SUPPLEMENTAL MATERIALS

Lemma 5. [I15] If f(x) is B-strongly convex and Xx.
denotes the optimal solution to mingep f(x). For any
x € D, we have f(x) — f(x.) < 2G3/B.

Proof. From Assumption Al, we have ||0f(x)|2 < Gj.
Hence

fx) =

Moreover from the strong convexity in f(-) we have

fx) < Grllx =%z

F) — k) > e .3

From the two inequalities above, we can easily verify that
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This completes the proof. O

Proof of Theorem 2

The proof of Theorem 2 is based on an important result, as
summarized in Lemma 6.

Lemma 6. [20] Assume ||x. — X¢||2 < D for all t. Define
Dy = Zle |lx: — x||3 and Ar = 23:1 ¢i(x). We have

Pr <AT < 4Gy /Drin2 +2G1DIn m)
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where m = [2logy,T| and Zthl Gx) =
i (V) — )T (x = x1).

Proof of Theorem 2 The proof below follows from tech-
niques used in Lemma 2 and Theorem 1. Since F'(x) is
[-strongly convex, we have

Plx) ~ F(x) < (0 — %) TVE(x) — 5l = 3.

Combining the above inequality with the inequality in (8)

and taking summation over all t = 1, ..., T, we have
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We substitute the bound in Lemma 6 into the above in-
equality with x = x*. We consider two cases. In the first

case, we assume Dp < D? /T. As aresult, we have
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d oG = Z Vf(x)
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< 2G1\/TDr < 2G,D

which together with the inequality in (23) leads to the
bound
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In the second case, we assume

T
Yax) < 4G11/DT111%+4G11H%
t=1
2
< EDT"' £+4G1 lnﬂ7
2 I} €

where the last step uses the fact 2v/ab < a? + b2. We thus
have
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Combing the results of the two cases, we have, with a prob-
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where C = (ng n 2G1D) In ™ 4 2G4 D. Following the
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same analysis, we have
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Let A, = f(x) — f(x.). By induction, we have
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Assume A, < Vi, £

2,6 25, by plugging the values of
Nk, T, we have

Vii Vi Vi Vi
Appr < L4 kg T Tk

6 T6 5 2 Ve

where we use 17 > max(igg ,9) and T, >

This com-
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pletes the proof of this theorem.
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Proof of Lemma 3

To prove Lemma 3, we derive an inequality similar
to Eq. (8); the rest proof of Lemma 3 is similar to that of
Lemma 2.

o~

Corollary 1. Given a (3-strongly convex function f(x) =
f(x) + g(x), and a sequence {x;} defined by the update
X¢41 = ming 3 [x — (x; — ng(x¢)) |13 + ng(x). Then for
any x, we have
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Corollary 1 can be proved using techniques similar to the

ones in [9] but with extra care on the stochastic gradient.
As a consequence we have
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Proof of Lemma 4

The lemma is a corollary of results in [6] for general convex
optimization. In particular, if we consider the stochastic
composite optimization

F(x) = ¢(x) + 9(x)

where g(x) is a simple function such that its proximal
mapping can be easily solved and ¢(x) is only accessible
through a stochastic oracle that returns a stochastic subgra-
dient g(x). To state the convergence of ORDA for general
convex problems, [6] makes the following assumptions: (i)
E[lg(x) - Eg(x)[3] < o2 and (ii

$(y) — o(x) — (y —x)"9¢(x) < M|y — x|

When ||0¢(x)||2 < G, the first inequality holds o = G and
the second inequality holds with M = 2G. Applying to the
augmented objective

F(x) = f(x) + Ale(x)]+ +9(x)

We note that 0 = G1 and M = 2(G1 + AG2). Follow the
inequality (26) in the appendix of [6], we obtain that

< Alxi =X} | 2o+ MY
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by using the Euclidean distance V (x,y) = 1 [x —y|| and
their notation 7 = 1, and noting that 7 is the inverse of their
notation c. Then the second inequality is Lemma 4 can be
proved similarly as for Lemma 2.

Proof of Theorem 3

Proof. Recall p = p/(p — G1/A) and G = 3G1 + 2\Go.
Let Vi, = (12G?) / (25723). By the values of 1, and T},
we have
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Define A, = f(x¥) — f(x.). We first prove the inequality
E[Ag] < Vi

by induction. It is true for ¥ = 1 because of Lemma 5,
p > 1and G? > G%. Now assume it is true for k and we
prove it for k+1. For a random variable X measurable with
respect to the randomness up to epoch k + 1. Let Ex[X]
denote the expectation conditioned on all the randomness
up to epoch k. Following Lemma 2, we have

2G| BlAx} - X*llg}]
Ex[A Y [ (24)
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Since Ay = f(x¥) — f(x«) > B||x} — x.]13/2 by the

strong convexity, we have
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where we use the fact /T = Vi/(8uG?) and T}, =
32u%G?/(Vi3). Thus, we get

'u2 G2
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Note that the total number of epochs satisfies

kT
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By some reformulations, we complete the proof of this the-
orem. O

Proof of Lemma 6

The proof of Lemma 6 is based on the Bernstein Inequality
for Martingales [4]. We present its main result below for
completeness.



Theorem 4. [Bernstein Inequality for Martingales] Let
X1,...,X, be a bounded martingale difference sequence
with respect to the filtration F = (F;)1<i<n and with

|X:|| < K. Let
Si - ZX]
j=1

be the associated martingale. Denote the sum of the condi-
tional variances by

S =Y E[X7|Fi],
t=1
Then for all constants t, v > 0,
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and therefore,

2
Pr [ max S; > V2t + gKt and Zi < 1/] <e 7t

i=1,...,

Proof of Lemma 6. Define martingale difference X; = (x—
%) (Vf(x¢) — g(x;)) and martingale Ar = Zthl X;.
Define the conditional variance 2. as
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Define K = 2G1 D. Thus, || X;||2 < K. We have
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where we use the fact ||x; — x||3 < D? for all ¢ and
m = [2log, T'], and the last step follows the Bernstein in-
equality for martingales. We complete the proof by setting
7 = In(m/e).



