APPENDIX

A TECHNICAL LEMMAS

A.1 FOLLOW-THE-REGULARIZED-LEADER
TYPE RESULTS

Lemma 5. Letr {f:}{2, be a sequence of functions and
{z:}52, C K. Suppose there exists a sequence of lower
barrier functions {h;}?2, such that hi(x:) = fi(xt) and
ht < fi. Then, the following inequality holds:

mafot xt) ) < maxz hi(x) — he(x).

Proof. The proof follows from the inequalities:
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and taking the maximum over /. O

Lemma 6. Let {f;}°, be a sequence of convex func-
tions defined on a closed convex set K, and let {x:}$2,
be a sequence of points in K such that the subgradient of
fr at x¢ is denoted as gr. Let {r:}$2, be a sequence of
non-negative convex functions. Then the update vy =
argmin,, gL, @ + ro..(x) incurs regret at most
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Proof. The regret with respect to a fixed point x can be
decomposed as follows:
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The proof then follows from the inequality
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which can be shown in a straightforward manner by induc-
tion. O
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A.2 SMOOTHING AND UNBIASED GRADIENT
ESTIMATES

Lemma 1. Let f: R" — R, A € R"™" be an SPSD ma-

trix, and define f(x ) Eypopn [f(z 4+ Av)] Then, for
gt = nf(x+ Au) A=, the following holds: E,,sn[g:] =
V().
Proof.

Eweso 91 = Euvsn [nf(@ + Au)A="4]

= A7 'EByosn [nf(z + Au)u]
= A 'Eyupn [V f(z + Av)A]

(by the divergence theorem)
= V.Eppn [f(z + Av))

O

Lemma 4. Let A be an SPSD matrix, andlet f: R" — R
be A-strongly convex. Then f is also A-strongly convex.

Proof.

fl) - Fw)

= By [ + Av) — f(y + Av)]
> By [V + A0 (@~ ) + Sl — ol3
= VEosn [y + Av)]T (2~ 9) + 5o~ yllh
= V7 (@~ ) + e~ ok
O

A.3 ANINEQUALITY CONCERNING
NORMALIZED SUMS

Lemma 7. Let oy > 0, v > 0, 8 > 1, and npy =
-1
Bﬁ(alzt)m. Then

(Z i af) + nﬂ < (2487 (ar) ™

t=1

Proof By our choice of 7, it follows that -
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BT+ T (o) ™7 T+ . We now proceed by induction for the re-
maining expression. For T' = 1, the inequality holds by
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direct inspection. If the statement is true for 7" — 1, then
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since the second to last expression is optimized for ar =
0. O

A4 FACTS ABOUT RANDOM SAMPLING

Lemma 8. Let x ~ D be a random vector and A be a
symmetric matrix. Then, the following identity holds:

E,plz? Az] = trace(Acov(x)) + E[z]" AE[z],

where cov(z) = Elxzl] — E[z]E[z]T is the covariance
matrix associated to x.

Proof. The identity follows from

E,plz? Az] = B, pltrace(AzzT)]

= trace (AIEmND[fxT])
= trace (A (cov(z) + E[x]E[x]T))
= Acov(z) + E[z]T AR[z],

using the linearity of expectation and that of the trace oper-
ator. O

Lemma9. Let u ~ S". Then cov(u) = 11 and E[u] = 0.

Proof. By  symmetry, (U1,...,Uy...,u,) and
(u1,...,—Uj...,up) admit the same distribution.
This implies that for all i, E[u;] = E[—w;] = 0 and also
that the two random vectors admit the same covariance
matrix. The latter means that Eju;u;] = E[—u,u;] = 0 for
15 ].

Finally, the fact that u is distributed over the unit sphere
implies that E[Y""_, u?] = Y7 | E[u?] = 1. By spherical
symmetry, the elements of the vector are exchangable, so
that E[u?] = E[u?] foralli,j € {1,...,n}, which shows
that E[u?] = 1. O

B AdaBCO-Lipschitz REGRET BOUND

We present here the proof of Theorem 3, the regret bound
for Algorithm 3.

Theorem 3 (AdaBCO using dynamic Lipschitz bounds).
Let IC be a convex set and R a v-self-concordant barrier
over K. Assume that |f| < C. Then Algorithm 2 provides
the regret bound:
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Proof. We will first prove the intermediate inequality:
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ZE[ft(yt) - ft(x)]
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As in the smooth scenario, we can compute that

[RegT( )l

fZEft ye) — fe(w)]

T
Z fe(ye) = ful@)] + Elfu(w0) — fulws)]
E[fi(w) = fi(w)] + Elfi(w:) — fo(w)].

By appealing to Theorem 1, it suffices to bound the first
three terms using the L;-Lipschitz property.

For the first term, we can write

E[fi(ye) — fi(xe)]
= E[Ey~sn[fi(xe + 6, Byu) —
< E[Eu~sn [Lid || Byul|2|a]]
(by L;-Lipschitz)

fi(@e)|2]]

< E[Li81\/Buns [uT Bula]

n 1
—E [Ltat (; ; A (B7)) }
(by Lemmas 8 and 9).
The second term can be bounded using Jensen’s inequality:
Elfe(ze) — J/c;(ft)]
=E[fi(zt) = Epupn [fi(z: + Av)]]

< E[fi(ze) = fi (Byapn [2 + Av])]
=0.



The third term can be bounded in a way similar to the first

term:

E[fi(w) — fi(w)]
[]EUNB" [ft (w + 5tBtv)] - ft (w)}

=E
SE[Epnpn [Lt]|0:Bro]2]]
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Combining the estimates yields the intermediate inequality:
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and by our choice of d;, it follows that
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Finally, our choice of 7, Lemma 7, and the fact that n; <

n¢—1 yield:
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