A SUPPLEMENTARY MATERIAL

This supplementary section contains proofs omitted from the main paper and includes a proof that the HSIC statistic
asymptotically satisfies the hypothesis of the Wild Bootstrap.

A.1 HILBERT SPACE RANDOM VARIABLE CLT

In this paper we exploit a Central Limit Theorem for Hilbert space valued random variables that are functions of random
processes [Dehling et al., 2015]. One of the conditions required to apply this theorem concerns appropriate S-mixing of
the underlying processes. This theorem is used as a black-box, and it is hoped by the authors that as further theorems
concerning CLT-properties of Hilbert space random variables are developed, the conditions required of the processes may
be weakened.

Proof. (Lemma 1) We exploit Theorem 1.1 from Dehling et al. [2015]. Using the language of this paper, ¢(X;) is a 1-
approximating functional of (X;);, following straightforwardly from the definition of 1-approximating functionals given.

Since our kernels are bounded, 3C : ||¢(X;)|| < C and so
El[¢(X1)|2 < 0% < 00 ¥ >0

Thus condition (1) is satisfied.
We can take f,,, = ¢(Xo) Vm and so achieve a,,, = 0 Vm, thus condition (2) is satisfied.
By assumption on the time series, condition (3) is satisfied.

Thus, by Theorem 1.1 in Dehling et al. [2015]
Vn(fix — px) "~=° N
where N is a Hilbert space valued Gaussian random variable and convergence is in distribution. Thus

lix — pxll = @:(%)

A.2 SUB-PROCESSES OF 3-MIXING PROCESSES ARE -MIXING

Lemma 2. Suppose that the process (X, Yy, Zi)t is B-mixing. Then any ‘sub-process’ is also [-mixing (for example
(X, Y1)e or (X))

Proof. (Lemma 2)

Let us consider (X¢, Y;):. Let us call Bxy z(m) the coefficients for the process (X;, Y;, Z;):, and Sxy (m) the coefficients
for the process (X, Y7):.

Observe that for A € o((Xp,Ys),..., (X, Ye)), it is the case that A x Z € o((Xp, Y, Zp), ..., (Xe, Ye, Z)) and
Pxy(A) =Pxyz(Ax 2).

Thus
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Thus we have shown that Sxyz(m) — 0 = Bxy(m) — 0. Thatis, if (X, Y:, Z;): is S-mixing then so is (X¢, Y3):

A similar argument holds for any other sub-process. O

A.3 CONTROL OF TYPE I ERROR

Theorem 3 shows that the quantiles of the bootstrapped statistic nV} (which we can estimate by drawing a large number
of samples) converge to those of the test statistic ||/iz||?> under the null hypothesis. Therefore, we can estimate rejection
thresholds to appropriately control Type I error.

Proof. (Theorem 3)

We use Theorem 3.1 from Leucht and Neumann [2013]. By assumption, condition (B2) is satisfied by the random matrix
W. (A2) is satisfied due to Theorem 2. (B1) is satisfied due to the suitable mixing assumptions.

Therefore, Theorem 3.1 implies that nV} converges in probability to the null distribution of n/| ﬂ(LZQ) |2
&

. Since nl|uz||? also

converges in probability to n| ﬂ(LZ2) , it follows that nV}, converges to n|1||? in probability, and thus also in distribution.
Convergence in distribution implies that the quantiles converge. O

A4 SEMI-CONSISTENCY

Theorem 4 provides a consistency result: if Ay P # 0, then we correctly reject H( with probability 1 in the limit n — oo.

Proof. By Theorem 2 from Chwialkowski et al. [2014], nV;, converges to some random variable with finite variance, while
n||fig]|> — oo. Thus if Q,, is the a-quantile of nVj, then P(n||ir||* > Qo) — 1 for any a. O

A.5 PROOF THAT BOUNDEDNESS AND LIPSCHITZ CONTINUITY IS PRESERVED

Recall that a kernel & defined on X’ is Lipschitz continuous iff 3C}, : Vw |k(z,w) — k(z',w)| < Crdx(z,z") where dy
is the metric on X with respect to which & is Lipschitz continuous.

Claim 1. k bounded and Lipschitz continuous = k is bounded and Lipschitz continuous

Proof. k bounded implies there exists By, such that |k(z, w)| < By Vz,w € X. It follows that

k(2 w)| = [k(z,w) — Ex[k(X, w)] — Ew [k(z, W)] + Exw [k(X, W)]|
< k(e w)| + Ex[k(X, w)] + Ewlk(z, )| + Exyy k(X W)]
< 4By

And thus £ is bounded. For Lipschitz continuity, observe that for any w € X



|k(z, w) — k(z',w)| = [k(z,w) — Ex [k(X, w)] - Ew[k(z, W)] + Exw [k(X, W)]
— k(2 w) + Ex [k(X, w)] + Ew[k(z', W)] — Exw [k(X, W)]]

= |k(z,w) — k(z',w) + Ew[k(z',W)] — Ew [k(z, W)]|
< k(2 w) = k(' w)| 4 [Ew [k(z, W)] — Ew [k(z, W)]|
< |k(z,w) — k(z',w)| + Ew|k(z', W) — k(z, W)|

< 2Ckdx(z,a")

and thus % is Lipschitz continuous.

O

Claim 2. k and | bounded and Lipschitz continuous with respect to the metrics dx and dy respectively —> k ® l is
bounded and Lipschitz continuous with respect to any metric on X x Y equivalent to d ((x,y), (z',y")) = dx(z,2') +

dy(y,y’)

Note that all norms on finite dimensional vector spaces are equivalent, and so if X and ) are finite dimensional vector
spaces then k£ ® [ is Lipschitz continuous with respect to any norm on X’ x Y

Proof. Let k and [ be bounded by By, and B; respectively. Then

k@l ((z,y), (w,2)) | = |k(z,w)l(y, 2)|
= [k(z, w)|[l(y, )]
< BB,

Let k and [ have Lipschitz constants C, and C; respectively. Then, for any (w,z) € X x )

k@ l((2,9), (w,2)) =k y), (w,2))]
= [k(z, w)l(y, 2) — k(z", w)l(y’, 2)|
= [k(z, w)l(y, 2) = k(' w)l(y, 2) + k(2" w)l(y, 2) = k(' w)l(y', 2)|
< Uy, 2)||k(z, w) — k(' w)| + [k, w)|[I(y, 2) — Uy, 2)]
< BiCydx(x,2") + BrCidy(y,y')
< max(B,Cy, BrC1) d((z,y),(2',y))

A.6  PROOF THAT HSIC CAN BE WILD BOOTSTRAPPED

Given samples {(X;,Y;)}" ;, and taking all notation involving kernels and base spaces as before, the HSIC statistic is

defined to be the squared RKHS distance between the empirical embeddings of the distributions P xy and Px[Py-:

HSICy = |- 3 6x(X0) @ by (V) - (;Z@((Xi)) ® <;Z¢y<m> &

1 2 1
— KoL)y — ﬁ(KLMJr + ¥K++L++



where the last equality can be shown easily by expanding K (and L similarly) as
= (¢x (X —*Zfbx Xi), ox (X —*Zdﬁx X))

Theorem 5. Suppose that (X;,Y;), are drawn from a process that is (-mixing with coefficients [5(m) satisfying
Yo B(m )2+5 < 00 for some § > 0. Under Hy = {Pxy = PxPy}, lim, 0o(nHSIC, — Z(K oL);y) =0in
probability.

Similar to the case with the Lancaster statistic, %(K’ o L), is much easier to study than nH SICj, under the non-i.i.d. as-
sumption. It can be written as a normalised V -statistic as:

=) kels,s)
1<i,j<n
where S; = (X;,Y;). Again, the crucial observation is that
h=k®l

is well behaved in the following sense

Theorem 6. Suppose that k and | are bounded symmetric Lipschitz contentious kernels. Then h is also bounded symmetric
and Lipschitz continuous, which is moreover degenerate under H,.

Together, Theorems 5 and 6 justify use of the Wild Bootstrap in estimating the quantiles of the null distribution of the test
statistic nH SICy.

Proof. (Theorem 5) We can equivalently write H.SIC} as the norm of the empirically centred covariance operator, which
is invariant to population centering the feature maps:

HSIC, = lz ¢X(Xi)_%Z¢X(Xj) ®%Z (bY(Y;)_%Z(bY(Yj)

= %Z J’X(XW)**ZQSX(XJ) ®%Z égY(Yz)*qui_)y(Yj)

Expanding this, we can rewrite the above in terms of inner products involving the population centred covariance operator
and the population centred mean embeddings:

nHSIC, = n||Cxy|?> = 2n(Cxy, ix ® fiy) + nlfix ® fiy|?

The first term in this expression can be written as n[|Cxy [|* = &+ 35, k(Xi, X;)I(Yi, Y;) = 7 35,5 h(S;, S;). We show
that the remaining two terms decay to zero in probability.



By assumption, Pxy = Px[Py and thus the expectation operator factorises similarly. Therefore, for any A €
HS(Fy,Fx),

Exr(4, Cr) = - 3 BxEy (4, (9x(X:) — o) ® (v (¥i) = ) s

Xz) - H1X, A (QSY(Y;) - MY)>]:X
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where the commutativity of [Ex with the inner product in the penultimate line follows from the Bochner integrability of
the quantity ¢x (X) — ux, ‘which in turn follows from the conditions under which px exists [Steinwart and Christmann,
2008]. It follows that K xy Cxy = 0.

Thus by Lemma 1 as before, it follows that || Cxy ||, [|ix |, || iy || = Op(n™3).

It thus follows that the two latter quantities in the above expression for nH .S1(C} decay to 0 in probability.

n(Cxy, fix @ i) < n||Cxy [|lx || v |
= Op(n™?)

lix @ fiy ||* = nllmx]| || my |I?

=nOp(n?)
=O0p(n™")
omn=%) _ _
It follows that nH SIC, ———=n||Cxy||* = (K o L), as required. O

Proof. (Theorem 6)
To show degeneracy, fix any s; and observe that
Esh(s;, ) = ExEy (¢(x:), o(X))(¢ (yz-) oY)

= (p(2:), Ex¢(X))(6(yi), Ey 6(Y))
= (6(:),0)(b(y:),0) =0

/Q\ |

Symmetry is inherited from symmetry of k and . Boundedness and Lipschitz continuity are implied by application of the
claims in Section A.5.

O

A.7 DISCUSSION OF MIXING ASSUMPTIONS

Throughout this paper, there are (related) assumptions that need to be made on the random processes we consider in
order to satisfy the conditions of (1) the wild bootstrap; and (2) the Hilbert space CLT. For simplicity, we wrapped up the
assumptions into the single "suitable mixing assumptions". We discuss here the precise assumptions that are needed, how
they relate to the suitable mixing assumptions and the applicability of the suitable mixing assumptions.

(1) For their proof of the consistency of the wild bootstrap, Leucht and Neumann [2013] invoke the notion of 7-mixing.
We require that the 7-mixing coefficients 7(n) satisfy the hypothesis of their theorem, namely that Z:o:1 n%r(n) < co.



Properties of 7-mixing, for example its relationship to other types of more commonly understood mixing or models that
satisfy 7-mixing, are discussed in Dedecker and Prieur [2005]. In particular, under the assumption that X; has finite pth
moment for any p > 1, 7-mixing implies beta-mixing. Examples of systems that are 7-mixing are: causal functions of
stationary sequences, iterated random functions, Markov chains and expanding maps.

(2) In order to use the Hilbert space CLT, we require that our processes are S-mixing with coefficients 5(n) satisfying
S0 B(n)¥/(2+9) < oo for some § > 0and S0, nfB(n) < oo

In particular, both (1) and (2) are satisfied by a process that is 3-mixing with coefficients 3(n) = o(n~%) as stated in the
"Suitable Mixing" section.

Many commonly studied processes satisfy the “suitable mixing” condition. In particular Corollary 3.6 of Bradley et al.
[2005] states that Harris recurrent and aperiodic markov chains satisfy absolute regularity and Theorem 3.7 of Bradley
et al. [2005] states that geometric ergodicity implies geometric decay of beta coefficients. Interestingly Theorem 3.3 of
Bradley et al. [2005] describes situations in which a non-stationary chain mixes exponentially.

Note, however, that our novel proof idea relies on the Hilbert space CLT and so requires only assumption (2) above to be
used. Therefore our proof idea could be applied to the asymptotic study of other V-statistics in the case that the processes
are beta-mixing with 8(n) = o(n=3%¢) for any € > 0.
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