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Abstract

A Bayesian agent acting in a multi-agent envi-
ronment learns to predict the other agents’ poli-
cies if its prior assigns positive probability to
them (in other words, its prior contains a grain of
truth). Finding a reasonably large class of poli-
cies that contains the Bayes-optimal policies with
respect to this class is known as the grain of truth
problem. Only small classes are known to have
a grain of truth and the literature contains sev-
eral related impossibility results. In this paper
we present a formal and general solution to the
full grain of truth problem: we construct a class
of policies that contains all computable policies
as well as Bayes-optimal policies for every lower
semicomputable prior over the class. When the
environment is unknown, Bayes-optimal agents
may fail to act optimally even asymptotically.
However, agents based on Thompson sampling
converge to play ε-Nash equilibria in arbitrary
unknown computable multi-agent environments.
While these results are purely theoretical, we
show that they can be computationally approxi-
mated arbitrarily closely.

Keywords. General reinforcement learning, multi-agent
systems, game theory, self-reflection, asymptotic optimal-
ity, Nash equilibrium, Thompson sampling, AIXI.

1 INTRODUCTION

Consider the general setup of multiple reinforcement learn-
ing agents interacting sequentially in a known environment
with the goal to maximize discounted reward.1 Each agent
knows how the environment behaves, but does not know the
other agents’ behavior. The natural (Bayesian) approach
would be to define a class of possible policies that the other

1We mostly use the terminology of reinforcement learning.
For readers from game theory we provide a dictionary in Table 1.

Reinforcement learning Game theory

stochastic policy mixed strategy
deterministic policy pure strategy
agent player
multi-agent environment infinite extensive-form

game
reward payoff/utility
(finite) history history
infinite history path of play

Table 1: Terminology dictionary between reinforcement
learning and game theory.

agents could adopt and take a prior over this class. During
the interaction, this prior gets updated to the posterior as
our agent learns the others’ behavior. Our agent then acts
optimally with respect to this posterior belief.

A famous result for infinitely repeated games states that as
long as each agent assigns positive prior probability to the
other agents’ policies (a grain of truth) and each agent acts
Bayes-optimal, then the agents converge to playing an ε-
Nash equilibrium [KL93].

As an example, consider an infinitely repeated prisoners
dilemma between two agents. In every time step the pay-
off matrix is as follows, where C means cooperate and D
means defect.

C D
C 3/4, 3/4 0, 1
D 1, 0 1/4, 1/4

Define the set of policies Π := {π∞, π0, π1, . . .} where
policy πt cooperates until time step t or the opponent de-
fects (whatever happens first) and defects thereafter. The
Bayes-optimal behavior is to cooperate until the posterior
belief that the other agent defects in the time step after
the next is greater than some constant (depending on the
discount function) and then defect afterwards. Therefore
Bayes-optimal behavior leads to a policy from the set Π
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(regardless of the prior). If both agents are Bayes-optimal
with respect to some prior, they both have a grain of truth
and therefore they converge to a Nash equilibrium: either
they both cooperate forever or after some finite time they
both defect forever. Alternating strategies like TitForTat
(cooperate first, then play the opponent’s last action) are
not part of the policy class Π, and adding them to the class
breaks the grain of truth property: the Bayes-optimal be-
havior is no longer in the class. This is rather typical; a
Bayesian agent usually needs to be more powerful than its
environment [LH15b].

Until now, classes that admit a grain of truth were known
only for small toy examples such as the iterated prisoner’s
dilemma above [SLB09, Ch. 7.3]. The quest to find a
large class admitting a grain of truth is known as the grain
of truth problem [Hut09, Q. 5j]. The literature contains
several impossibility results on the grain of truth prob-
lem [FY01, Nac97, Nac05] that identify properties that
cannot be simultaneously satisfied for classes that allow a
grain of truth.

In this paper we present a formal solution to multi-agent
reinforcement learning and the grain of truth problem in
the general setting (Section 3). We assume that our multi-
agent environment is computable, but it does not need to
be stationary/Markov, ergodic, or finite-state [Hut05]. Our
class of policies is large enough to contain all computable
(stochastic) policies, as well as all relevant Bayes-optimal
policies. At the same time, our class is small enough to be
limit computable. This is important because it allows our
result to be computationally approximated.

In Section 4 we consider the setting where the multi-agent
environment is unknown to the agents and has to be learned
in addition to the other agents’ behavior. A Bayes-optimal
agent may not learn to act optimally in unknown multi-
agent environments even though it has a grain of truth.
This effect occurs in non-recoverable environments where
taking one wrong action can mean a permanent loss of fu-
ture value. In this case, a Bayes-optimal agent avoids tak-
ing these dangerous actions and therefore will not explore
enough to wash out the prior’s bias [LH15a]. Therefore,
Bayesian agents are not asymptotically optimal, i.e., they
do not always learn to act optimally [Ors13].

However, asymptotic optimality is achieved by Thompson
sampling because the inherent randomness of Thompson
sampling leads to enough exploration to learn the entire
environment class [LLOH16]. This leads to our main re-
sult: if all agents use Thompson sampling over our class of
multi-agent environments, then for every ε > 0 they con-
verge to an ε-Nash equilibrium asymptotically.

The central idea to our construction is based on reflec-
tive oracles [FST15, FTC15b]. Reflective oracles are
probabilistic oracles similar to halting oracles that answer
whether the probability that a given probabilistic Turing

machine T outputs 1 is higher than a given rational num-
ber p. The oracles are reflective in the sense that the ma-
chine T may itself query the oracle, so the oracle has to
answer queries about itself. This invites issues caused by
self-referential liar paradoxes of the form “if the oracle says
that I return 1 with probability > 1/2, then return 0, else
return 1.” Reflective oracles avoid these issues by being
allowed to randomize if the machines do not halt or the ra-
tional number is exactly the probability to output 1. We
introduce reflective oracles formally in Section 2 and prove
that there is a limit computable reflective oracle.

2 REFLECTIVE ORACLES

2.1 PRELIMINARIES

Let X denote a finite set called alphabet. The set X ∗ :=⋃∞
n=0 Xn is the set of all finite strings over the alphabet X ,

the set X∞ is the set of all infinite strings over the alphabet
X , and the set X ] := X ∗ ∪ X∞ is their union. The empty
string is denoted by ε, not to be confused with the small
positive real number ε. Given a string x ∈ X ], we denote
its length by |x|. For a (finite or infinite) string x of length
≥ k, we denote with x1:k the first k characters of x, and
with x<k the first k− 1 characters of x. The notation x1:∞
stresses that x is an infinite string.

A function f : X ∗ → R is lower semicomputable iff the
set {(x, p) ∈ X ∗ × Q | f(x) > p} is recursively enu-
merable. The function f is computable iff both f and −f
are lower semicomputable. Finally, the function f is limit
computable iff there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as
an anytime algorithm for f : we can stop φ at any time k
and get a preliminary answer. If the program φ ran long
enough (which we do not know), this preliminary answer
will be close to the correct one.

We use ∆Y to denote the set of probability distributions
over Y . A list of notation can be found in Appendix A.

2.2 DEFINITION

A semimeasure over the alphabet X is a function ν : X ∗ →
[0, 1] such that (i) ν(ε) ≤ 1, and (ii) ν(x) ≥

∑
a∈X ν(xa)

for all x ∈ X ∗. In the terminology of measure theory,
semimeasures are probability measures on the probability
space X ] = X ∗∪X∞ whose σ-algebra is generated by the
cylinder sets Γx := {xz | z ∈ X ]} [LV08, Ch. 4.2]. We
call a semimeasure (probability) a measure iff equalities
hold in (i) and (ii) for all x ∈ X ∗.

Next, we connect semimeasures to Turing machines. The
literature uses monotone Turing machines, which naturally



correspond to lower semicomputable semimeasures [LV08,
Sec. 4.5.2] that describe the distribution that arises when
piping fair coin flips into the monotone machine. Here we
take a different route.

A probabilistic Turing machine is a Turing machine that
has access to an unlimited number of uniformly random
coin flips. Let T denote the set of all probabilistic Turing
machines that take some input in X ∗ and may query an
oracle (formally defined below). We take a Turing machine
T ∈ T to correspond to a semimeasure λT where λT (a |
x) is the probability that T outputs a ∈ X when given
x ∈ X ∗ as input. The value of λT (x) is then given by the
chain rule

λT (x) :=

|x|∏
k=1

λT (xk | x<k). (1)

Thus T gives rise to the set of semimeasuresM where the
conditionals λ(a | x) are lower semicomputable. In con-
trast, the literature typically considers semimeasures whose
joint probability (1) is lower semicomputable. This setM
contains all computable measures. However,M is a proper
subset of the set of all lower semicomputable semimeasures
because the product (1) is lower semicomputale, but there
are some lower semicomputable semimeasures whose con-
ditional is not lower semicomputable [LH15c, Thm. 6].

In the following we assume that our alphabet is binary, i.e.,
X := {0, 1}.
Definition 1 (Oracle). An oracle is a function O : T ×
{0, 1}∗ ×Q→ ∆{0, 1}.

Oracles are understood to be probabilistic: they randomly
return 0 or 1. Let TO denote the machine T ∈ T when run
with the oracle O, and let λOT denote the semimeasure in-
duced by TO. This means that drawing from λOT involves
two sources of randomness: one from the distribution in-
duced by the probabilistic Turing machine T and one from
the oracle’s answers.

The intended semantics of an oracle are that it takes a query
(T, x, p) and returns 1 if the machine TO outputs 1 on in-
put x with probability greater than p when run with the or-
acle O, i.e., when λOT (1 | x) > p. Furthermore, the oracle
returns 0 if the machine TO outputs 1 on input xwith prob-
ability less than p when run with the oracle O, i.e., when
λOT (1 | x) < p. To fulfill this, the oracle O has to make
statements about itself, since the machine T from the query
may again query O. Therefore we call oracles of this kind
reflective oracles. This has to be defined very carefully to
avoid the obvious diagonalization issues that are caused by
programs that ask the oracle about themselves. We impose
the following self-consistency constraint.
Definition 2 (Reflective Oracle). An oracle O is reflective
iff for all queries (T, x, p) ∈ T × {0, 1}∗ ×Q,

(i) λOT (1 | x) > p implies O(T, x, p) = 1, and

0 1λO
T (0 | x)λO

T (1 | x)

O returns 1 O may randomize O returns 0

Figure 1: Answer options of a reflective oracle O for the
query (T, x, p); the rational p ∈ [0, 1] falls into one of the
three regions above. The values of λOT (0 | x) and λOT (1 | x)
are depicted as the length of the line segment under which
they are written.

(ii) λOT (0 | x) > 1− p implies O(T, x, p) = 0.

If p under- or overshoots the true probability of λOT ( · | x),
then the oracle must reveal this information. However, in
the critical case when p = λOT (1 | x), the oracle is allowed
to return anything and may randomize its result. Further-
more, since T might not output any symbol, it is possible
that λOT (0 | x) + λOT (1 | x) < 1. In this case the ora-
cle can reassign the non-halting probability mass to 0, 1, or
randomize; see Figure 1.

Example 3 (Reflective Oracles and Diagonalization). Let
T ∈ T be a probabilistic Turing machine that outputs
1−O(T, ε, 1/2) (T can know its own source code by quin-
ing [Kle52, Thm. 27]). In other words, T queries the oracle
about whether it is more likely to output 1 or 0, and then
does whichever the oracle says is less likely. In this case
we can use an oracle O(T, ε, 1/2) := 1/2 (answer 0 or 1
with equal probability), which implies λOT (1 | ε) = λOT (0 |
ε) = 1/2, so the conditions of Definition 2 are satisfied. In
fact, for this machine T we must have O(T, ε, 1/2) = 1/2
for all reflective oracles O. ♦

The following theorem establishes that reflective oracles
exist.

Theorem 4 ([FTC15a, App. B]). There is a reflective ora-
cle.

Definition 5 (Reflective-Oracle-Computable). A semimea-
sure is called reflective-oracle-computable iff it is com-
putable on a probabilistic Turing machine with access to
a reflective oracle.

For any probabilistic Turing machine T ∈ T we can
complete the semimeasure λOT ( · | x) into a reflective-
oracle-computable measure λ

O

T ( · | x): Using the oracle
O and a binary search on the parameter p we search for
the crossover point p where O(T, x, p) goes from return-
ing 1 to returning 0. The limit point p∗ ∈ R of the bi-
nary search is random since the oracle’s answers may be
random. But the main point is that the expectation of p∗

exists, so λ
O

T (1 | x) = E[p∗] = 1 − λ
O

T (0 | x) for all
x ∈ X ∗. Hence λ

O

T is a measure. Moreover, if the oracle
is reflective, then λ

O

T (x) ≥ λOT (x) for all x ∈ X ∗. In this
sense the oracle O can be viewed as a way of ‘completing’



all semimeasures λOT to measures by arbitrarily assigning
the non-halting probability mass. If the oracle O is reflec-
tive this is consistent in the sense that Turing machines who
run other Turing machines will be completed in the same
way. This is especially important for a universal machine
that runs all other Turing machines to induce a Solomonoff-
style distribution.

2.3 A LIMIT COMPUTABLE REFLECTIVE
ORACLE

The proof of Theorem 4 given in [FTC15a, App. B] is non-
constructive and uses the axiom of choice. In Section 2.4
we give a constructive proof for the existence of reflective
oracles and show that there is one that is limit computable.

Theorem 6 (A Limit Computable Reflective Oracle).
There is a reflective oracle that is limit computable.

This theorem has the immediate consequence that reflec-
tive oracles cannot be used as halting oracles. At first,
this result may seem surprising: according to the definition
of reflective oracles, they make concrete statements about
the output of probabilistic Turing machines. However, the
fact that the oracles may randomize some of the time actu-
ally removes enough information such that halting can no
longer be decided from the oracle output.

Corollary 7 (Reflective Oracles are not Halting Oracles).
There is no probabilistic Turing machine T such that for
every prefix program p and every reflective oracle O, we
have that λOT (1 | p) > 1/2 if p halts and λOT (1 | p) < 1/2
otherwise.

Proof. Assume there was such a machine T and let O be
the limit computable oracle from Theorem 6. Since O is
reflective we can turn T into a deterministic halting oracle
by calling O(T, p, 1/2) which deterministically returns 1 if
p halts and 0 otherwise. Since O is limit computable, we
can finitely compute the output of O on any query to arbi-
trary finite precision using our deterministic halting oracle.
We construct a probabilistic Turing machine T ′ that uses
our halting oracle to compute (rather than query) the ora-
cle O on (T ′, ε, 1/2) to a precision of 1/3 in finite time. If
O(T ′, ε, 1/2)± 1/3 > 1/2, the machine T ′ outputs 0, oth-
erwise T ′ outputs 1. Since our halting oracle is entirely de-
terministic, the output of T ′ is entirely deterministic as well
(and T ′ always halts), so λOT ′(0 | ε) = 1 or λOT ′(1 | ε) = 1.
Therefore O(T ′, ε, 1/2) = 1 or O(T ′, ε, 1/2) = 0 because
O is reflective. A precision of 1/3 is enough to tell them
apart, hence T ′ returns 0 if O(T ′, ε, 1/2) = 1 and T ′ re-
turns 1 if O(T ′, ε, 1/2) = 0. This is a contradiction.

A similar argument can also be used to show that reflective
oracles are not computable.

2.4 PROOF OF THEOREM 6

The idea for the proof of Theorem 6 is to construct an algo-
rithm that outputs an infinite series of partial oracles con-
verging to a reflective oracle in the limit.

The set of queries is countable, so we can assume that we
have some computable enumeration of it:

T × {0, 1}∗ ×Q =: {q1, q2, . . .}

Definition 8 (k-Partial Oracle). A k-partial oracle Õ is
function from the first k queries to the multiples of 2−k in
[0, 1]:

Õ : {q1, q2, . . . , qk} → {n2−k | 0 ≤ n ≤ 2k}

Definition 9 (Approximating an Oracle). A k-partial or-
acle Õ approximates an oracle O iff |O(qi) − Õ(qi)| ≤
2−k−1 for all i ≤ k.

Let k ∈ N, let Õ be a k-partial oracle, and let T ∈ T
be an oracle machine. The machine T Õ that we get when
we run T with the k-partial oracle Õ is defined as follows
(this is with slight abuse of notation since k is taken to be
understood implicitly).

1. Run T for at most k steps.

2. If T calls the oracle on qi for i ≤ k,

(a) return 1 with probability Õ(qi)− 2−k−1,
(b) return 0 with probability 1− Õ(qi)− 2−k−1, and
(c) halt otherwise.

3. If T calls the oracle on qj for j > k, halt.

Furthermore, we define λÕT analogously to λOT as the distri-
bution generated by the machine T Õ.

Lemma 10. If a k-partial oracle Õ approximates a re-
flective oracle O, then λOT (1 | x) ≥ λÕT (1 | x) and
λOT (0 | x) ≥ λÕT (0 | x) for all x ∈ {0, 1}∗ and all T ∈ T .

Proof. This follows from the definition of T Õ: when run-
ning T with Õ instead of O, we can only lose probability
mass. If T makes calls whose index is > k or runs for
more than k steps, then the execution is aborted and no
further output is generated. If T makes calls whose index
i ≤ k, then Õ(qi)− 2−k−1 ≤ O(qi) since Õ approximates
O. Therefore the return of the call qi is underestimated as
well.

Definition 11 (k-Partially Reflective). A k-partial oracle Õ
is k-partially reflective iff for the first k queries (T, x, p)

• λÕT (1 | x) > p implies Õ(T, x, p) = 1, and



• λÕT (0 | x) > 1− p implies Õ(T, x, p) = 0.

It is important to note that we can check whether a k-partial
oracle is k-partially reflective in finite time by running all
machines T from the first k queries for k steps and tallying
up the probabilities to compute λÕT .
Lemma 12. If O is a reflective oracle and Õ is a k-partial
oracle that approximatesO, then Õ is k-partially reflective.

Lemma 12 only holds because we use semimeasures whose
conditionals are lower semicomputable.

Proof. Assuming λÕT (1 | x) > p we get from Lemma 10
that λOT (1 | x) ≥ λÕT (1 | x) > p. Thus O(T, x, p) = 1
because O is reflective. Since Õ approximates O, we get
1 = O(T, x, p) ≤ Õ(T, x, p)+2−k−1, and since Õ assigns
values in a 2−k-grid, it follows that Õ(T, x, p) = 1. The
second implication is proved analogously.

Definition 13 (Extending Partial Oracles). A k + 1-partial
oracle Õ′ extends a k-partial oracle Õ iff |Õ(qi)−Õ′(qi)| ≤
2−k−1 for all i ≤ k.
Lemma 14. There is an infinite sequence of partial oracles
(Õk)k∈N such that for each k, Õk is a k-partially reflective
k-partial oracle and Õk+1 extends Õk.

Proof. By Theorem 4 there is a reflective oracle O. For
every k, there is a canonical k-partial oracle Õk that ap-
proximates O: restrict O to the first k queries and for any
such query q pick the value in the 2−k-grid which is clos-
est to O(q). By construction, Õk+1 extends Õk and by
Lemma 12, each Õk is k-partially reflective.

Lemma 15. If the k + 1-partial oracle Õk+1 extends the

k-partial oracle Õk, then λÕk+1

T (1 | x) ≥ λÕk

T (1 | x) and

λ
Õk+1

T (0 | x) ≥ λÕk

T (0 | x) for all x ∈ {0, 1}∗ and all
T ∈ T .

Proof. T Õk+1 runs for one more step than T Õk , can an-
swer one more query and has increased oracle precision.
Moreover, since Õk+1 extends Õk, we have |Õk+1(qi) −
Õk(qi)| ≤ 2−k−1, and thus Õk+1(qi)−2−k−1 ≥ Õk(qi)−
2−k. Therefore the success to answers to the oracle calls
(case 2(a) and 2(b)) will not decrease in probability.

Now everything is in place to state the algorithm that con-
structs a reflective oracle in the limit. It recursively tra-
verses a tree of partial oracles. The tree’s nodes are the
partial oracles; level k of the tree contains all k-partial ora-
cles. There is an edge in the tree from the k-partial oracle
Õk to the i-partial oracle Õi if and only if i = k + 1 and
Õi extends Õk.

For every k, there are only finitely many k-partial oracles,
since they are functions from finite sets to finite sets. In par-
ticular, there are exactly two 1-partial oracles (so the search

tree has two roots). Pick one of them to start with, and pro-
ceed recursively as follows. Given a k-partial oracle Õk,
there are finitely many (k + 1)-partial oracles that extend
Õk (finite branching of the tree). Pick one that is (k + 1)-
partially reflective (which can be checked in finite time). If
there is no (k+ 1)-partially reflective extension, backtrack.

By Lemma 14 our search tree is infinitely deep and thus the
tree search does not terminate. Moreover, it can backtrack
to each level only a finite number of times because at each
level there is only a finite number of possible extensions.
Therefore the algorithm will produce an infinite sequence
of partial oracles, each extending the previous. Because
of finite backtracking, the output eventually stabilizes on
a sequence of partial oracles Õ1, Õ2, . . .. By the follow-
ing lemma, this sequence converges to a reflective oracle,
which concludes the proof of Theorem 6.

Lemma 16. Let Õ1, Õ2, . . . be a sequence where Õk is a
k-partially reflective k-partial oracle and Õk+1 extends Õk
for all k ∈ N. LetO := limk→∞ Õk be the pointwise limit.
Then

(a) λÕk

T (1 | x)→ λOT (1 | x) and λÕk

T (0 | x)→ λOT (0 | x)
as k →∞ for all x ∈ {0, 1}∗ and all T ∈ T , and

(b) O is a reflective oracle.

Proof. First note that the pointwise limit must exists be-
cause |Õk(qi)− Õk+1(qi)| ≤ 2−k−1 by Definition 13.

(a) Since Õk+1 extends Õk, each Õk approximates O. Let
x ∈ {0, 1}∗ and T ∈ T and consider the sequence
ak := λÕk

T (1 | x) for k ∈ N. By Lemma 15,
ak ≤ ak+1, so the sequence is monotone increasing.
By Lemma 10, ak ≤ λOT (1 | x), so the sequence is
bounded. Therefore it must converge. But it cannot
converge to anything strictly below λOT (1 | x) by the
definition of TO.

(b) By definition, O is an oracle; it remains to show that
O is reflective. Let qi = (T, x, p) be some query.
If p < λOT (1 | x), then by (a) there is a k large
enough such that p < λÕt

T (1 | x) for all t ≥ k.
For any t ≥ max{k, i}, we have Õt(T, x, p) = 1
since Õt is t-partially reflective. Therefore 1 =
limk→∞ Õk(T, x, p) = O(T, x, p). The case 1 − p <
λOT (0 | x) is analogous.

3 A GRAIN OF TRUTH

3.1 NOTATION

In reinforcement learning, an agent interacts with an en-
vironment in cycles: at time step t the agent chooses an
action at ∈ A and receives a percept et = (ot, rt) ∈ E



consisting of an observation ot ∈ O and a real-valued re-
ward rt ∈ R; the cycle then repeats for t + 1. A history is
an element of (A×E)∗. In this section, we use æ ∈ A×E
to denote one interaction cycle, and æ<t to denote a history
of length t− 1.

We fix a discount function γ : N → R with γt ≥ 0 and∑∞
t=1 γt < ∞. The goal in reinforcement learning is to

maximize discounted rewards
∑∞
t=1 γtrt. The discount

normalization factor is defined as Γt :=
∑∞
k=t γk. The

effective horizon Ht(ε) is a horizon that is long enough to
encompass all but an ε of the discount function’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε} (2)

A policy is a function π : (A × E)∗ → ∆A that maps a
history æ<t to a distribution over actions taken after seeing
this history. The probability of taking action a after his-
tory æ<t is denoted with π(a | æ<t). An environment is
a function ν : (A × E)∗ × A → ∆E where ν(e | æ<tat)
denotes the probability of receiving the percept ewhen tak-
ing the action at after the history æ<t. Together, a policy
π and an environment ν give rise to a distribution νπ over
histories. Throughout this paper, we make the following
assumptions.
Assumption 17. (a) Rewards are bounded between 0 and

1.

(b) The set of actions A and the set of percepts E are both
finite.

(c) The discount function γ and the discount normalization
factor Γ are computable.

Definition 18 (Value Function). The value of a policy π in
an environment ν given history æ<t is defined recursively
as V πν (æ<t) :=

∑
a∈A π(a | æ<t)V

π
ν (æ<ta) and

V πν (æ<tat) :=

1

Γt

∑
et∈E

ν(et | æ<tat)
(
γtrt + Γt+1V

π
ν (æ1:t)

)
if Γt > 0 and V πν (æ<tat) := 0 if Γt = 0. The optimal
value is defined as V ∗ν (æ<t) := supπ V

π
ν (æ<t).

Definition 19 (Optimal Policy). A policy π is optimal in
environment ν (ν-optimal) iff for all histories æ<t ∈ (A×
E)∗ the policy π attains the optimal value: V πν (æ<t) =
V ∗ν (æ<t).

We assumed that the discount function is summable, re-
wards are bounded (Assumption 17a), and actions and per-
cepts spaces are both finite (Assumption 17b). Therefore
an optimal deterministic policy exists for every environ-
ment [LH14, Thm. 10].

3.2 REFLECTIVE BAYESIAN AGENTS

Fix O to be a reflective oracle. From now on, we assume
that the action space A := {α, β} is binary. We can treat

computable measures over binary strings as environments:
the environment ν corresponding to a probabilistic Turing
machine T ∈ T is defined by

ν(et | æ<tat) := λ
O

T (y | x) =

k∏
i=1

λ
O

T (yi | xy1 . . . yi−1)

where y1:k is a binary encoding of et and x is a binary
encoding of æ<tat. The actions a1:∞ are only contextual,
and not part of the environment distribution. We define

ν(e<t | a<t) :=

t−1∏
k=1

ν(ek | æ<k).

Let T1, T2, . . . be an enumeration of all probabilistic Tur-
ing machines in T . We define the class of reflective envi-
ronments

MO
refl :=

{
λ
O

T1
, λ
O

T2
, . . .

}
.

This is the class of all environments computable on a prob-
abilistic Turing machine with reflective oracle O, that have
been completed from semimeasures to measures using O.

Analogously to AIXI [Hut05], we define a Bayesian mix-
ture over the classMO

refl. Let w ∈ ∆MO
refl be a lower semi-

computable prior probability distribution on MO
refl. Pos-

sible choices for the prior include the Solomonoff prior
w
(
λ
O

T

)
:= 2−K(T ), where K(T ) denotes the length of the

shortest input to some universal Turing machine that en-
codes T [Sol78].2 We define the corresponding Bayesian
mixture

ξ(et | æ<tat) :=
∑

ν∈MO
refl

w(ν | æ<t)ν(et | æ<tat) (3)

where w(ν | æ<t) is the (renomalized) posterior,

w(ν | æ<t) := w(ν)
ν(e<t | a<t)
ξ(e<t | a<t)

. (4)

The mixture ξ is lower semicomputable on an oracle Turing
machine because the posterior w( · | æ<t) is lower semi-
computable. Hence there is an oracle machine T such that
ξ = λOT . We define its completion ξ := λ

O

T as the comple-
tion of λOT . This is the distribution that is used to compute
the posterior. There are no cyclic dependencies since ξ is
called on the shorter history æ<t. We arrive at the follow-
ing statement.

Proposition 20 (Bayes is in the Class). ξ ∈MO
refl.

Moreover, since O is reflective, we have that ξ dominates
all environments ν ∈MO

refl:

ξ(e1:t | a1:t)
2Technically, the lower semicomputable prior 2−K(T ) is only

a semidistribution because it does not sum to 1. This turns out to
be unimportant.



= ξ(et | æ<tat)ξ(e<t | a<t)
≥ ξ(et | æ<tat)ξ(e<t | a<t)

= ξ(e<t | a<t)
∑

ν∈MO
refl

w(ν | æ<t)ν(et | æ<tat)

= ξ(e<t | a<t)
∑

ν∈MO
refl

w(ν)
ν(e<t | a<t)
ξ(e<t | a<t)

ν(et | æ<tat)

=
∑

ν∈MO
refl

w(ν)ν(e1:t | a1:t)

≥ w(ν)ν(e1:t | a1:t)

This property is crucial for on-policy value convergence.
Lemma 21 (On-Policy Value Convergence [Hut05,
Thm. 5.36]). For any policy π and any environment µ ∈
MO

refl with w(µ) > 0,

V πµ (æ<t)− V πξ (æ<t)→ 0 µπ-almost surely as t→∞.

3.3 REFLECTIVE-ORACLE-COMPUTABLE
POLICIES

This subsection is dedicated to the following result that was
previously stated but not proved in [FST15, Alg. 6]. It con-
trasts results on arbitrary semicomputable environments
where optimal policies are not limit computable [LH15b,
Sec. 4].
Theorem 22 (Optimal Policies are Oracle Computable).
For every ν ∈ MO

refl, there is a ν-optimal (stochastic) pol-
icy π∗ν that is reflective-oracle-computable.

Note that even though deterministic optimal policies al-
ways exist, those policies are typically not reflective-
oracle-computable.

To prove Theorem 22 we need the following lemma.
Lemma 23 (Reflective-Oracle-Computable Optimal Value
Function). For every environment ν ∈ MO

refl the optimal
value function V ∗ν is reflective-oracle-computable.

Proof. This proof follows the proof of [LH15b, Cor. 13].
We write the optimal value explicitly as

V ∗ν (æ<t) =
1

Γt
lim
m→∞

max
∑
æt:m

m∑
k=t

γkrk

k∏
i=t

ν(ei | æ<i),

(5)
where

∑
max denotes the expectimax operator:

max
∑
æt:m

:= max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

For a fixed m, all involved quantities are reflective-oracle-
computable. Moreover, this quantity is monotone increas-
ing in m and the tail sum from m + 1 to∞ is bounded by
Γm+1 which is computable according to Assumption 17c
and converges to 0 as m→∞. Therefore we can enumer-
ate all rationals above and below V ∗ν .

Proof of Theorem 22. According to Lemma 23 the optimal
value function V ∗ν is reflective-oracle-computable. Hence
there is a probabilistic Turing machine T such that

λOT (1 | æ<t) =
(
V ∗ν (æ<tα)− V ∗ν (æ<tβ) + 1

)
/2.

We define a policy π that takes action α if
O(T,æ<t, 1/2) = 1 and action β if O(T,æ<t, 1/2) = 0.
(This policy is stochastic because the answer of the oracle
O is stochastic.)

It remains to show that π is a ν-optimal policy. If
V ∗ν (æ<tα) > V ∗ν (æ<tβ), then λOT (1 | æ<t) > 1/2, thus
O(T,æ<t, 1/2) = 1 since O is reflective, and hence π
takes action α. Conversely, if V ∗ν (æ<tα) < V ∗ν (æ<tβ),
then λOT (1 | æ<t) < 1/2, thus O(T,æ<t, 1/2) = 0
since O is reflective, and hence π takes action β. Lastly,
if V ∗ν (æ<tα) = V ∗ν (æ<tβ), then both actions are opti-
mal and thus it does not matter which action is returned
by policy π. (This is the case where the oracle may ran-
domize.)

3.4 SOLUTION TO THE GRAIN OF TRUTH
PROBLEM

Together, Proposition 20 and Theorem 22 provide the nec-
essary ingredients to solve the grain of truth problem.

Corollary 24 (Solution to the Grain of Truth Problem). For
every lower semicomputable prior w ∈ ∆MO

refl the Bayes-
optimal policy π∗

ξ
is reflective-oracle-computable where ξ

is the Bayes-mixture corresponding to w defined in (3).

Proof. From Proposition 20 and Theorem 22.

Hence the environment classMO
refl contains any reflective-

oracle-computable modification of the Bayes-optimal pol-
icy π∗

ξ
. In particular, this includes computable multi-agent

environments that contain other Bayesian agents over the
class MO

refl. So any Bayesian agent over the class MO
refl

has a grain of truth even though the environment may con-
tain other Bayesian agents of equal power. We proceed to
sketch the implications for multi-agent environments in the
next section.

4 MULTI-AGENT ENVIRONMENTS

This section summarizes our results for multi-agent sys-
tems. The proofs can be found in [Lei16].

4.1 SETUP

In a multi-agent environment there are n agents each taking
sequential actions from the finite action space A. In each
time step t = 1, 2, . . ., the environment receives action ait
from agent i and outputs n percepts e1t , . . . , e

n
t ∈ E , one for
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...

agent πn

multi-agent
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a1t

e1t
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ent

Figure 2: Agents π1, . . . , πn interacting in a multi-agent
environment.

each agent. Each percept eit = (oit, r
i
t) contains an obser-

vation oit and a reward rit ∈ [0, 1]. Importantly, agent i only
sees its own action ait and its own percept eit (see Figure 2).
We use the shorthand notation at := (a1t , . . . , a

n
t ) and

et := (e1t , . . . , e
n
t ) and denote æi

<t = ai1e
i
1 . . . a

i
t−1e

i
t−1

and æ<t = a1e1 . . . at−1et−1.

We define a multi-agent environment as a function

σ : (An × En)∗ ×An → ∆(En).

The agents are given by n policies π1, . . . , πn where πi :
(A× E)∗ → ∆A. Together they specify the history distri-
bution

σπ1:n(ε) : = 1

σπ1:n(æ1:t) : = σπ1:n(æ<tat)σ(et | æ<tat)

σπ1:n(æ<tat) : = σπ1:n(æ<t)

n∏
i=1

πi(a
i
t | æi

<t).

Each agent i acts in a subjective environment σi given by
joining the multi-agent environment σ with the policies
π1, . . . , πi−1, πi+1, . . . , πn by marginalizing over the his-
tories that πi does not see. Together with policy πi, the
environment σi yields a distribution over the histories of
agent i

σπi
i (æi

<t) :=
∑

æj
<t,j 6=i

σπ1:n(æ<t).

We get the definition of the subjective environment σi with
the identity σi(eit | æi

<ta
i
t) := σπi

i (eit | æi
<ta

i
t). It is cru-

cial to note that the subjective environment σi and the pol-
icy πi are ordinary environments and policies, so we can
use the formalism from Section 3.

Our definition of a multi-agent environment is very general
and encompasses most of game theory. It allows for coop-
erative, competitive, and mixed games; infinitely repeated
games or any (infinite-length) extensive form games with
finitely many players.

The policy πi is an ε-best response after history æi
<t iff

V ∗σi
(æi

<t)− V πi
σi

(æi
<t) < ε.

If at some time step t, all agents’ policies are ε-best re-
sponses, we have an ε-Nash equilibrium. The property of
multi-agent systems that is analogous to asymptotic opti-
mality is convergence to an ε-Nash equilibrium.

4.2 INFORMED REFLECTIVE AGENTS

Let σ be a multi-agent environment and let π∗σ1
, . . . π∗σn

be
such that for each i the policy π∗σi

is an optimal policy in
agent i’s subjective environment σi. At first glance this
seems ill-defined: The subjective environment σi depends
on each other policy π∗σj

for j 6= i, which depends on the
subjective environment σj , which in turn depends on the
policy π∗σi

. However, this circular definition actually has a
well-defined solution.
Theorem 25 (Optimal Multi-Agent Policies). For any
reflective-oracle-computable multi-agent environment σ,
the optimal policies π∗σ1

, . . . , π∗σn
exist and are reflective-

oracle-computable.

Note the strength of Theorem 25: each of the policies π∗σi

is acting optimally given the knowledge of everyone else’s
policies. Hence optimal policies play 0-best responses by
definition, so if every agent is playing an optimal policy,
we have a Nash equilibrium. Moreover, this Nash equi-
librium is also a subgame perfect Nash equilibrium, be-
cause each agent also acts optimally on the counterfac-
tual histories that do not end up being played. In other
words, Theorem 25 states the existence and reflective-
oracle-computability of a subgame perfect Nash equilib-
rium in any reflective-oracle-computable multi-agent envi-
ronment. From Theorem 6 we then get that these subgame
perfect Nash equilibria are limit computable.
Corollary 26 (Solution to Computable Multi-Agent Envi-
ronments). For any computable multi-agent environment
σ, the optimal policies π∗σ1

, . . . , π∗σn
exist and are limit

computable.

4.3 LEARNING REFLECTIVE AGENTS

Since our class MO
refl solves the grain of truth problem,

the result by Kalai and Lehrer [KL93] immediately im-
plies that for any Bayesian agents π1, . . . , πn interacting
in an infinitely repeated game and for all ε > 0 and all
i ∈ {1, . . . , n} there is almost surely a t0 ∈ N such that for
all t ≥ t0 the policy πi is an ε-best response. However, this
hinges on the important fact that every agent has to know
the game and also that all other agents are Bayesian agents.
Otherwise the convergence to an ε-Nash equilibrium may
fail, as illustrated by the following example.

At the core of the following construction is a dogmatic
prior [LH15a, Sec. 3.2]. A dogmatic prior assigns very



high probability to going to hell (reward 0 forever) if the
agent deviates from a given computable policy π. For a
Bayesian agent it is thus only worth deviating from the
policy π if the agent thinks that the prospects of follow-
ing π are very poor already. This implies that for general
multi-agent environments and without additional assump-
tions on the prior, we cannot prove any meaningful conver-
gence result about Bayesian agents acting in an unknown
multi-agent environment.

Example 27 (Reflective Bayesians Playing Matching Pen-
nies). In the game of matching pennies there are two agents
(n = 2), and two actions A = {α, β} representing the two
sides of a penny. In each time step agent 1 wins if the two
actions are identical and agent 2 wins if the two actions are
different. The payoff matrix is as follows.

α β
α 1,0 0,1
β 0,1 1,0

We use E = {0, 1} to be the set of rewards (observations
are vacuous) and define the multi-agent environment σ to
give reward 1 to agent 1 iff a1t = a2t (0 otherwise) and
reward 1 to agent 2 iff a1t 6= a2t (0 otherwise). Note that
neither agent knows a priori that they are playing matching
pennies, nor that they are playing an infinite repeated game
with one other player.

Let π1 be the policy that takes the action sequence (ααβ)∞

and let π2 := πα be the policy that always takes action
α. The average reward of policy π1 is 2/3 and the average
reward of policy π2 is 1/3. Let ξ be a universal mixture (3).
By Lemma 21, V π1

ξ
→ c1 ≈ 2/3 and V π2

ξ
→ c2 ≈ 1/3

almost surely when following policies (π1, π2). Therefore
there is an ε > 0 such that V π1

ξ
> ε and V π2

ξ
> ε for all

time steps. Now we can apply [LH15a, Thm. 7] to conclude
that there are (dogmatic) mixtures ξ′1 and ξ′2 such that π∗ξ′1
always follows policy π1 and π∗ξ′2 always follows policy π2.
This does not converge to a (ε-)Nash equilibrium. ♦

A policy π is asymptotically optimal in mean in an envi-
ronment classM iff for all µ ∈M

Eπµ
[
V ∗µ (æ<t)− V πµ (æ<t)

]
→ 0 as t→∞ (6)

where Eπµ denotes the expectation with respect to the prob-
ability distribution µπ over histories generated by policy π
acting in environment µ.

Asymptotic optimality stands out because it is currently
the only known nontrivial objective notion of optimality in
general reinforcement learning [LH15a].

The following theorem is the main convergence result.
It states that for asymptotically optimal agents we get
convergence to ε-Nash equilibria in any reflective-oracle-
computable multi-agent environment.

Theorem 28 (Convergence to Equilibrium). Let σ be an
reflective-oracle-computable multi-agent environment and
let π1, . . . , πn be reflective-oracle-computable policies that
are asymptotically optimal in mean in the classMO

refl. Then
for all ε > 0 and all i ∈ {1, . . . , n} the σπ1:n -probability
that the policy πi is an ε-best response converges to 1 as
t→∞.

In contrast to Theorem 25 which yields policies that play a
subgame perfect equilibrium, this is not the case for The-
orem 28: the agents typically do not learn to predict off-
policy and thus will generally not play ε-best responses
in the counterfactual histories that they never see. This
weaker form of equilibrium is unavoidable if the agents do
not know the environment because it is impossible to learn
the parts that they do not interact with.

Together with Theorem 6 and the asymptotic optimality
of the Thompson sampling policy [LLOH16, Thm. 4] that
is reflective-oracle computable we get the following corol-
lary.

Corollary 29 (Convergence to Equilibrium). There are
limit computable policies π1, . . . , πn such that for any com-
putable multi-agent environment σ and for all ε > 0 and
all i ∈ {1, . . . , n} the σπ1:n -probability that the policy πi
is an ε-best response converges to 1 as t→∞.

5 DISCUSSION

This paper introduced the class of all reflective-oracle-
computable environmentsMO

refl. This class solves the grain
of truth problem because it contains (any computable mod-
ification of) Bayesian agents defined over MO

refl: the op-
timal agents and Bayes-optimal agents over the class are
all reflective-oracle-computable (Theorem 22 and Corol-
lary 24).

If the environment is unknown, then a Bayesian agent may
end up playing suboptimally (Example 27). However, if
each agent uses a policy that is asymptotically optimal in
mean (such as the Thompson sampling policy [LLOH16])
then for every ε > 0 the agents converge to an ε-Nash equi-
librium (Theorem 28 and Corollary 29).

Our solution to the grain of truth problem is purely theo-
retical. However, Theorem 6 shows that our class MO

refl
allows for computable approximations. This suggests that
practical approaches can be derived from this result, and re-
flective oracles have already seen applications in one-shot
games [FTC15b].

Acknowledgements

We thank Marcus Hutter and Tom Everitt for valuable com-
ments.



REFERENCES

[FST15] Benja Fallenstein, Nate Soares, and Jessica
Taylor. Reflective variants of Solomonoff in-
duction and AIXI. In Artificial General Intelli-
gence. Springer, 2015.

[FTC15a] Benja Fallenstein, Jessica Taylor, and Paul F
Christiano. Reflective oracles: A founda-
tion for classical game theory. Technical re-
port, Machine Intelligence Research Institute,
2015. http://arxiv.org/abs/1508.
04145.

[FTC15b] Benja Fallenstein, Jessica Taylor, and Paul F
Christiano. Reflective oracles: A foundation
for game theory in artificial intelligence. In
Logic, Rationality, and Interaction, pages 411–
415. Springer, 2015.

[FY01] Dean P Foster and H Peyton Young. On the
impossibility of predicting the behavior of ra-
tional agents. Proceedings of the National
Academy of Sciences, 98(22):12848–12853,
2001.

[Hut05] Marcus Hutter. Universal Artificial Intelli-
gence. Springer, 2005.

[Hut09] Marcus Hutter. Open problems in universal in-
duction & intelligence. Algorithms, 3(2):879–
906, 2009.

[KL93] Ehud Kalai and Ehud Lehrer. Rational learn-
ing leads to Nash equilibrium. Econometrica,
pages 1019–1045, 1993.

[Kle52] Stephen Cole Kleene. Introduction to Meta-
mathematics. Wolters-Noordhoff Publishing,
1952.

[Lei16] Jan Leike. Nonparametric General Reinforce-
ment Learning. PhD thesis, Australian Na-
tional University, 2016.

[LH14] Tor Lattimore and Marcus Hutter. General time
consistent discounting. Theoretical Computer
Science, 519:140–154, 2014.

[LH15a] Jan Leike and Marcus Hutter. Bad universal
priors and notions of optimality. In Conference
on Learning Theory, pages 1244–1259, 2015.

[LH15b] Jan Leike and Marcus Hutter. On the com-
putability of AIXI. In Uncertainty in Artificial
Intelligence, pages 464–473, 2015.

[LH15c] Jan Leike and Marcus Hutter. On the
computability of Solomonoff induction and
knowledge-seeking. In Algorithmic Learning
Theory, pages 364–378, 2015.

[LLOH16] Jan Leike, Tor Lattimore, Laurent Orseau, and
Marcus Hutter. Thompson sampling is asymp-
totically optimal in general environments. In
Uncertainty in Artificial Intelligence, 2016.

[LV08] Ming Li and Paul M. B. Vitányi. An Introduc-
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