
Merging Strategies for Sum-Product Networks: From Trees to Graphs

Tahrima Rahman and Vibhav Gogate
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA.
{tahrima.rahman,vibhav.gogate}@utdallas.edu

Abstract

Learning the structure of sum-product networks
(SPNs) – arithmetic circuits over latent and ob-
served variables – has been the subject of much
recent research. These networks admit linear
time exact inference, and thus help alleviate one
of the chief disadvantages of probabilistic graph-
ical models: accurate probabilistic inference al-
gorithms are often computationally expensive.
Although, algorithms for inducing their structure
from data have come quite far and often outper-
form algorithms that induce probabilistic graphi-
cal models, a key issue with existing approaches
is that they induce tree SPNs, a small, inefficient
sub-class of SPNs. In this paper, we address
this limitation by developing post-processing ap-
proaches that induce graph SPNs from tree SPNs
by merging similar sub-structures. The key
benefits of graph SPNs over tree SPNs include
smaller computational complexity which facili-
tates faster online inference, and better general-
ization accuracy because of reduced variance, at
the cost of slight increase in the learning time.
We demonstrate experimentally that our merging
techniques significantly improve the accuracy
of tree SPNs, achieving state-of-the-art perfor-
mance on several real world benchmark datasets.

1 INTRODUCTION

Probabilistic graphical models [8, 17] such as Bayesian and
Markov networks are routinely used in a wide variety of
application domains such as computer vision and natural
language understanding for modeling and reasoning about
uncertainty. However, exact inference in them – the task of
answering queries given a model – is NP-hard in general
and computationally intractable for most real-world mod-
els. As a result, approximate inference algorithms such as
loopy belief propagation and Gibbs sampling are widely

used in practice. However, they can often yield highly in-
accurate and high variance estimates, leading to poor pre-
dictive performance.

One approach to tackle the inaccuracy and unreliability of
approximate inference is to learn so-called tractable mod-
els from data. Examples of such models include thin junc-
tion trees [2], arithmetic circuits (ACs) [7], cutset net-
works [25], probabilistic sentential decision diagrams [16],
AND/OR decision diagrams [9, 21] and sum-product net-
works [23]. Inference in these models is polynomial (often
linear) in the size of the model and therefore the complex-
ity and accuracy of inference is no longer an issue. In other
words, once an accurate model is learned from data, pre-
dictions are guaranteed to be accurate.

In this paper, we focus on the NP-hard problem of learning
both the structure and parameters of sum-product networks
(SPNs) from data. At a high level, an SPN is a rooted di-
rected acyclic graph that represents a joint probability dis-
tribution over a large number of random variables, both
observed and latent. It has two types of internal nodes:
sum-nodes which express conditioning or splitting over la-
tent or observed variables and product nodes which repre-
sent decomposition of variables into independent compo-
nents. Leaf nodes represent simple distributions over ob-
served variables (e.g., uniform distribution, univariate dis-
tributions, etc.). The key advantage of SPNs and other
equivalent representations such as ACs 1 over thin-junction
trees is that they can be much compact and never larger
than the latter. This is because they take advantage of vari-
ous fine-grained structural properties such as determinism,
context-specific independence, dynamic variable orderings
and caching (cf. [7, 9, 4, 13]). For instance, in some cases,
they can represent high-treewidth junction trees using only
a handful of sum and product nodes [23].

The literature abounds with algorithms for learning the
structure of SPNs and ACs from data, starting with the

1The equivalence between ACs and SPNs was shown by
Rooshenas and Lowd [26]. Thus, algorithms for learning ACs
can be used to learn SPNs and vice versa.

work of Lowd and Domingos [19] who proposed to learn
ACs over observed variables by using the AC size as a
learning (inductive) bias within a Bayesian network struc-
ture learning algorithm, and then compiling the induced
Bayesian network to an AC. Later Lowd and Rooshenas
[20] extended this algorithm to learn a Markov network
having small AC size. The latter performs much better in
terms of test set log likelihood score than the former be-
cause of the increased flexibility afforded by the undirected
Markov network structure.

A limitation of the two aforementioned approaches for
learning ACs is that they do not use latent variables; it
turns out that their accuracy can be greatly improved us-
ing latent variables. Unfortunately, the parameter learning
problem (a sub-step in structure learning) – the problem of
learning the weights or probabilities of a given SPN struc-
ture – is much harder in presence of latent variables. In
particular, the optimization problem is non-convex, which
necessitates the use of algorithms such as gradient descent
and expectation maximization that only converge to a local
minima. However, since learning is often an offline pro-
cess, this increase in complexity is often not a big issue.

The first approach for learning the structure of SPNs hav-
ing both latent and observed variables is due to Gens and
Domingos [11]. An issue with this approach is that it learns
only directed trees instead of (directed acyclic) graphs and
as a result is unable to fully exploit the power and flexibil-
ity of SPNs. To address this limitation, Rahman et al. [25],
Vergari et al. [28] and Rooshenas and Lowd [26] proposed
to learn a graph SPN over observed variables while Dennis
and Ventura [10] proposed to learn a graph SPN over latent
variables. A drawback of these approaches is that they are
unable to learn a graph SPN over both observed and latent
variables. In this paper, we address this limitation.

The main idea in our approach is as follows. We first learn
a tree SPN over latent and observed nodes using standard
algorithms, and then convert the tree SPN to a graph SPN
by processing the SPN in a bottom-up fashion, merging two
sub-SPNs if the distributions represented by them are sim-
ilar and defined over the same variables. To convert this
idea into a general-purpose algorithm, we have to solve two
problems: (1) how to find similar sub-SPNs, and (2) how to
merge them into one sub-SPN. Both problems are compu-
tationally expensive to solve and therefore we develop ap-
proximate algorithms for solving them, which is the main
contribution of this paper.

The second contribution of this paper is a thorough exper-
imental evaluation of our proposed merging algorithms on
20 benchmark datasets, all of which were used in several
previous studies. Our experiments clearly show that merg-
ing always improves the performance of tree SPNs, mea-
sured in terms of test-set log-likelihood score and predic-
tion time. We also experimentally compared bagged en-

sembles of graph SPNs with state-of-the-art approaches
such as ensembles of cutset networks [24], sum-product
networks with direct and indirect interactions [26], sum-
product networks learned via the SVD-based approach[1],
arithmetic circuits with Markov networks [20], and mix-
tures of cutset networks [25] on the same datasets, and
found that our new approach yields better test-set log like-
lihood score on 8 out of the 20 datasets with two ties. This
clearly demonstrates the power of our new merging algo-
rithms.

The rest of the paper is organized as follows. In the next
section, we present background on SPNs, related work as
well as a generic algorithm for learning tree SPNs. Section
3 describes powerful merging approaches for converting an
arbitrary tree SPN to a graph SPN. Experimental results are
presented in section 4 and we conclude in section 5.

2 BACKGROUND

Any (discrete) probability distribution over a set of vari-
ables V can be expressed using an arithmetic circuit (AC)
[7] or a sum-product network (SPN) [23].2 The key ben-
efit of SPNs over conventional uncertainty representations
such as Bayesian and Markov networks is that in SPNs,
common probabilistic inference tasks such as maximum-
a-posteriori (MAP) and posterior marginal (MAR) estima-
tion can be solved in time and space that scales linearly
with the size of the representation. In Bayesian and Markov
networks, these tasks are known to be NP-hard in general
(cf. [27]). The caveat is that SPNs can be exponentially
larger than Bayesian and Markov networks; they are of-
ten compiled from the latter by running exact probabilistic
inference techniques such as variable elimination [4] and
AND/OR search [21], in order to facilitate faster online in-
ference. Formally,

Definition 1. An SPN [23] is recursively defined as fol-
lows:

1. A tractable univariate distribution is an SPN;

2. A product of SPNs defined over different variables is
an SPN; and

3. A weighted sum of SPNs with the same scope vari-
ables is an SPN.

An SPN can be expressed as a rooted directed acyclic graph
with univariate distributions as leaves, sums and products
as internal nodes, and the edges from a sum node to its

2SPNs used in this paper are equivalent to ACs (as well as
AND/OR decision diagrams [21]) defined over latent and ob-
served variables. However, in order to be consistent, we will use
the term SPNs throughout the paper. We will distinguish between
two types of SPNs: SPNs defined over only observed variables
and SPNs defined over both observed and latent variables.

V1

× ×

V2 : 0.6 V3 V2 : 0.7 V3

V4 : 0.1 V4 : 0.4 V4 : 0.1 V4 : 0.4

0.2 0.8

0.3 0.7 0.3 0.7

(a)

V1

× ×

V2 : 0.6 V3 V2 : 0.7

V4 : 0.1 V4 : 0.4

0.2 0.8

0.3
0.7

(b)

+

× ×

V2 : 0.6 V1 : 0.3 V3 V1 : 0.8 V2 : 0.7

V4 : 0.1 V4 : 0.4

0.2 0.8

0.3 0.7

(c)

Figure 1: Three example SPNs over variables {V1, V2, V3, V4}. We are assuming that all variables are binary and take
values from the domain {0, 1}. Leaf nodes express univariate distributions. For example, the node V2 : 0.6 expresses the
probability distribution P (V2 = 1) = 0.6. Sum nodes are labeled either by a variable which denotes conditioning over
the variable or by a + sign which denotes that the sum node is latent. All left (right) arcs emanating from a sum node
correspond to an assignment of 1 (0) to the labeled variable. Product nodes are labeled by ×. (a) Tree SPN (SPN which is
a rooted directed acyclic tree) that decomposes according to a tree Markov network V4−V3−V1−V2. (b) Graph SPN that
is equivalent to the tree SPN given in (a) obtained by merging identical sub-trees. (c) Graph SPN over latent and observed
variables.

children labeled with the corresponding weights. An SPN
represents a (normalized) probability distribution when the
weights attached to each sum node sum to one. Any unnor-
malized SPN can be normalized in linear time.

As mentioned earlier, we will distinguish between two
types of SPNs: SPNs defined only over observed variables
and SPNs defined over both latent and observed variables.
The two have different representation powers with the lat-
ter being more general and therefore more powerful than
the former. For SPNs having only observed variables, each
sum node represents a split (conditioning) over a variable
and is therefore labeled by the corresponding variable. For
SPNs having both latent and observed variables, each sum
node can represent either a split over an observed or a latent
variable. The splits over the observed variables are repre-
sented the usual way while sum nodes that split over the
latent variables are labeled by the “+” sign.

Example 2.1. Fig. 1 shows three SPNs over four variables
{V1, V2, V3, V4}. The two SPNs on the left are defined over
only observed variables while the SPN on the right is de-
fined over both latent and observed variables. The graph
SPN shown in Fig. 1(b) is obtained from the tree SPN
shown in Fig. 1(a) by merging identical sub-SPNs.

2.1 LEARNING SPNs

In this paper, we focus on top-down approaches that di-
rectly learn the structure of SPNs from data. Instead of
learning Bayesian and Markov networks and then compil-
ing them into SPNs (this is the approach used in [19, 20]),
the key advantage of this direct approach is that the size
of the SPN can be controlled in a straight-forward manner,
which is typically bounded from above by the data size.

Algorithm 1 shows a generic recursive learning algorithm
for learning tree SPNs from data, which is loosely based

Algorithm 1: LEARNSPN(T,V)
Input: Set of Training Instances T and set of variables V
Output: An SPN representing a distribution over V
begin

// 1. Base Case
if conditions for inducing the base models are satisfied

then return LEARNBASEMODEL(T,V)
// 2. Decomposition Step
if V can be partitioned into subsets Vj

then return
∏

j LEARNSPN(T,Vj)
// 3. Splitting Step
Partition T into subsets of similar instances Ti

return
∑

i
|Ti|
|T| LEARNSPN(Ti,V)

end

on the algorithm proposed by Gens and Domingos [11].
The algorithm has three steps: base case, decomposition
and splitting. In the base case, if the conditions for learn-
ing the base model are satisfied, for example, when the
size of the training data is small or only one variable re-
mains, then the algorithm learns the corresponding trivial
distribution and terminates the recursion. In the decom-
position step, the algorithm tries to partition the variables
into roughly independent components Vj ⊆ V such that
P (V) =

∏
j P (Vj) and recurses on each component, in-

ducing a product node. If neither the base case nor the con-
ditions for the decomposition step are satisfied, then the
algorithm partitions the training instances into clusters of
multiple instances, inducing a sum node, and recurses on
each part.

Several techniques proposed in literature for learning SPNs
(and equivalently ACs) can be understood as special cases
of Algorithm 1, with the difference between them being the
approaches used at the three steps. Table 1 gives examples

Reference Base Case Decomposition Splitting
Gens and Domingos [11] Univariate distribution Independence tests Latent Variables

Gogate et al. [15] Univariate distribution Independence assumption Conjunctive fixed-length features
Cutset networks (CNets)[25] Tree Markov networks not used Observed variables

Ensembles of CNets[24] Tree Markov networks not used Observed and Latent variables
Vergari et al. [28] Tree Markov networks Independence tests Latent Variables

Rooshenas and Lowd [26] Tractable Arithmetic Circuits Independence tests Latent variables

Table 1: Examples of SPN structure learning approaches in the literature that follow the prescription given in Algorithm 1.
Base case is the stopping criteria for the recursive algorithm. [11, 15] stop when only one variable remains and induce a
univariate distribution; [25, 28, 24] stop when the entropy of the data is small or use a Bayesian criteria, and induce an SPN
corresponding to a tree Markov network at the leaves using the Chow-Liu algorithm [5] (this algorithm runs in polynomial
time and yields an optimal tree Markov network according to the maximum likelihood criteria). [26] learns an SPN over
observed variables in the base case using the algorithm described in [19]. In the decomposition step, [11, 26, 28] use
pair-wise variable independence tests (e.g., the G-test) for inducing the product nodes; [15] uses no independence tests and
instead assume that each split decomposes the variables into multiple components; while [25, 24] ignore the decomposition
step inducing only sum nodes. [11, 26, 28] split only over latent variables, [15, 25] split only over observed variables or
their features, while [24] split over both latent and observed variables.

of techniques from the SPN literature that are based on Al-
gorithm 1 and briefly describes how they differ.

Although, the structure learning problem is NP-hard in
SPNs having only observed variables as well as in SPNs
having both observed and latent variables, the parameter
(weight) learning problem is easier in the former than the
latter. In particular, parameter learning can be done in
closed form when the SPN has only observed variables.
On the other hand, the optimization problem is non-convex
in the presence of latent variables and one has to use itera-
tive algorithms having high computational complexity such
as hard and soft EM to solve the non-convex problem (cf.
[23, 22, 24]). Thus, although latent variables help yield a
more powerful representation, they often significantly in-
crease the learning time.

3 CONVERTING TREE SPNs TO GRAPH
SPNs

A key problem with existing methods for learning SPNs is
that they induce tree models, except at the leaves. It is well
known in the probabilistic inference literature [9, 7, 6] that
tree SPNs can be exponentially larger than graph SPNs,
which are obtained from the former by merging identical
sub-SPNs (see Fig.1(a) and (b)). Thus, converting tree
SPNs to graph SPNs is a good idea because they can sig-
nificantly improve the time required to make predictions.

From a learning point of view, graph SPNs can potentially
improve the generalization performance by addressing the
following issue associated with the LEARNSPN algorithm:
as the depth of the node increases,3 the number of train-

3The depth of a node equals the number of sum nodes from
the root to the node.

ing examples available for learning a sub-SPN rooted at the
node decreases exponentially. Merging increases the num-
ber of examples available at a node, since examples from all
directed paths from the root to the node can be combined.
This reduces the variance of the parameter estimates while
having no effect on their bias. Since the mean-squared error
of the model equals bias squared plus the variance, graph
SPNs are likely to be more accurate than tree SPNs. The
following proposition formalizes this intuition:
Proposition 1. Let S1, S2 and S1,2 be three (sub-)SPNs
having the same structure and defined over the same vari-
ables but whose parameters are estimated from training ex-
amples T1, T2 and T1,2 = T1 ∪ T2 respectively. Then as-
suming that the datasets are generated uniformly at random
from a distribution whose structure decomposes according
to S1 (and thus S2 and S1,2), the sample variance of S1,2 is
smaller than S1 and S2.

Proof. The sample variance of S1, S2 and S1,2 is given
by V ar(S1)/|T1|, V ar(S2)/|T2| and V ar(S1,2)/|T1 ∪T2|
respectively where V ar(S1), V ar(S2) and V ar(S1,2) is
the (population) variance of the distributions induced by
S1, S2 and S1,2. Since V ar(S1) = V ar(S2) = V ar(S1,2)
(our assumption), |T1 ∪ T2| ≥ |T1| and |T1 ∪ T2| ≥ |T2|,
the proof follows.

3.1 OUR APPROACH

The main idea in our approach is to relax the identical sub-
SPN requirement and merge similar sub-SPNs. We use this
relaxation because the sub-SPNs are estimated from data
and the likelihood that they will be identical is slim to none.
In this context, we develop methods for answering the fol-
lowing two questions: which sub-SPNs to merge and how
to merge them.

V1

V2 V3

V4 V5

(a)

V1

V2 V3

V4 V5

(b)

V1

V2 V3

V4 V5

(c)

Figure 2: Figure demonstrating why distance computations are hard. (a) and (b): Two tree Markov networks over five
variables {V1, . . . , V5}. The treewidth of these networks is 1 and therefore the complexity of performing inference over
them is O(d2) where d is the number of values in the domain of each variable. (c): Markov network obtained by taking the
union of the edges of the tree Markov networks given in (a) and (b). Computing the distance (e.g., KL divergence) between
the probability distributions represented by the two Markov networks in (a) and (b) is exponential in the treewidth of the
Markov network given in (c). The treewidth of this network is 3 and therefore the complexity of computing the distance is
O(d4), an exponential increase over O(d2).

One approach for selecting candidate sub-SPNs for merg-
ing is to compare the distance between the distributions
represented by the two sub-SPNs, given that they are de-
fined over the same variables, and check if the distance is
smaller than a threshold. However, computing the distance
between two sub-SPNs can be quite hard. For instance,
assume that the two sub-SPNs represent Markov networks
(MNs) and the junction tree or AND/OR graph search algo-
rithm [9] is used for computing the KL divergence between
the probability distributions represented by the two MNs.
In this case, the time and space complexity of computation
is exponential in the treewidth of the graph obtained by tak-
ing a union of the edges of the two MNs. The treewidth of
this graph can be quite large (see Fig. 2 for an example).
Therefore, we propose to use the following mean-field style
approximation [29] of the distance between the two distri-
butions:

D(P ||Q) ≈ 1

|V|
∑
Vi∈V

D(P (Vi)||Q(Vi))

where P and Q are two distributions over V and D is
a distance function (e.g., KL divergence, relative error,
Hellinger distance, etc.). Since single-variable marginal
distributions in each sub-SPN can be computed in time
that is linear in the number of nodes of the sub-SPN (and
in practice can be pre-computed), our proposed distance
method is also linear time.

Next, we describe our greedy, bottom-up approach for
merging similar sub-SPNs of a given SPN S (see Algo-
rithm 2). The algorithm begins by initializing S′ to S and
repeats the following steps until convergence. For all sub-
SPNs Si of S′ that are defined over exactly i variables, it
partitions the sub-SPNs based on their scopes such that all
sub-SPNs having the same scope are in the same cell (part)
ρj of the partition ρ. Then, in each cell ρj , ensuring that S′

Algorithm 2: MERGE(S,V,ε)
Input: SPN S
Output: Merged SPN S′

begin
S′ = S
repeat

for i = 1 to |V| do
Si = sub-SPNs in S′ having exactly i

variables in their scope
ρ = Partition Si into cells having identical
scopes

for each cell ρj of ρ do
Merge all sub-SPNs in ρj such that the
distance between them is bounded by ε
and S′ is a DAG

end
end

until convergence;
return S′

end

remains a DAG, it merges all sub-SPNs such that the dis-
tance between them is bounded by ε, a user-defined con-
stant that can be set using a validation set. Another option
is to merge two sub-SPNs if the accuracy on the validation
set improves, thereby using a greedy strategy (in our ex-
periments, we used both strategies). Note that the for-loop
of the algorithm operates in a bottom-up fashion similar to
reduced-error pruning in decision trees. The loop starts at
the leaves, which are sub-SPNs having just one variable in
their scope (i = 1), and then proceeds towards the root
which includes all variables in its scope (i = |V|). The
algorithm is guaranteed to converge in finite number of it-
erations because at each iteration, the size of the SPN can
only decrease or remain the same.

Vi

S1 S2

0.3 0.7
⇒ Vi

S1,2

0.3 0.7

⇒ ×

Vi : 0.3 S1,2

(a) Merge child nodes of observed sum node

+

S1 S2

0.3 0.7
⇒ +

S1,2

0.3 0.7

⇒
S1,2

(b) Merge child nodes of latent sum node

Figure 3: Figure demonstrating how to simplify and thus reduce the size of the SPN after merging. As before, sum nodes
are labeled either by a variable which denotes conditioning over the variable or by a + sign which denotes that the sum
node is latent. All left (right) arcs emanating from a sum node correspond to an assignment of 1 (0) to the labeled variable.
Product nodes are labeled by ×. S1,2 is an SPN obtained by merging SPNs S1 and S2. (a): shows how the SPN can
be reduced when the two child nodes of an observed sum node are merged. The node Vi : 0.3 represents a univariate
probability distribution over Vi with P (Vi = 1) = 0.3. (b): shows how the SPN can be reduced when the two child nodes
of a latent sum node are merged.

3.2 PRACTICAL MERGING STRATEGIES

We complete the description of the algorithm by describing
how to merge two similar sub-SPNs S1 and S2. A straight-
forward method is to merge the datasets at the two sub-
SPNs and then learn a new graph sub-SPN, say S1,2 from
the new dataset. An issue with this approach is that since
our basic algorithm (see Algorithm 1) learns tree SPNs, we
have to call Algorithm 2 again to convert the newly created
tree SPN to a graph SPN. This may yield a self-recursive
algorithm with infinite loops that may not terminate. To
overcome this computational difficulty, we propose to not
relearn the structure, but only update the weights. In partic-
ular, we use the following approach. We consider two can-
didate structures for the merged sub-SPN; the first structure
is identical to S1 and the second to S2. Then, we learn the
weights of the two candidate sub-SPNs using the merged
dataset and choose the one that yields the maximum im-
provement in accuracy (log-likelihood score) over the vali-
dation set.

There are two types of merging that require special atten-
tion. The first type is when the two sub-SPNs are children
of the same sum node. In this case, if the sum node cor-
responds to splitting over an observed variable, we can re-
place the sum-node by a product node having two children
as depicted in Fig. 3(a). On the other hand, if the sum node
is a latent node then the sum node can be deleted without
changing the underlying distribution. This is depicted in
Fig. 3(b). This type of merging is useful because it sub-
stantially simplifies the model, allowing us to either prune
sub-SPNs (see Fig. 3(b)) or take advantage of problem de-
composition (see Fig. 3(a)). This yields better generaliza-
tion and faster inference.

A second type of merging that requires special attention is
when the two sub-SPNs to be merged correspond to tree
Markov (or Bayesian) networks over the observed vari-
ables. In this case, unlike in the general case, we propose
to learn both the structure and parameters of the merged

sub-SPN (using the merged dataset). This is because both
the structure and parameter learning problem in such SPNs
can be solved in polynomial time using the Chow-Liu al-
gorithm [5].

4 EXPERIMENTS

4.1 SETUP

We evaluated the impact of merging SPNs on 20 real world
benchmark datasets presented in Table 3. These datasets
have been used in numerous previous studies for evaluating
the performance of a wide variety of tractable probabilistic
graphical model learners (cf. [18, 11, 26, 25, 1, 24]). All
datasets are defined over binary variables that take values
from the set {0, 1}. The number of the variables in them
range from 16 to 1556 and the number of training instances
range from 1600 to 291326. All of our experiments were
performed on a quad-core Intel i7 2.7 GHz machines with
16 GB RAM. Each algorithm was given a time bound of 48
hours, after which the algorithm was terminated.

4.2 ALGORITHMS EVALUATED

We implemented two variants of SPNs: SPNs in which sum
nodes split over value assignments to a latent variable and
SPNs in which sum nodes split over value assignments to
a heuristically chosen observed variable. Henceforth we
will call the two SPNs L-SPNs and O-SPNs respectively.
We learned tree versions of both SPNs using Algorithm 1.
We used tree Markov networks (MNs) as base models in
both SPNs; as mentioned earlier tree MNs can be learned
in polynomial time using the Chow-Liu algorithm.

To learn sum nodes in L-SPNs, following Gens and
Domingos [11], we employed hard EM over a naive Bayes
mixture model with three random restarts for 15 iterations
to split the training instances into two clusters, i.e. we only
considered binary splits for latent sum nodes for better reg-

Table 2: Table showing the impact of merging on the average test-set log likelihood, time complexity and prediction time
of L-SPNs and O-SPNs (all values rounded to two decimal places). We use the following notation: (1) T-LL: Average
test-set log likelihood for the tree SPNs; (2) G-LL: average test-set log likelihood for the graph SPN obtained from the
tree SPN by merging similar sub-SPNs; (3) |T|: number of parameters in the tree SPN; (4) |G|: number of parameters in
the graph SPN; (5) CR:=Compression Ratio = |T |

|G| ; (6) T-Time: Tree SPN learning time in seconds and (7) G-Time: Time
in seconds required by the merging algorithm (thus the total learning time for graph SPNs is T-time+G-time seconds). In
each row, bold values indicate the best score for each of the two SPN categories: L-SPN and O-SPN.

Datasets L-SPN O-SPN
T-LL G-LL |T| |G| CR T-time G-time T-LL G-LL |T| |G| CR T-time G-time

NLTCS -6.03 -6.04 5498 3988 1.38 5.37 396.69 -6.04 -6.05 1406 1152 1.22 0.98 4.69
MSNBC -6.46 -6.46 2780 2440 1.14 109.38 53.49 -6.09 -6.08 20032 9478 2.11 6.36 1245.62
KDD -2.14 -2.14 11516 6670 1.73 199.13 15119.05 -2.22 -2.19 34328 16608 2.07 91.38 59.54
Plants -12.80 -12.69 65132 47802 1.36 68.44 17775.76 -13.83 -13.49 86530 36960 2.34 9.56 14.12
Audio -40.11 -40.02 12798 10804 1.18 68.30 1995.94 -42.06 -42.06 6142 6142 1.00 10.74 3.90
Jester -53.12 -52.97 12798 10002 1.28 39.09 20.89 -55.38 -55.36 6142 4996 1.23 6.51 2.39
Netflix -56.71 -56.64 12798 11604 1.10 62.64 2287.78 -58.64 -58.64 6142 6142 1.00 19.95 2.35
Accidents -30.09 -30.01 14206 13322 1.07 58.23 2089.49 -30.83 -30.83 6846 6846 1.00 14.13 3.90
Retail -10.88 -10.87 3238 2162 1.50 51.15 75.25 -11.02 -10.95 6302 3158 2.00 32.69 15.06
Pumsb star -24.17 -24.10 19558 17604 1.11 66.05 2314.47 -24.42 -24.34 20222 18338 1.10 20.6 14.93
DNA -85.90 -85.51 5758 4320 1.33 8.26 11.26 -90.43 -87.49 11262 1430 7.88 3.76 9.48
Kosarek -10.62 -10.62 5318 5318 1.00 219.01 200.11 -11.10 -10.98 11902 6712 1.77 79.55 46.66
MSWeb -9.95 -9.90 32926 16484 2.00 490.12 29482.04 -10.07 -10.06 15086 12770 1.18 209.54 21.07
Book -34.80 -34.76 15998 11998 1.33 220.56 129.98 -38.60 -37.44 31740 11916 2.66 387.75 10.75
EachMovie -52.07 -52.07 15998 15998 1.00 94.92 91.31 -59.99 -58.05 31745 19846 1.60 176.95 6.18
WebKB -154.86 -153.55 26846 20134 1.33 157.89 78.64 -172.08 -161.17 53438 10046 5.32 287.01 249.27
Reuters-52 -84.70 -83.90 56894 46232 1.23 478.65 1331.38 -90.43 -87.49 56638 28334 2.0 485.6 428.4
20NewsGrp. -154.35 -154.67 58238 43684 1.33 913.81 3457.07 -163.35 -161.46 57982 29016 2.0 827.71 705.53
BBC -256.05 -253.45 33854 21160 1.60 98.55 53.93 -272.98 -260.59 63242 8454 7.48 163.47 142.89
Ad -16.77 -16.77 49790 49790 1.00 244.44 155.53 -17.37 -15.39 62098 31070 2.00 953.70 832.40

ularization and faster learning as in [28]. To learn sum
nodes in O-SPNs, we employed two heuristics proposed
in our previous work [25, 24]. The first heuristic selects
an observed variable that has the highest information gain.
The second heuristic selects an observed variable based on
the following mutual information based criteria: given a set
of variables V and training data T , we score each variable
Vi ∈ V using Score(Vi) =

∑
Vj∈V\Vi

IT (Vi, Vj) where
IT (Vi, Vj) is the mutual information between Vi and Vj
according to T and choose a variable having the highest
score. Variables having high mutual information score are
likely to yield better decompositions, which in turn will
likely yield small depth SPNs having high generalization
accuracy.

In both L-SPNs and O-SPNs, we learn product nodes
using the technique described in Gens and Domingos
[11]. We first compute the mutual information graph
given data (similar to the Chow-Liu algorithm). This
graph is a complete weighted graph over all variables, in
which each edge is weighted by the mutual information be-
tween the two corresponding variables. Then, we prune
weak edges from the graph using a threshold chosen from

β: {0.001, 0.0015, 0.01, 0.5}. Finally, we find connected
components of the pruned graph, and recursively learn a
sub-SPN over variables and data in each connected compo-
nent.

We varied the depth h of SPNs from {4, 5, 6, 7, 10}.4 We
use the following stopping criteria for learning the base
model (tree Markov network): stop when the number of
samples n at a node is less than 10 or the maximum depth
is reached. All parameters in the model were smoothed us-
ing 1-Laplace smoothing.

For each possible configuration of h and β we learned both
a tree L-SPN and a tree O-SPN. In case of O-SPNs, we
also varied the heuristic to choose an observed variable.
The best tree SPN in each category was chosen according
to the average log-likelihood score achieved on the valida-
tion set and provided as the input to the merging algorithm
(see Algorithm 2). Then, we applied practical merging
and simplification strategies described in section 3.2 on the

4Note that the overall depth of the SPN is h plus the depth
of the SPN corresponding to the tree Markov network (our base
model). Thus, the overall depth can be quite large (> 30 in most
cases).

merged SPN and report the test set log-likelihood score of
the merged model that achieved the highest log-likelihood
score on validation set.5 We used Manhattan distance to
measure the distance between two candidate sub-SPNs and
chose a threshold (ε) from {0.0001, 0.001, 0.01, 0.1} us-
ing the validation set. Finally, after each merge we per-
formed the following sanity/model complexity check. If
the merged sub-SPN had smaller log-likelihood than a tree
Markov network on the validation set, we replaced the
merged sub-SPN by the latter.

4.3 IMPACT OF MERGING ON TEST
LOG-LIKELIHOOD

Table 2 shows the results of our experiments for evaluating
the impact of merging on the accuracy, time complexity
and prediction time of L-SPNs and O-SPNs. In terms of
learning time, we see that for L-SPNs, merging requires a
significant amount of time. This is to be expected because
parameter learning is computationally expensive in pres-
ence of latent variables. To update the parameters of candi-
date sub-SPNs, we ran hard EM with the merged dataset for
20 iterations or until convergence. For some L-SPNs (e.g.
Plants), merging was a factor of 200 slower than learning
tree models. The reason for this anomaly is that the cor-
responding tree L-SPNs have large number of latent sum
nodes. On the other hand, merging is significantly faster in
O-SPNs than L-SPNs because the parameters are updated
in closed-form, by making only one pass over the data as
well as the model.

We measure the prediction time by the number of edges
attached to the sum nodes (see columns |T|, |G| and CR in
Table 2) since the prediction time is linearly proportional in
the number of these weights. We see that in general merg-
ing yields reductions in complexity of inference by reduc-
ing the size of the network in majority of cases.

In terms of accuracy, we see from Table 2 that merging
improves the test set log-likelihood score for the major-
ity of datasets, clearly demonstrating our intuition that it
will yield better generalization, primarily because it signifi-
cantly reduces the variance at the cost of slightly increasing
the bias.

4.4 COMPARISON WITH STATE-OF-THE-ART

Finally, we demonstrate that we can achieve state-of-the-art
performance using our merging algorithm. For this, follow-
ing our previous work [24, 28], we learn bagged ensemble
of tree SPNs and graph SPNs. It was shown in previous
studies that bagged ensembles of tree SPNs (especially la-
tent SPNs) achieves state-of-the-art results. In our evalua-

5Our experiments showed that merging sub-SPNs that are
rooted at child nodes of the same sum node (the cases given in Fig.
3(a) and (b)) was often more beneficial as compared to merging
sub-SPNs that are child nodes of two different sum nodes.

tion, we wanted to see whether we would be able to match
or exceed these results using bagged ensemble of graph
SPNs. As a strong baseline, we also compare with five
other state-of-the-art tractable model learners: (1) learn-
ing sum-product networks with direct and indirect variable
interactions (ID-SPN) [26], learning Markov networks us-
ing arithmetic circuits (ACMN) [20], learning mixtures of
cutset networks (MCNet) [25], learning sum-product net-
works via SVD based algorithm (SPN-SVD) [1] and learn-
ing ensembles of cutset networks (ECNet) [24].

In our experiments, we fixed the number of bags to 40
following [24]. Instead of performing a grid search, we
performed random search [3] to create a configuration for
the models in the ensemble. Each component model was
then weighted according to its likelihood on the training
set. To get better accuracy, we treated the bagged ensemble
of L-SPNs and O-SPNs as an SPN having one latent sum
node as the root and each independent component (bag) as
its child sub-SPN. The benefit of this approach is that in-
stead of optimizing the local log-likelihood scores of indi-
vidual SPNs, while merging, we can directly optimize the
global log-likelihood.

Table 3 shows the bagged ensemble scores of L-SPNs and
O-SPNs before and after merging as well as the best log-
likelihood score obtained to date using the competing ap-
proaches mentioned above. Bagged graph SPNs, especially
L-SPNs, performed significantly better than the state-of-
the-art on all of the high dimensional datasets with very
competitive scores on the others. This suggests that merg-
ing is especially useful for accurately modeling relation-
ships in high-dimensional data (see also Table 2).

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel algorithm for learning
graph SPNs from tree SPNs by merging similar sub-SPNs
in the tree SPN. Our proposed algorithm for finding and
merging similar sub-SPNs is general enough to serve as
a template for incorporating suitable functions that mea-
sure similarity between sub-SPNs as well as for performing
arbitrary mergings. Our experimental evaluation clearly
shows that graph SPNs can significantly boost the accuracy
and prediction time of tree SPNs by substantially reduc-
ing the number of parameters that the learning algorithm
needs to induce from data. We also investigated the merit
of learning ensembles of graph SPNs, building on our pre-
vious work on learning ensembles of tree SPNs, for a va-
riety of high dimensional real world datasets, and compar-
ing them to other state-of-the-art tractable model learners.
Our experimental results showed that ensembles of graph
SPNs significantly outperformed the state-of-the-art learn-
ers, clearly demonstrating the efficacy of our proposed ap-
proach.

Future work includes: developing relational merging ap-

Table 3: Average test set log-likelihood comparison with state-of-the-art tractable model learners. Bold values indicate
the winning score for the corresponding dataset. T-LL: Bagged LL of tree SPNs and G-LL: Bagged LL of graph SPNs.
Column “Best-LL to date” gives the best log-likelihood score to date for each dataset obtained using the following
competing approaches: ID-SPN [26], ACMN [20], MCNet [25], SPN-SVD [1], and ECNet [24].

Datasets |Var| |Train| |Valid| |Test| L-SPN O-SPN Best-LL to dateT-LL G-LL T-LL G-LL
NLTCS 16 16181 2157 3236 -6.01 -6.00 -6.01 -6.00 -6.00
MSNBC 17 291326 38843 58265 -6.45 -6.39 -6.10 -6.10 -6.04
KDD 64 180092 19907 34955 -2.13 -2.12 -2.14 -2.13 -2.12
Plants 69 17412 2321 3482 -12.31 -12.03 -12.25 -12.21 -11.99
Audio 100 15000 2000 3000 -39.57 -39.49 -40.35 -40.31 -39.67
Jester 100 9000 1000 4116 -52.65 -52.47 -53.56 -53.13 -41.11
Netflix 100 15000 2000 3000 -55.92 -55.84 -56.69 -56.65 -56.13
Accidents 111 12758 1700 2551 -29.41 -29.32 -29.81 -29.82 -24.87
Retail 135 22041 2938 4408 -10.85 -10.82 -10.87 -10.85 -10.60
Pumsb star 163 12262 1635 2452 -23.82 -23.67 -23.85 -23.81 -22.40
DNA 180 1600 400 1186 -86.63 -80.89 -85.97 -84.79 -80.03
Kosarek 190 33375 4450 6675 -10.71 -10.55 -10.85 -10.74 -10.54
MSWeb 294 29441 32750 5000 -9.84 -9.78 -9.77 -9.76 -9.22
Book 500 8700 1159 1739 -36.49 -34.25 -36.35 -35.89 -30.18
EachMovie 500 4524 1002 591 -54.70 -50.72 -55.82 -53.07 -51.14
WebKB 839 2803 558 838 -170.27 -150.04 -166.65 -152.82 -150.10
Reuters-52 889 6532 1028 1540 -84.32 -80.66 -86.00 -82.66 -82.10
20NewsGrp. 910 11293 3764 3764 -151.48 -150.80 -158.40 -154.28 -151.47
BBC 1058 1670 225 330 -265.89 -233.26 -244.12 -238.61 -236.82
Ad 1556 2461 327 491 -16.33 -14.58 -15.69 -14.34 -14.36

proaches that search for similarities in sub-SPNs having
different (even disjoint) scopes (cf. [12, 14]); analyzing
contexts – assignment to variables on the path from the
root – of merged sub-SPNs for finding symmetric contexts;
directly inducing graph SPNs from data rather than using
post-processing schemes; and extending the approach pre-
sented in the paper to hybrid domains having both discrete
and continuous variables.

Acknowledgements

This research was funded in part by the DARPA Probabilis-
tic Programming for Advanced Machine Learning Program
under AFRL prime contract number FA8750-14-C-0005
and by the NSF award 1528037. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of DARPA, AFRL,
NSF or the US government.

References

[1] T. Adel, D. Balduzzi, and A. Ghodsi. Learning the
structure of sum-product networks via an svd-based
algorithm. In Proceedings of the Thirty-First Confer-

ence on Uncertainty in Artificial Intelligence, pages
32–41, 2015.

[2] F. R. Bach and M. I. Jordan. Thin junction trees.
Advances in Neural Information Processing Systems,
14:569–576, 2001.

[3] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281–305, 2012.

[4] M. Chavira and A. Darwiche. Compiling Bayesian
networks using variable elimination. In Proceedings
of the 20th International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 2443–2449, 2007.

[5] C. K. Chow and C. N Liu. Approximating dis-
crete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14:462–
467, 1968.

[6] A. Darwiche. Decomposable negation normal form.
Journal of the ACM, 48(4):608–647, 2001.

[7] A. Darwiche. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3):280–
305, 2003.

[8] A. Darwiche. Modeling and reasoning with Bayesian
networks. Cambridge University Press, 2009.

[9] R. Dechter and R. Mateescu. AND/OR search spaces
for graphical models. Artificial Intelligence, 171:73–
106, 2007.

[10] A. Dennis and D. Ventura. Greedy structure search
for sum-product networks. In Proceedings of the 24th
International Conference on Artificial Intelligence,
pages 932–938. AAAI Press, 2015.

[11] R. Gens and P. Domingos. Learning the structure
of sum-product networks. In Proceedings of The
30th International Conference on Machine Learning,
pages 873–880, 2013.

[12] V. Gogate and P. Domingos. Exploiting Logical
Structure in Lifted Probabilistic Inference. In AAAI
2010 Workshop on Statistical Relational Learning,
2010.

[13] V. Gogate and P. Domingos. Formula-Based Proba-
bilistic Inference. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence,
pages 210–219, 2010.

[14] V. Gogate and P. Domingos. Probabilistic Theo-
rem Proving. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence,
pages 256–265. AUAI Press, 2011.

[15] V. Gogate, W. Webb, and P. Domingos. Learning effi-
cient Markov networks. In Proceedings of the 24th
conference on Neural Information Processing Sys-
tems, pages 748–756, 2010.

[16] D. Kisa, G. Van den Broeck, A. Choi, and A. Dar-
wiche. Probabilistic sentential decision diagrams. In
Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reason-
ing, 2014.

[17] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, Cam-
bridge, MA, 2009.

[18] D. Lowd and J. Davis. Learning Markov network
structure with decision trees. In Proceedings of the
10th International Conference on Data Mining, pages
334–343, 2010.

[19] D. Lowd and P. Domingos. Learning arithmetic
circuits. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence,
Helsinki, Finland, 2008. AUAI Press.

[20] D. Lowd and A. Rooshenas. Learning Markov net-
works with arithmetic circuits. In Proceedings of the

Sixteenth International Conference on Artificial In-
telligence and Statistics (AISTATS 2013), Scottsdale,
AZ, 2013.

[21] R. Mateescu, R. Dechter, and R. Marinescu.
AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of
Artificial Intelligence Research, pages 465–519,
2008.

[22] M. Meila and M. Jordan. Learning with mixtures of
trees. Journal of Machine Learning Research, 1:1–48,
2000.

[23] H. Poon and P. Domingos. Sum-product networks: A
new deep architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial In-
telligence, pages 337–346, Barcelona, Spain, 2011.
AUAI Press.

[24] T. Rahman and V. Gogate. Learning ensembles of
cutset networks. In AAAI conference on Artificial In-
telligence, pages 3301–3307, 2016.

[25] T. Rahman, P. Kothalkar, and V. Gogate. Cutset net-
works: A simple, tractable, and scalable approach for
improving the accuracy of chow-liu trees. In Pro-
ceesings of ECML and PKDD, pages 630–645, 2014.

[26] A. Rooshenas and D. Lowd. Learning sum-product
networks with direct and indirect interactions. In Pro-
ceedings of the Thirty-First International Conference
on Machine Learning, Beijing, China, 2014. JMLR:
W&CP 32.

[27] D. Roth. On the hardness of approximate reasoning.
Artificial Intelligence, 82:273–302, 1996.

[28] A. Vergari, N. Di Mauro, and F. Esposito. Simplify-
ing, regularizing and strengthening sum-product net-
work structure learning. In Machine Learning and
Knowledge Discovery in Databases, pages 343–358.
Springer, 2015.

[29] W. Wiegerinck. Variational approximations between
mean field theory and the junction tree algorithm. In
Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 626–633, 2000.

