
APPENDIX

A TECHNICAL LEMMAS

A.1 FOLLOW-THE-REGULARIZED-LEADER
TYPE RESULTS

Lemma 5. Let {ft}∞t=1 be a sequence of functions and
{xt}∞t=1 ⊂ K. Suppose there exists a sequence of lower
barrier functions {ht}∞t=1 such that ht(xt) = ft(xt) and
ht ≤ ft. Then, the following inequality holds:

max
x∈K

T∑
t=1

ft(xt)− ft(x) ≤ max
x∈K

T∑
t=1

ht(xt)− ht(x).

Proof. The proof follows from the inequalities:

T∑
t=1

ft(xt)− ft(x) =

T∑
t=1

ht(xt)− ft(x)

≤
T∑
t=1

ht(xt)− ht(x),

and taking the maximum over K.

Lemma 6. Let {ft}∞t=1 be a sequence of convex func-
tions defined on a closed convex set K, and let {xt}∞t=1

be a sequence of points in K such that the subgradient of
ft at xt is denoted as gt. Let {rt}∞t=1 be a sequence of
non-negative convex functions. Then the update xt+1 =
argminx g

T
1:tx+ r0:t(x) incurs regret at most

T∑
t=1

ft(xt)− ft(x) ≤ r0:T (x) +
T∑
t=1

gTt (xt − xt+1).

Proof. The regret with respect to a fixed point x can be
decomposed as follows:

T∑
t=1

ft(xt)− ft(x)

≤
T∑
t=1

gTt (xt − x)

=

T∑
t=1

gTt (xt − xt+1) + gTt (xt+1 − x).

The proof then follows from the inequality

T∑
t=1

gTt xt+1 ≤ r0:T (x) +
T∑
t=1

gTt x,

which can be shown in a straightforward manner by induc-
tion.

A.2 SMOOTHING AND UNBIASED GRADIENT
ESTIMATES

Lemma 1. Let f : Rn → R, A ∈ Rn×n be an SPSD ma-
trix, and define f̂(x) = Ev∼Bn [f(x+Av)]. Then, for
gt = nf(x+Au)A−1u, the following holds: Eu∼Sn [gt] =
∇f̂(x).

Proof.

Eu∼Sn [gt] = Eu∼Sn
[
nf(x+Au)A−1u

]
= A−1Eu∼Sn [nf(x+Au)u]

= A−1Ev∼Bn [∇xf(x+Av)A]

(by the divergence theorem)
= ∇xEv∼Bn [f(x+Av)]

Lemma 4. Let A be an SPSD matrix, and let f : Rn → R
be A-strongly convex. Then f̂ is also A-strongly convex.

Proof.

f̂(x)− f̂(y)
= Ev∼Bn [f(x+Av)− f(y +Av)]

≥ Ev∼Bn
[
∇f(y +Av)T (x− y) + 1

2
‖x− y‖2A

]
= ∇Ev∼Bn [f(y +Av)]

T
(x− y) + 1

2
‖x− y‖2A

= ∇f̂(y)T (x− y) + 1

2
‖x− y‖2A

A.3 AN INEQUALITY CONCERNING
NORMALIZED SUMS

Lemma 7. Let αt ≥ 0, γ > 0, β > 1, and ηt =

β
1

1+γ (α1:t)
−1
1+γ . Then

(
T∑
t=1

ηγt αt

)
+

β

ηT
≤ (2 + γ)β

γ
1+γ (α1:T )

1
1+γ

Proof. By our choice of ηt, it follows that β
ηT

≤
β

γ
1+γ (α1:T )

1
1+γ . We now proceed by induction for the re-

maining expression. For T = 1, the inequality holds by



direct inspection. If the statement is true for T − 1, then

T∑
t=1

ηγt αt =

(
T−1∑
t=1

ηγt αt

)
+ ηγTαT

≤ (1 + γ)β
γ

1+γ (α1:T−1)
1

1+γ + ηγTαT

= (1 + γ)β
γ

1+γ (α1:T − αT )
1

1+γ +
β

γ
1+γ αT

α
γ

1+γ

1:T

≤ (1 + γ)β
γ

1+γ α
1

1+γ

1:T

since the second to last expression is optimized for αT =
0.

A.4 FACTS ABOUT RANDOM SAMPLING

Lemma 8. Let x ∼ D be a random vector and A be a
symmetric matrix. Then, the following identity holds:

Ex∼D[xTAx] = trace(Acov(x)) + E[x]TAE[x],

where cov(x) = E[xxT ] − E[x]E[x]T is the covariance
matrix associated to x.

Proof. The identity follows from

Ex∼D[xTAx] = Ex∼D[trace(AxxT )]

= trace
(
AEx∼D[xxT ]

)
= trace

(
A
(
cov(x) + E[x]E[x]T

))
= Acov(x) + E[x]TAE[x],

using the linearity of expectation and that of the trace oper-
ator.

Lemma 9. Let u ∼ Sn. Then cov(u) = 1
nI and E[u] = 0.

Proof. By symmetry, (u1, . . . , ui, . . . , un) and
(u1, . . . ,−ui, . . . , un) admit the same distribution.
This implies that for all i, E[ui] = E[−ui] = 0 and also
that the two random vectors admit the same covariance
matrix. The latter means that E[uiuj ] = E[−uiuj ] = 0 for
i 6= j.

Finally, the fact that u is distributed over the unit sphere
implies that E[

∑n
i=1 u

2
i ] =

∑n
i=1 E[u2i ] = 1. By spherical

symmetry, the elements of the vector are exchangable, so
that E[u2i ] = E[u2j ] for all i, j ∈ {1, . . . , n}, which shows
that E[u2i ] = 1

n .

B AdaBCO-Lipschitz REGRET BOUND

We present here the proof of Theorem 3, the regret bound
for Algorithm 3.

Theorem 3 (AdaBCO using dynamic Lipschitz bounds).
Let K be a convex set and R a ν-self-concordant barrier
over K. Assume that |f | ≤ C. Then Algorithm 2 provides
the regret bound:
T∑
t=1

E[ft(yt)− ft(x)]

≤ E

5(ν log(T )) 1
4

 T∑
t=1

LtnC2
n∑
j=1

λj(Bt)

 1
3


3
4


Proof. We will first prove the intermediate inequality:
T∑
t=1

E[ft(yt)− ft(x)]

≤

 T∑
t=1

E
[
Ltδt

( 1
n

n∑
j=1

λj(Bt)
) 1

2

]
+ E

[(
T∑
t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T )

]

As in the smooth scenario, we can compute that

E[RegT (w)]

=

T∑
t=1

E[ft(yt)− ft(w)]

=

T∑
t=1

E[ft(yt)− ft(xt)] + E[ft(xt)− f̂t(xt)]

+ E[f̂t(w)− ft(w)] + E[f̂t(xt)− f̂t(w)].

By appealing to Theorem 1, it suffices to bound the first
three terms using the Lt-Lipschitz property.

For the first term, we can write

E[ft(yt)− ft(xt)]
= E[Eu∼Sn [ft(xt + δtBtu)− ft(xt)|xt]]
≤ E[Eu∼Sn [Ltδt‖Btu‖2|xt]]

(by Lt-Lipschitz)

≤ E[Ltδt
√

Eu∼Sn [uTB2
t u|xt]]

= E
[
Ltδt

( 1
n

n∑
j=1

λj(B
2
t )
) 1

2

]
(by Lemmas 8 and 9).

The second term can be bounded using Jensen’s inequality:

E[ft(xt)− f̂t(xt)]
= E [ft(xt)− Ev∼Bn [ft(xt +Av)]]

≤ E [ft(xt)− ft (Ev∼Bn [xt +Av])]

= 0.



The third term can be bounded in a way similar to the first
term:

E[f̂t(w)− ft(w)]
= E[Ev∼Bn [ft(w + δtBtv)]− ft(w)]
≤ E [Ev∼Bn [Lt‖δtBtv‖2]]

≤ E
[
Ltδt

( 1
n

n∑
j=1

λj(B
2
t )
) 1

2

]
.

Combining the estimates yields the intermediate inequality:

T∑
t=1

E[ft(yt)− ft(x)]

≤

 T∑
t=1

E
[
Ltδt

( 1
n

n∑
j=1

λj(Bt)
) 1

2

]
+ E

[(
T∑
t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T )

]

≤

 T∑
t=1

E
[
Ltδt

( 1
n

n∑
j=1

λj(Bt)
) 1

2

]
+ E

[(
T∑
t=1

ηt
δ2t
n2C2

)
+

1

ηT
ν log(T )

]

and by our choice of δt, it follows that

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

 T∑
t=1

2

2ηtnC
2Lt

n∑
j=1

λj(Bt)

1/3


+ E
[
1

ηT
ν log(T )

]
.

Finally, our choice of ηt, Lemma 7, and the fact that ηt ≤
ηt−1 yield:

T∑
t=1

E[ft(yt)− ft(x)]

≤ E

5(ν log(T )) 1
4

 T∑
t=1

LtnC2
n∑
j=1

λj(Bt)

 1
3


3
4




