 0 for all subset B ⊆ V . Hence,
we have I(Y ;Xc) = 0 as a special case.

A variable Xm ∈ V is context-independent if for all B ⊆
V −m and for all xc ∈ Xc, b ∈ B, we have

I(Y ;Xm|B = b,Xc = xc)− I(Y ;Xm|B = b) = 0.

Let us proof this:

I(Y ;Xm|B = b,Xc = xc)− I(Y ;Xm|B = b)

= H(Y |B = b,Xc = xc)−H(Y |Xm, B = b,Xc = xc)

↪→ −H(Y |B = b) +H(Y |Xm, B = b)

= H(Y |B = b)−H(Y |Xm, B = b)

↪→ −H(Y |B = b) +H(Y |Xm, B = b)

= 0,

where H(Y |B = b,Xc = xc) = H(Y |B = b) and
H(Y |Xm, B = b,Xc = xc) = H(Y |Xm, B = b) are
consequences of I(Y ;Xc|B) = 0 for all B if we assume
that p(B = b) 6= 0 (∀b ∈ B) and p(Xc = xc, B = b) 6= 0
(∀xc ∈ Xc and ∀b ∈ B).

Sufficient condition.

Proof. If all variables are context-independent, we have
that for all Xm ∈ V , B ⊆ V −m, b ∈ B, and xc ∈ Xc:

I(Y ;Xm|B = b,Xc = xc) = I(Y ;Xm|B = b).

By averaging the left- and right-hand sides of this equality
over P (B,Xc), we get:

I(Y ;Xm|B,Xc) = I(Y ;Xm|B).

From this, one can derive (Louppe et al., 2013):

I(Y ;Xc|B,Xm) = I(Y ;Xc|B).

Since this equality is valid for all B, including B = ∅, and
all Xm, we have that for all B′ ⊆ V , I(Y ;Xc|B′) can be
reduced to I(Y ;Xc), which is equal to zero by hypothesis.
The variable Xc is thus irrelevant to Y with respect to V .

C Proof of Theorem 2

Theorem. A variable Xm ∈ V is context-independent to
Y with respect to Xc iff Imp|xc|(Xm) = 0 for all xc.



Necessary condition.

Proof. By definition of context-independence, we have

I(Y ;Xm|B = b,Xc = xc)− I(Y ;Xm|B = b) = 0

∀B ⊆ V −m,∀xc ∈ Xc,∀b ∈ B.
(1)

Given that each term

|I(Xm;Y |B = b)− I(Xm;Y |B = b;Xc = xc)|

of Imp|xc|(Xm) (Equation (??)) is equal to 0, the sum is
thus also equal to 0.

Sufficient condition.

Proof. Given the definition of Imp|xc|(Xm):

Imp|xc|(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈Pk(V −m)

∑
b∈B

P (B = b)

↪→ |I(Xm;Y |B = b)− I(Xm;Y |B = b;Xc = xc)| ,
(2)

appears to be a sum of positive terms (because of the
absolute value). As in Theorem 1, we assume that
probabilities are non-null and therefore, we have that
the only way to have the sum equal to zero is to have
each term of the sum equal to 0. Hence, we have
|I(Xm;Y |B = b)− I(Xm;Y |B = b;Xc = xc)| = 0 for
all xc, B and b which verifies the definition of context-
independence for Xm.

D Proof of Theorem 3

Theorem. If |Impxc(Xm)| = Imp|xc|(Xm) for a
context-dependent variable Xm, then Xm is context-
complementary if Impxc(Xm) < 0 and context-redundant
if Impxc(Xm) > 0.

Proof. The absolute value of a sum is less than or equal
the sum of the absolute value of each terms. The equal-
ity is only verified when all terms are of the same sign.
Therefore, the sign of Impxc(Xm) indicates the sign of all
terms and thus verify either the context-complementarity if
all terms are negative or the context-redundancy if all terms
are positive.



E Results for Problem 3.

Table 2: Importances as computed analytically using asymptotic
formulas. The context is defined by the binary context feature Sex
(Sex = 0 denotes female and Sex = 1 denotes male).

Imp(Xm) Imp(Xm|Xc = xc) Imp|xc|(Xm) Impxc
s (Xm)

m - xc = 0 xc = 1 xc = 0 xc = 1 xc = 0 xc = 1
0 age 0.2958 0.3386 0.2885 0.1382 0.1505 -0.0095 -0.0156
1 histologic-type 0.3522 0.1389 0.4366 0.2087 0.114 0.1988 -0.0569
2 degree-of-diffe 0.4413 0.4175 0.4208 0.1653 0.158 0.0561 0.0157
3 bone 0.2429 0.2502 0.2367 0.0933 0.0755 -0.0043 0.0165
4 bone-marrow 0.0192 0.0201 0.0148 0.0126 0.0101 0.0009 0.0041
5 lung 0.1627 0.2059 0.1370 0.1038 0.0949 -0.0259 0.0172
6 pleura 0.1485 0.1496 0.1015 0.0590 0.09 0.0313 0.0234
7 peritoneum 0.3184 0.3459 0.1979 0.0861 0.138 0.0147 0.0956
8 liver 0.2285 0.2138 0.2630 0.0786 0.1279 0.0375 -0.0602
9 brain 0.0465 0.0349 0.0548 0.0378 0.0254 0.0114 -0.0104
10 skin 0.0677 0.0362 0.0923 0.0314 0.0403 0.0252 -0.0133
11 neck 0.2215 0.0690 0.2582 0.1466 0.0692 0.1316 -0.0081
12 supraclavicular 0.1676 0.1915 0.1448 0.0845 0.067 -0.0198 0.0269
13 axillar 0.1393 0.1457 0.1068 0.0655 0.0629 -0.0067 0.0447
14 mediastinum 0.1838 0.2050 0.1716 0.1016 0.0806 -0.0059 0.0140
15 abdominal 0.2553 0.3296 0.1372 0.1346 0.1379 -0.0330 0.0898
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