
A Appendix

A.1 Proof of Lemma 1

Proof. Fix a target n, for any resource k, we have:
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For the same resource k and any schedule l, observe that
@

@✓k,l
¯

cn(D✓) is therefore equal to:

@
@✓k,l

Ps⇠D✓ (cn(s) = 1 | c�k,n(s) = 0)Ps⇠D✓ (c�k,n(s) = 0)

= Ps⇠D✓ (c�k,n(s) = 0)

@
@✓k,l

dkX

l0=0

ck,l0,n✓k,l0

= (ck,l,n � ck,0,n)Ps⇠D✓ (c�k,n(s) = 0).

A.2 Proof of Theorem 2

Proof. Given a parameterization ✓, denote the probabil-
ity that agent rk is assigned to some schedule sk =

[tnk,1 , . . . , tnk,L ] by p(sk | ✓). Fixing a parameter wk,n,
and subsequence of length l � 1, we can apply equation 6,
to conclude that:
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Equation 6 also tells us that:
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Applying the chain rule gives us:
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Borrowing equation 5 from the proof of Theorem 1, con-
cludes the proof.


