A Appendix Applying the chain rule gives us:
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Proof. Fix a target n, for any resource k, we have:
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Borrowing equation 5 from the proof of Theorem 1, con-
cludes the proof. O

For the same resource k and any schedule [, observe that

%EH(DQ) is therefore equal to:
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A.2 Proof of Theorem 2

Proof. Given a parameterization 6, denote the probabil-
ity that agent 7 is assigned to some schedule s; =
(tnprs---stny, ) by p(sk | 0). Fixing a parameter wy, ,,
and subsequence of length [ — 1, we can apply equation 6,
to conclude that:
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Equation 6 also tells us that:
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