
A Some derivations for Bayesian Kernel Embedding

A.1 Notation

Consider a dataset x1, . . . , xn ∈ R
D and suppose that there exists some unknown probability distribution P for which the

xi are i.i.d.:

xi ∼ P . (18)

Denote by µθ the RKHS mean embedding element for a given kernel kθ(·, ·) with hyperparameter θ ∈ R
Q and by µ̂θ(·)

the empirical mean embedding

µ̂θ(·) :=
1

n

n∑

i=1

kθ(xi, ·) . (19)

We posit as our model that µθ has a GP prior with covariance rθ, where

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)ν(du) ,

where ν is a finite measure on R
D thus ensuring that µθ ∈ Hkθ

when drawn from the prior

µθ|θ ∼ GP(0, rθ(·, ·)) . (20)

In addition, we model the link between the population mean embedding and the empirical mean embedding functions at a

given location x as follows

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x);µθ(x), τ
2/n) (21)

where τ2 is another hyperparameter.

A.2 Priors over RKHS

The results in this section have appeared in the literature before, but as they are not well known or collected in one place,

we have included them for completeness. A similar discussion appears in Pillai et al. (2007), but without the construction

of explicit GP priors over the RKHSs which we provide below.

It is well known that the sample paths of a GP with kernel k are almost surely outside RKHS Hk, the result known

as Kallianpur’s 0-1 law (Kallianpur, 1970; Wahba, 1990). It is easiest to demonstrate this by considering a Mercer’s

expansion Rasmussen and Williams (2006, Section 4.3) of kernel k given by

k(x, x′) =

∞∑

i=1

λiei(x)ei(x
′), (22)

for the eigenvalue-eigenfunction pairs {(λi, ei)}ni=1. Then, a representation of f ∼ GP(0, k) is given by f =∑∞
i=1

√
λiZiei, where {Zi}∞i=1 are independent and identically distributed standard normal random variables. However,

‖f‖2Hk
=

∞∑

i=1

λiZ
2
i

λi
=

∞∑

i=1

Z2
i = ∞, a.s. (23)

so f 6∈ Hk almost surely. This issue is often sidelined in the literature, cf. e.g. (Rasmussen and Williams, 2006, Section 6.1)

– in GP regression, it is not necessary to ensure that the prior on the regression function is supported on Hk (the posterior

mean will still lie in Hk, however). However, since the object of our interest, kernel embedding, is by construction an

element of Hk - we opt for an approach where the prior is indeed specified over the correct space. Fortunately, it is

straightforward to construct a kernel r such that the realizations from a GP with kernel r are almost surely inside RKHS

Hk. For this, we will need notions of dominance and nuclear dominance for kernel functions.

Definition 1. Kernel k is said to dominate kernel r (written k ≻ r) if Hr ⊆ Hk.

Lukić and Beder (2001, Theorem 1.1) characterise dominance k ≻ r via the existence of a certain positive, continuous and

self-adjoint operator L : Hk → Hk for which

r(x, x′) = 〈L[k(·, x)], k(·, x′)〉Hk
, ∀x, x′ ∈ X . (24)

When L is also a trace class operator, dominance is termed nuclear, and denoted k ≻≻ r. The following theorem from

Lukić and Beder (2001, Theorem 7.2) then fully characterises kernels that lead to valid GP priors over RKHS Hk.



Theorem 1. Let Hk be separable and let m ∈ Hk. Then GP(0, r(·, ·)) has trajectories in Hk with probability 1 if and

only if k ≻≻ r.

Thus, we just need to specify a trace-class, positive, continuous and self-adjoint operator L : Hk → Hk and compute

〈L[k(·, x)], k(·, x′)〉Hk
. A convenient choice for a given bounded continuous kernel k can be defined as follows. Take the

convolution operator Sk : L2(X ; ν) → Hk with respect to a finite measure ν, defined as

[Skf ](x) =

∫
f(u)k(x, u)ν(du). (25)

It is well known that the adjoint of Sk is the inclusion of Hk into L2 (Steinwart and Christmann, 2008, Section 4.3). Thus,

we let L = SkS
∗
k , which is the (uncentred) covariance operator L =

∫
k(·, u) ⊗ k(·, u)ν(du) of ν. As a covariance

operator, L is then positive, continuous and self-adjoint. It is also trace-class in most cases of interest – and in particular

whenever
∫
k(u, u)ν(du) < ∞ (Steinwart and Christmann, 2008, Theorem 4.27), and thus for every stationary kernel

provided that ν is a finite measure. This leads to

r(x, x′) = 〈SkS
∗
k [k(·, x)], k(·, x′)〉Hk

= 〈S∗
k [k(·, x)], S∗

kk(·, x′)〉L2(X ;ν)

=

∫
k(x, u)k(u, x′)ν(du),

so r can be simply computed as a convolution of k with itself, and we can use GP(0, r(·, ·)) as a prior over Hk.

A.3 Covariance function rθ

In this subsection, we derive the covariance function rθ for squared exponential kernels. Consider a squared exponential

kernel on X = R
D with full covariance matrix Σθ defined by

kθ(x, y) = exp

(
−1

2
(x− y)TΣ−1

θ (x− y)

)
, x, y ∈ R

D. (26)

While we have required in A.2 that ν is a finite measure for the covariance operator to be trace class when working with

stationary kernels, let us for simplicity first consider the instructive case when ν is the Lebesgue measure. Then, we

have

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)du

=

∫
exp

(
−1

2

(
(x− u)TΣ−1

θ (x− u) + (y − u)TΣ−1
θ (y − u)

))
du

Note that

(x− u)TΣ−1
θ (x− u) + (y − u)TΣ−1

θ (y − u) = 2

(
u− x+ y

2

)T

Σ−1
θ

(
u− x+ y

2

)
+

1

2
(x− y)TΣ−1

θ (x− y) .

Then

rθ(x, y) = exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)∫
exp

(
−1

2

(
u− x+ y

2

)T (
1

2
Σθ

)−1(
u− x+ y

2

))
du

= exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)
× (2π)D/2|Σθ/2|1/2

= πD/2 |Σθ|1/2 exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)
.

Thus rθ is proportional to another squared exponential kernel with covariance 2Σθ. For the special case where the covari-

ance matrix Σθ is diagonal – let Σθ = θID and θ = (θ(1), . . . , θ(D))T – we have

rθ(x, y) = πD/2

(
D∏

d=1

θ(d)

)1/2

exp

(
−1

2
(x− y)T (2θID)−1(x− y)

)
. (27)



Now, take ν(du) = exp
(
−‖u‖2

2

2η2

)
du, i.e., ν is a finite measure and is proportional to a Gaussian measure on R

d. In that

case, we have

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)ν(du)

=

∫
exp


−1

2

(
(x− u)TΣ−1

θ (x− u) + (y − u)TΣ−1
θ (y − u) + η−2u⊤u

)
︸ ︷︷ ︸

A


 du.

From standard Gaussian integration rules, it follows that

A =
1

2
(x− y)TΣ−1

θ (x− y) + (u−m)⊤S−1(u−m) +

(
x+ y

2

)⊤(
1

2
Σθ + η2ID

)−1(
x+ y

2

)

where m = S−1Σ−1
θ (x+ y) and S = (2Σ−1

θ + η−2ID)−1. Therefore

rθ(x, y) = (2π)D/2|S|1/2 exp
(
−1

2
(x− y)T (2Σθ)

−1(x− y)− 1

2

(
x+ y

2

)⊤(
1

2
Σθ + η2ID

)−1(
x+ y

2

))

= (2π)D/2
∣∣2Σ−1

θ + η−2ID
∣∣−1/2

exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)

× exp

(
−1

2

(
x+ y

2

)⊤(
1

2
Σθ + η2ID

)−1(
x+ y

2

))
.

Thus, we see that rθ has a nonstationary component that penalises the norm of
(
x+y
2

)
. This is reminiscent of the well known

locally stationary covariance functions (Silverman, 1957). However, for large values of η, the nonstationary component

becomes negligible and rθ reverts to being proportional to a standard squared exponential kernel with covariance 2Σθ, just

like in the case of Lebesgue measure. We note that any choice of η > 0 gives a valid prior over Hk. Treating η as another

hyperparameter to be learned would be an interesting direction for future research.

A.4 Fast computation of the marginal pseudolikelihood

The marginal pseudolikelihood in Eq. (15) requires computation of the likelihood for an mn-dimensional normal distribu-

tion

N
(
vec {Kθ,zx} ;0, 1n1

⊤
n ⊗Rθ,zz + τ2Imn

)
.

However, the Kronecker product structure in the covariance matrix C = 1n1
⊤
n ⊗ Rθ,zz + τ2Imn allows efficient compu-

tation. We denote with Rθ,zz = QΛQ⊤ the eigendecomposition of the matrix Rθ,zz with Λ = diag [λ1, . . . , λm]. Note

that 1n1
⊤
n is a rank-one matrix with the eigenvalue equal to n. Therefore C has top m eigenvalues equal to nλi + τ2,

i = 1, . . . ,m, and the remaining n(m− 1) all equal to τ2. Thus, the log-determinant is simply

log detC =

m∑

i=1

log(nλi + τ2) +m(n− 1) log τ2 = log det
[
Rθ,zz + (τ2/n)Im

]
+m log n+m(n− 1) log τ2. (28)

Further, we need to compute vec {Kθ,zx}⊤ C−1vec {Kθ,zx}. By completing b1 = n−1/2
1n to an orthonormal basis

{b1, . . . , bn} of Rn and forming the corresponding matrix B = [b1 · · · bn], and denoting by n an n×n matrix with n11 = n
and nij = 0 elsewhere, we have that

C−1 = (B ⊗Q)(n⊗ Λ + τ2Inm)−1(B ⊗Q)⊤. (29)

We now simply need to apply Kronecker identity (B⊤ ⊗Q⊤)vec {Kθ,zx} = vec
{
Q⊤Kθ,zxB

}
, to obtain

vec {Kθ,zx}⊤ C−1vec {Kθ,zx} = vec
{
Q⊤Kθ,zxB

}⊤
(n⊗ Λ + τ2Inm)−1vec

{
Q⊤Kθ,zxB

}

=

m∑

j=1

n−1
[
Q⊤Kθ,zx1n

]2
j

nλj + τ2
+

1

τ2

n∑

i=2

m∑

j=1

[
Q⊤Kθ,zxbi

]2
j
. (30)



For the first term, we have

m∑

j=1

n−1
[
Q⊤Kθ,zx1n

]2
j

nλj + τ2
=

m∑

j=1

[
Q⊤µ̂(z)

]2
j

λj + τ2/n
=

m∑

j=1

Tr
[
µ̂(z)µ̂(z)⊤qjq

⊤
j

]

λj + τ2/n

= µ̂(z)⊤
(
Rθ,zz + (τ2/n)Im

)−1
µ̂(z). (31)

And for the second term:

1

τ2

n∑

i=2

m∑

j=1

[
Q⊤Kθ,zxbi

]2
j

=
1

τ2

m∑

j=1

n∑

i=2

[
q⊤j Kθ,zxbi

]2

=
1

τ2

m∑

j=1

{
‖Kθ,xzqj‖2 − n

(
q⊤j µ̂(z)

)2}

=
1

τ2
‖Kθ,xz‖2F − n

τ2
‖µ̂ (z)‖2 . (32)

Altogether, the log-likehood is given by

log
{
N
(
vec {Kθ,zx} ;0, 1n1

⊤
n ⊗Rθ,zz + τ2Imn

)}
= −1

2

{
log det

[
Rθ,zz + (τ2/n)Im

]
(33)

+ µ̂(z)⊤
(
Rθ,zz + (τ2/n)Im

)−1
µ̂(z)

+
1

τ2
‖Kθ,xz‖2F − n

τ2
‖µ̂ (z)‖2

+m log n+m(n− 1) log τ2 +mn log(2π)

}
.

B Source for Stan model

functions {

// phi should be m x n

real kron_multi_normal(matrix K,matrix R,matrix Q1,vector e1,int m,int n,real sigma2) {

vector[m*n] e;

matrix[m,m] Q2;

vector[m] e2;

vector[m] ones;

vector[m*n] mv2;

real mvp;

real logdet;

Q2 <- eigenvectors_sym(R);

e2 <- eigenvalues_sym(R);

for(j in 1:m) {

ones[j] <- 1;

for(i in 1:n)

e[(j-1)*n + i] <- 1/(e1[i] * e2[j] + sigma2);

}

mv2 <- to_vector((transpose(Q2) * transpose(K)) * Q1);

mvp <- sum(mv2 .* e .* mv2);

logdet <- sum(log(e2 .* (ones * n) + ones * sigma2)) + m * (n-1) * log(sigma2);

return( - .5 * logdet - .5 * mvp);

}

}

data {

int<lower=1> n;

int<lower=1> m;

vector[n] x;



vector[m] u;

}

transformed data {

matrix[n,m] xu_dist2;

matrix[m,m] u_dist2;

matrix[n,n] ones;

vector[n] zeros;

matrix[n,n] Q1;

vector[n] e1;

for (i in 1:n) {

zeros[i] <- 0;

e1[i] <- 0;

for (j in 1:n)

ones[i,j] <- 1;

for(j in 1:m)

xu_dist2[i, j] <- square(x[i] - u[j]);

}

for(i in 1:m) {

for(j in 1:m)

u_dist2[i,j] <- square(u[i] - u[j]);

}

e1[1] <- n;

Q1 <- eigenvectors_sym(ones);

}

parameters {

real<lower=0> lengthscale;

real<lower=0> sigma2;

}

transformed parameters {

matrix[m,m] R;

matrix[n,m] J;

matrix[n,m] K;

// R <- lengthscale * sqrt(pi()) *
R <- exp(- u_dist2/(4*lengthscaleˆ2));

K <- exp(- xu_dist2/(2*lengthscaleˆ2));

J <- K .* K .* xu_dist2 / lengthscaleˆ4;

}

model {

for(i in 1:n) // Jacobian

increment_log_prob(log(.5 * sum(J[i])));

increment_log_prob(kron_multi_normal(K, R, Q1, e1, m, n, sigma2));

lengthscale ˜ gamma(1,1);

sigma2 ˜ gamma(1,1);

}
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